説明

Fターム[5H018EE11]の内容

無消耗性電極 (49,684) | 電極の構成物質 (16,030) | 無機化合物 (2,351)

Fターム[5H018EE11]の下位に属するFターム

金属酸化物 (1,566)

Fターム[5H018EE11]に分類される特許

81 - 100 / 785


【課題】 電気化学反応を用いることでランニングコストを抑えながら、小型の装置で、大きな処理能力を得ることができる、ガス分解素子、なかでもとくにアンモニア分解素子を提供することを目的とする。
【解決手段】 このガス分解素子は、内面側の第1電極2と、外面側の第2電極5と、該の第1電極と第2電極5とによって挟まれる固体電解質1とで構成される筒状MEA7と、カソード5に積層された導電性ペースト塗布層11h、12hとを備え、導電性ペースト塗布層が多孔質体であることを特徴とする。 (もっと読む)


【課題】高分子電解質膜や電極層の劣化を抑えて発電性能の低下を一層抑えることができる電極−膜−枠接合体を提供する。
【解決手段】過酸化物分解触媒を含む額縁状の過酸化物分解触媒層を備え、高分子電解質膜の厚み方向から見て、過酸化物分解触媒層の内縁がガス拡散層の外縁よりも内側に位置し、過酸化物分解触媒層の外縁が枠体の内縁よりも外側に位置するように構成する。 (もっと読む)


【課題】比較的安価で資源量も比較的多い材料を用いて得ることができ、また、酸性電解質中で高電位下においても使用することができる高活性な電極触媒を製造する方法を提供する。
【解決手段】以下の第一材料、以下の第二材料および以下の第三材料を含有する混合物を、超臨界状態または亜臨界状態の水の存在下において水熱反応させて得られる電極触媒の前駆体を、以下の第二材料が炭素材料に変化する条件にて焼成する工程を含む電極触媒の製造方法:
第一材料は、4A族元素および5A族元素からなる群より選択される1種以上の金属元素と、水素、窒素、塩素、炭素、硼素、硫黄および酸素からなる群より選択される1種以上の非金属元素とで構成される金属化合物であり、
第二材料は、炭素材料前駆体であり、
第三材料は、導電性材料である。 (もっと読む)


【課題】長期間の保存が可能で、性能が周囲環境に影響を受けない、充電が可能である、および、稼働温度領域が水の融点以上沸点以下に限定されない空気電池を提供する。
【解決手段】負極活物質8を含有する負極活物質層22を有する負極層1、および負極層の集電を行う負極集電体4を有する負極51と、空気極触媒20を含有する空気極層3、および空気極層の集電を行う空気極集電体5を有する空気極53と、負極、および空気極の間で酸素イオンの輸送を行う酸素キャリア6を含有する電解質酸素キャリア層2を有する電解質52とを有する空気電池であって、電解質酸素キャリア層の数は1層以上であり、酸素キャリアは、非水系の有機分子である。 (もっと読む)


【課題】異種金属それぞれに固有の還元剤の使用と還元処理のための製造管理や処理時間を不要とでき、合金前駆体を予め製造するといった工程を要することなく、効率的で品質に優れたコアシェル触媒を形成することのできる触媒担持担体の製造方法を提供する。
【解決手段】導電性担体1に第1の触媒金属2が担持されてなる触媒担持担体の中間体10が溶媒W内に混合されて懸濁液をなし、この懸濁液を熱処理して懸濁液の液電位を低下させる工程、この懸濁液に対して第2の触媒金属3を混合し、中間体10の第1の触媒金属2の表面を第2の触媒金属3が修飾する工程からなる触媒担持担体の製造方法である。 (もっと読む)


【課題】複数の層からなる固体酸化物形燃料電池セルの製造に際し、品質と量産性をともに向上させることができる固体酸化物形燃料電池セルの製造方法を提供する。
【解決手段】固体酸化物形燃料電池セル(単セル)10は、例えば、燃料極層11、活性層12、固体電解質層13、反応防止層14、空気極層15とを含み、単セル10の製造工程では、隣接する2層以上を積層した複数積層シート(未焼成複数積層体)を形成し、この複数積層シートを他の層と一体化して単セル10が形成される。これにより、複数積層シート構成する各層を高い密着性で接合して発電性能を高めるとともに、製造工程を簡素化して不良の発生の低減と量産性の向上を実現できる。 (もっと読む)


【課題】高い起電力を有しながら、析出物の析出を抑制できるレドックスフロー電池を提供する。
【解決手段】レドックスフロー電池100は、正極電極104と、負極電極105と、両電極104,105間に介在される隔膜101とを具える電池セルに正極電解液及び負極電解液を供給して充放電を行う。正極電解液は、マンガンイオン、或いはマンガンイオン及びチタンイオンの双方を含む。負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含む。レドックスフロー電池100は、正極電解液にチタンイオンを含んだり、正極電解液の充電深度が90%以下となるように運転されたりすることで、MnO2といった析出物の析出を抑制し、良好に充放電を行える。また、このレドックスフロー電池100は、従来のバナジウム系レドックスフロー電池と同等、又は同等以上の高い起電力を有する。 (もっと読む)


【課題】異なる組成の2種類以上の繊維状材料の一部同士が相互に接合した構造を有する繊維状複合材料を提供する。
【解決手段】本発明の繊維状複合材料は、異なる組成の2種類以上の繊維状材料の一部同士が相互に接合した構造を有し、2種類以上の繊維状材料は、それぞれの繊維状材料の直径が10nm〜50μmであるとともに、それぞれの繊維状材料の直径に対する長さの比の割合が10以上である。本発明の繊維状複合材料は、各繊維状材料を形成するための一の原料液7aと他の原料液7bとに、それぞれ極性の異なる±0.5kV/cm以上の高電界を印加してそれぞれ噴射し、それぞれの繊維状材料が独立した連続構造を有した状態で複合化させる静電紡糸工程によって得ることができる。 (もっと読む)


【課題】固体高分子形燃料電池に用いられるプロトン伝導材料であって、低湿環境下での中温運転において高いプロトン伝導性を有するプロトン伝導材料を提供する。
【解決手段】触媒層14,16に用いられているプロトン伝導材料は、ホスホン酸ジルコニウムにタングストケイ酸がドープされた複合材料である。従って、ホスホン酸ジルコニウムは、プロトン伝導性を有する高分子材料と比較して十分に耐熱性が高く、タングストケイ酸により低湿環境下でもプロトン伝導性が高く維持されるので、触媒層14,16に用いられているプロトン伝導材料は低湿環境下での中温運転において高いプロトン伝導性を有することが可能である。また、MEA10では上記高分子材料のような耐熱性の低い樹脂が不要となるので、MEA10は低湿環境下での中温運転において良好な発電性能を発揮することが可能である。 (もっと読む)


【課題】製造コストを抑え、金属酸化物の担持量を容易にコントロールでき、しかも結晶性を向上させる簡便な金属酸化物担持炭素材料の製造方法を提供する。
【解決手段】所望の金属を含む金属フッ化物又は金属フッ化物とNH4基を有する金属フルオロ錯体との水溶液中に炭素材料を分散させると共にその炭素材料表面に金属フッ化物を吸着させた後、その生成物を濾別、洗浄後、ホウ酸水溶液に分散させ、熱処理して結晶性を向上させた金属酸化物担持炭素材料を得ることを特徴とする製造方法。前記金属フッ化物としては、Mを金属元素としてMF2,MF4,MF6で表される金属フッ化物を用いる。 (もっと読む)


【課題】中温で且つ低湿環境下における固体高分子形燃料電池の運転において、良好な発電性能を得ることが可能な触媒層を提供する。
【解決手段】触媒層は、リン酸スルホフェニルホスホン酸ジルコニウム[Zr(HPO4)2-X(O3PC6H4SO3H)X・nH2O,0<X≦2]と、貴金属系触媒を担持した触媒担持微粒子とを含むので、触媒層のプロトン伝導性を高めるためにパーフルオロスルホン酸プロトン交換樹脂などの耐熱性の低い有機高分子材料を触媒層に用いる必要がない。そして、上記リン酸スルホフェニルホスホン酸ジルコニウムは上記有機高分子材料と比較して十分に耐熱性が高い。従って、上記中温で且つ低湿環境下における固体高分子形燃料電池の運転において良好な発電性能を得ることが可能な触媒層となる。 (もっと読む)


【課題】放電の際に正極上に金属炭酸塩が生成されることを防止する。
【解決手段】金属空気電池1は、正極2、負極3、電解質層4および空気導入管5を備える二次電池である。正極2は、略有底円筒状の多孔質部材であり、アルミナにより形成される正極支持部21、導電性を有するペロブスカイト型酸化物により形成される正極導電層22、および、二酸化マンガンにより形成される正極触媒層23を備える。負極3は、ステンレス鋼により形成された負極支持部31、および、リチウムまたはリチウム合金により形成される負極導電層32を備える。金属空気電池1では、ペロブスカイト型酸化物にて形成された正極導電層22上に正極触媒層23を形成することにより、炭素を含有しない正極2を実現することができる。これにより、放電の際に正極2上に炭酸リチウムが生成されることを防止することができ、金属空気電池1の充電電圧を低くすることができる。 (もっと読む)


【課題】酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有する触媒を提供すること。
【解決手段】下記(i)および(ii)の条件を満たすニオブ含有金属炭窒酸化物からなることを特徴とする触媒;(i)拡張X線吸収微細構造(EXAFS)スペクトルにおいて、ニオブ原子から3〜4Åの範囲に、ニオブ原子から0〜6Åの範囲におけるフーリエ変換強度が最大となるピークが観測される、(ii)X線吸収端微細構造(XANES)スペクトルにおいて、ニオブ含有金属炭窒酸化物のスペクトルはNb1229のスペクトルと同一である。 (もっと読む)


【課題】高温の作動条件下において、初期時から安定的に特性を維持することが可能な、燃料電池用電極、燃料電池用電極の製造方法及び燃料電池を提供すること。
【解決手段】本発明に係る燃料電池用電極は、水溶性遊離酸を含む高分子電解質膜がカソード電極及びアノード電極により挟持された膜電極接合体を備え、アノード電極に燃料ガスが供給されるとともに、カソード電極に酸化剤ガスが供給され、運転温度が100℃以上である燃料電池に用いられる燃料電池用電極であり、導電性担体と当該導電性担体に担持された触媒粒子とからなる電極触媒を含む電極触媒層を有し、電極触媒層は、酸による真空熱処理が予め実施され、導電性担体に酸が含浸した酸含浸電極触媒と、酸による真空熱処理が実施されていない酸未含浸電極触媒と、が均一に分散している。 (もっと読む)


【課題】耐久性と発電効率との双方に優れた燃料電池用電極、それを用いてなる膜電極接合体及び燃料電池、並びに、燃料電池用電極の製造方法を提供する。
【解決手段】少なくとも一部に黒鉛構造を有する炭素からなる担持体に貴金属触媒微粒子が担持されてなる触媒、及び、塩基性低分子有機化合物を含む触媒層用組成物と、リン酸類と、を含有する触媒層を備えているようにした。 (もっと読む)


【課題】耐熱衝撃性を向上することができる固体酸化物形燃料電池を提供する。
【解決手段】固体酸化物形燃料電池は、多孔質性の支持基板1と、支持基板上に配置される少なくとも1つの単セル2と、を備え、前記単セル2は、支持基板上に形成される多孔質性の中間層21と、中間層上に形成され、支持基板及び中間層の気孔率よりも低い気孔率を有する多孔質性の電解質22と、電解質上に形成される燃料極23と、電解質上に、燃料極から離間して形成される空気極24と、を備えている。 (もっと読む)


【課題】触媒利用率を改善させ、出力特性の高い触媒電極を提供し、さらに、これを用いた膜電極接合体及び燃料電池を提供する。
【解決手段】触媒電極を形成するための燃料電池用触媒インクが、少なくとも、触媒と、プロトン伝導性高分子電解質と、無機物に接触させた水とを含む。また、この燃料電池用触媒インクは、水に無機物を接触させる工程と、触媒と水とを混合し、次いで溶媒を混合して分散処理する工程と、さらに、プロトン伝導性高分子電解質を混合して分散処理する工程を経ることで製造される。 (もっと読む)


【課題】電極構成材料として、ペロブスカイト型複合酸化物を使用しつつ、可能な限り低コストでありながら、三相界面を容易に形成しうる部材を提供することにより、電極効率に優れた燃料電池用電極を提供すること。
【解決手段】少なくとも二種のペロブスカイト型(ABO)複合粉末を混合して得られる複合酸化物混合粉末により構成される固体電解質型燃料電池用複合酸化物。ただし、第一の複合酸化物粉末が1〜10μmの範囲にのみ粒度分布を有し、かつその分布は変動係数(平均径(μm)/標準偏差(μm)×100で示される)が40%未満であるものと、第二の複合酸化物粉末として、少なくとも1〜10μmの間の領域に粒度分布(頻度径)を有し、また10〜100μmの範囲にも粒度分布(頻度径)を有するような複合酸化物粉末、すなわち少なくともその粒度分布において、2つの頻度径を有する複合酸化物粉末を使用する。 (もっと読む)


【課題】貴金属以外の金属が均一に担持され、酸素還元活性が充分に高く、精製容易かつ幅広い構造を選択できる低分子の有機化合物を焼成して得られる含窒素カーボンアロイ、その製造方法及びそれを用いた炭素触媒を提供する。
【解決手段】含窒素カーボンアロイは、分子量60〜1000の含窒素結晶性有機化合物を含む有機材料を焼成して得る。製造方法は(1)含窒素結晶性有機化合物と前記無機金属及び/又は無機金属塩とを混合する工程(2)不活性雰囲気下で室温から炭素化温度まで昇温する工程(3)500℃〜1000℃で、0.1時間〜100時間保持する炭素化工程(4)炭素化温度から室温まで冷却する冷却工程を含む。 (もっと読む)


【課題】本発明は、燃料電池の製造方法に関し、垂直方向に形成させたカーボンナノチューブを高分子電解質膜に良好に転写できる燃料電池の製造方法を提供することを目的とする。
【解決手段】本実施の形態の製造方法は、(1)種触媒層形成工程、(2)カーボンナノチューブ成長工程、(3)触媒担持工程、(4)アイオノマ塗布工程、(5)転写工程を備えている。(5)転写工程では、先ず、カーボンナノチューブに高分子電解質膜を軟化点温度以上の温度で密着させて接合させる(ステップ112)。これにより、基板−カーボンナノチューブ層−電解質膜接合体が作製できる。続いて、上記接合体をアルカリ溶液中に浸す(ステップ114)。これにより、基板上に形成されたゼオライト層又は種触媒を溶解除去する。或いは、ゼオライト層を種触媒と共に溶解除去する。 (もっと読む)


81 - 100 / 785