説明

Fターム[5H018EE11]の内容

無消耗性電極 (49,684) | 電極の構成物質 (16,030) | 無機化合物 (2,351)

Fターム[5H018EE11]の下位に属するFターム

金属酸化物 (1,566)

Fターム[5H018EE11]に分類される特許

101 - 120 / 785


【課題】燃料の酸化還元反応の進行に伴って生じる燃料溶液内の燃料濃度勾配やpH勾配、電極付近の温度変化による電池出力の低下を自動的に回復する機構を備えたバイオ燃料電池の提供。
【解決手段】電極1表面及び/又は電極1内部に、接触する燃料溶液3の特性変化に応答して可逆的に膨潤収縮する高分子ゲル2を有するバイオ燃料電池Aを提供する。バイオ燃料電池Aでは、高分子ゲル2が、接触する燃料溶液3の特性変化に応答して膨潤収縮することにより、燃料溶液3あるいは溶液中の物質の拡散性を高めたり、燃料溶液3を攪拌したりすることができる。 (もっと読む)


【課題】本発明は、燃料電池用電極の製造方法に関し、加熱処理中の高分子材料の変性を良好に抑制可能な燃料電池用電極の製造方法を提供することを目的とする。
【解決手段】側鎖にプロトン交換基を有する高分子材料と、触媒担持カーボンとを含む触媒インク層を基材上に形成する工程と、前記触媒インク層を、第四級アンモニウム塩溶液又は金属塩溶液で処理する工程と、イオン交換後の前記触媒インク層を150℃以上で加熱処理する工程と、加熱処理後の前記触媒インク層を酸溶液で処理する工程と、を備えることを特徴とする燃料電池用電極の製造方法。 (もっと読む)


【課題】本発明は、燃料電池に関し、三相界面に反応ガスをより効率的に供給できる燃料電池を提供することを目的とする。
【解決手段】カソード触媒層16は、内部に中空状の空間が形成された電子伝導性のCNT161を含んでいる。CNT161には、この中空状空間の形成方向の一端に開口端161a、他端に閉口端161bがそれぞれ形成されている。開口端161aは、ガス拡散層22に接するように配置されている。一方、閉口端161bは、高分子電解質膜12と接するように配置されている。CNT161の表面には、欠陥部161cが形成されている。欠陥部161cは、CNT161の外表面と、上記中空状空間とを連通するように形成されている。CNT161の外表面には、触媒粒子162が設けられ、触媒粒子162を覆うようにアイオノマ163が設けられている。 (もっと読む)


【課題】発電特性を向上させた膜電極接合体用バインダおよび該バインダを用いた燃料電池用膜電極接合体を提供する。
【解決手段】電極及び高分子電解質膜を含み、電極にバインダを用いた燃料電池用膜電極接合体であって、該バインダがバインダ樹脂と担体とを含む燃料電池用膜電極接合体である。 (もっと読む)


【課題】耐CO被毒性、耐久性に優れ、より安価に製造しうる家庭用定置式燃料電池システムを提供する。
【解決手段】本発明のある態様の家庭用定置式燃料電池システムは、4族元素または5族元素からなる群より選ばれる1種以上の元素の炭窒化物の部分酸化物をアノード触媒に含む。 (もっと読む)


【課題】触媒金属の活性向上と耐久向上を図ることのできる触媒担持担体とその製造方法、および電極触媒とその製造方法を提供する。
【解決手段】導電性担体1と、該導電性担体1の表面に修飾される金属ナイトライド粒子2Aと、該導電性担体1の表面に配位される窒素元素3と、窒素元素3の表面および金属ナイトライド粒子2Aの表面に担持される触媒金属粒子4と、からなる触媒担持担体30である。 (もっと読む)


【課題】触媒金属の活性向上と耐久向上を図ることのできる触媒担持担体とその製造方法、および電極触媒とその製造方法を提供する。
【解決手段】炭素系の導電性担体1の表面に金属前駆体2を担持させ、還元処理と熱処理を同時におこなうことにより、金属前駆体2を還元して金属を形成し、該金属を炭化して金属カーバイド粒子2Aを形成し、該金属カーバイド粒子2Aを該導電性担体1の表面に修飾する、導電性担体の製造方法である。 (もっと読む)


【課題】ユーザが供給した液体の燃料溶液としての適合度を自動判定して、不適当な液体の供給による電池の故障や出力低下を防止し、所望の電池性能を得ることが可能なバイオ燃料電池システムの提供。
【解決手段】外部から液体が導入される導入口5と、酸化還元酵素を触媒とした燃料の酸化還元反応の反応場となる電池電極4と、液体の燃料溶液としての適合度を自動判定し、電池電極への液体の供給を制御する制御手段(コントローラ3、切換弁6、センサー電極7)と、を備えるバイオ燃料電池システムを提供する。 (もっと読む)


【課題】本発明は、還元部材に使用する炭素材料の酸化と、それ伴う二酸化炭素の発生を抑制し、充電過電圧を低減することが可能である金属空気二次電池を提供することを目的とする。
【解決手段】本発明の金属空気二次電池は、金属イオンを吸蔵・放出する負極部材と、酸素をイオン化する還元部材と、前記負極部材と前記還元部材との間に設置された電解質が含浸されているセパレータと、を有するものであって、前記還元部材は炭素材料を有し、前記炭素材料が金属炭化物で被覆されたことを特徴とするものである。 (もっと読む)


【課題】本発明は、燃料電池システムの燃料電池スタックに関する。
【解決手段】本発明の一実施形態に係る燃料電池スタックは、電解質膜、前記電解質膜の第1面上に位置するアノード電極、及び前記電解質膜の前記第1面の反対側の第2面に位置するカソード電極を含む複数の膜−電極接合体と、前記膜−電極接合体の間に介在するセパレータとを含む。このとき、前記アノード電極及び前記カソード電極は、それぞれ互いに異なる面積密度を有する第1領域及び第2領域に区分されるガス拡散層を含む。 (もっと読む)


【課題】燃料電池の電気化学エネルギーデバイスの一時的な高出力運転時の不安定動作を改善することを課題とする。
【解決手段】メタノール酸化反応を促進する触媒13を担持した電気伝導体15と、高メタノール濃度下でメタノールを吸蔵し、かつ、低メタノール濃度下ではメタノールを放出する性能を持つ多孔質構造体14と、を含む触媒層11を有する触媒電極、および、この触媒電極を燃料極10として用いる燃料電池1、および、この燃料電池1を動力源として用いる機器を提供する。 (もっと読む)


【課題】白金単独の燃料電池用触媒層と同等以上の触媒能を有し、しかも安価な燃料電池用触媒層を提供する。
【解決手段】燃料電池用触媒層5’は、金属炭窒酸化物を含む層1と白金を含む層2とを有する。また、前記層1における金属炭窒酸化物と前記層2における白金との単位面積当たりの質量比(金属炭窒酸化物/白金)が、2〜500であることが好ましい。さらに、前記層2における白金の単位面積当たりの質量が、0.005〜0.2mg/cm2であることが好ましい。 (もっと読む)


【課題】温焼成工程での粒子の凝集及び強酸性下における金属原子の溶出を抑制できる触媒及び燃料電池の製造方法、並びに燃料電池を提供すること。
【解決手段】触媒の製造方法は、金属原子(例えば、Pt、Ru)からなる触媒前駆体粒子を被覆する無機酸化物による被覆層を形成する第1工程と、被覆層が形成された触媒前駆体粒子を焼成処理する第2工程と、被覆層を除去する第3工程とを有する。第1工程は、(a)疎水性基を有する表面修飾剤を化学的又は物理的に触媒前駆体粒子に結合させ表面修飾する工程と、(b)界面活性剤の疎水性基と表面修飾剤の疎水性基によって疎水性層を形成する工程と、(c)無機酸化物によって疎水性層を被覆し被覆層を形成する工程とを含む。例えば、Pt、Ruは合金化される。無機酸化物は高融点を有し酸に溶解する、例えば、二酸化珪素である。 (もっと読む)


【課題】カソードのドライアウトを緩和して、炭化水素膜と界面接触するカソードでの電極抵抗を下げた高出力密度DMFC(直接メタノール燃料電池)を提供する。
【解決手段】アノード12の微多孔層4Aのフルオロポリマーの充填率を約5重量%〜約25重量%とし、かつ微多孔層用4Aのバインダーとしてポリスルホン、カルボキシル化ポリスチレンまたはナイロンを用いることでアノード12からカソードへ14への水の移動性を高める。さらに、カソード14が低当量重量アイオノマー、および、吸湿性材料を含むことでカソード14のドライアウトを緩和する。 (もっと読む)


【課題】アパタイト型ケイ酸ランタンを電解質膜として利用し、電解質膜が緻密かつ厚みも薄いSOFC用セル及びその製造方法を提供すること。
【解決手段】酸化ニッケルとアパタイト型ケイ酸ランタンを含む負極前駆体に、アパタイト型ケイ酸ランタンをプラズマ溶射することによってアパタイト型ケイ酸ランタンの薄膜を形成すれば、緻密で厚みの薄いアパタイト型ケイ酸ランタン薄膜を形成することが可能となる。また、薄膜の反り又は剥がれを防止しうる。 (もっと読む)


【課題】NiO粉末の表面の少なくとも一部にNiとMnの複合酸化物を形成した、耐還元性に優れたNi系合金粉末、特に、固体酸化物形燃料電池の燃料極を形成するのに好適なNi系合金粉末、及びその製造方法を提供する。
【解決手段】 酸化ニッケル(NiO)粉末を含有する液温30〜80℃の懸濁水溶液中に、上記酸化ニッケル(NiO)に対するモル比で0.01〜0.2の硝酸マンガン(II)水和物(Mn(NO)・zHO)を含有溶解した溶液を撹拌しながら添加し混合溶液を作製し、ついで、水分を蒸発させ、生成した酸化ニッケル(NiO)と硝酸マンガン(II)水和物(Mn(NO・zHO)との反応生成物を、大気中、300〜1000℃で加熱後、粉砕することにより、NiO粉末表面の少なくとも一部に、NiとMnの複合酸化物が形成されているNi系合金粉末及びその製造方法。 (もっと読む)


【課題】発電性能に優れた燃料電池を構成する電極触媒用の触媒担持担体の製造方法と、この方法で得られた触媒担持担体を使用してなる電極触媒の製造方法を提供する。
【解決手段】分散溶媒W内に、導電性担体1と、触媒金属塩2と、高分子電解質3と、を投入し、攪拌して溶液を生成し、該溶液内で触媒金属塩2と高分子電解質3を共存させる第1の工程、触媒金属塩2を還元して導電性担体1の表面に触媒2’を担持させると同時に、該導電性担体1の表面に高分子電解質からなる皮膜3’を被覆させて触媒担持担体10を得る第2の工程、からなる、触媒担持担体の製造方法である。また、この製造方法で得られた触媒担持担体と、別途の高分子電解質を別途の分散溶媒に投入し、攪拌して触媒溶液を生成する、電極触媒の製造方法である。 (もっと読む)


本発明は、触媒の製造方法であって、前記触媒が触媒活性物質及び炭素含有担体を含み、第1工程において炭素含有担体を金属塩溶液に含浸させ、その後、金属塩溶液を含浸した炭素含有担体を不活性雰囲気中で少なくとも1500℃の温度に加熱して金属炭化物層を形成し、最後に金属炭化物層を備えた炭素含有担体に触媒活性材料を施す触媒の製造方法に関する。
さらに、本発明はこの方法により製造された触媒であって、炭素含有担体及び触媒活性物質を含み、この炭素含有担体が金属炭化物層を含有し、且つその触媒活性物質が金属炭化物層を備えた炭素含有担体に施された触媒を提供する。 (もっと読む)


【課題】より小さい平均粒径を有し、特に燃料電池用担持触媒の製造に用いた場合に高い触媒性能を実現させることができる白金−コバルト合金微粒子を製造する方法を提供すること。
【解決手段】溶媒に、白金(Pt)の塩もしくは錯体およびコバルト(Co)の塩もしくは錯体と保護配位子を、前記白金およびコバルトの塩もしくは錯体に含まれる金属の総量に対してモル比で1.0〜7.5の量で加えて加熱することを含む、白金−コバルト合金微粒子の製造方法。 (もっと読む)


【課題】プロトン伝導性を有する固体酸化物からなる電解質の表面に形成され、剥離しにくくかつ電極反応抵抗の小さい電極を提供する。
【解決手段】プロトン伝導性を有する固体酸化物からなる電解質の表面に形成された電極であって、前記電解質の表面がポーラス形状であり、前記電極が、前記電解質の表面に無電解めっきにより施されためっきであることを特徴とする電極。固体電解質の表面は、塩酸、リン酸または次亜リン酸等による酸エッチングによりポーラス形状とすることができる。この電極は、燃料電池、水素発生装置または水素選択透過装置に使用することができる。 (もっと読む)


101 - 120 / 785