説明

Fターム[5H018HH00]の内容

無消耗性電極 (49,684) | 数値限定、大小の特定 (7,446)

Fターム[5H018HH00]の下位に属するFターム

Fターム[5H018HH00]に分類される特許

61 - 80 / 747


【課題】高加湿条件下においてガス透過性が低下せず、触媒の利用率が高く、かつ低加湿条件下においても保水性が高い電極触媒層、電極触媒層の製造方法、この電極触媒層を用いた固体高分子形燃料電池を提供する。
【解決手段】触媒粒子4が担持されたケッチェンブラック1を含む一次粒子8とアイオノマー27と溶媒とを含むインクを高温高圧処理することにより、一次粒子8内の細孔3及び一次細孔5にアイオノマー27を導入し、冷却処理及び真空乾燥を行って、複合粒子を作製する工程と、前記複合粒子に、アイオノマー28と溶媒とを加えて再度インク化することにより電極触媒インクを作製する工程と、前記電極触媒インクを用いて電極触媒層を形成する工程とによって電極触媒層の製造方法。また、このとき、アイオノマー27の酸価をアイオノマー28の酸価より低くする。 (もっと読む)


【課題】ガス拡散層内部に酸化剤や還元剤などの燃料流体を行き渡らせることで発電面の出力のばらつきを抑え、効率的に発電することができる燃料電池及び燃料電池装置を提供する。
【解決手段】膜電極接合体10と、燃料を拡散させてアノード触媒層12に供給する多孔質のガス拡散層40と、アノード触媒層12に供給される燃料の供給流路51を有する流体供給部50とを備え、ガス拡散層40には、供給流路51を介して供給された燃料をガス拡散層40の面方向に拡散させる拡散流路41が設けられ、拡散流路41は、ガス拡散層40の一部の領域の空孔率を他の領域42の空孔率よりも相対的に高くすることにより形成されている。 (もっと読む)


【課題】本発明は、電解質膜と触媒電極層との間の界面抵抗を抑制して発電効率の向上を図ることを目的とする。
【解決手段】膜電極接合体は、電解質膜と、電解質膜に隣接して配置されアイオノマーを含む触媒電極層と、を備え、電解質膜の吸着エンタルピーとアイオノマーの吸着エンタルピーとの差が40kJ/mol以下であることを特徴とする。 (もっと読む)


【課題】稼動開始から短時間で電解質膜および触媒層中のCO32-およびHCO3-の濃度を低下させることができ、もって、稼動開始から短時間で安定した高い電池出力を得ることができるアルカリ形燃料電池用膜電極複合体およびアルカリ形燃料電池を提供する。
【解決手段】アノード極とアニオン伝導性電解質膜11とカソード極とをこの順で備えるアルカリ形燃料電池用膜電極複合体であって、アノード極は、アニオン伝導性電解質膜11の一方の表面に積層されるアノード触媒層13を有し、カソード極は、アニオン伝導性電解質膜11の他方の表面に積層されるカソード触媒層12を有し、アノード触媒層13に含有されるアノード触媒の重量が、カソード触媒層12に含有されるカソード触媒の重量より多い膜電極複合体およびこれを用いたアルカリ形燃料電池である。 (もっと読む)


【課題】ガス透過性・拡散性を付与できる導電性多孔質層を安定的に形成させるための導電性多孔質層形成ペースト組成物及び、その導電性多孔質層が導電性多孔質基材上に形成されたガス拡散層を用いた固体高分子形燃料電池を提供する。
【解決手段】固体高分子形燃料電池用ガス拡散層は、導電性多孔質基材上に、導電性多孔質層が形成された固体高分子形燃料電池用ガス拡散層であって、前記導電性多孔質層は、少なくとも導電性炭素粒子、撥水性樹脂及び分散剤を含む導電性多孔質層形成用ペースト組成物により導電性多孔質基材上に形成されてなり、前記導電性多孔質層は、細孔径が25〜1000nmの細孔容積の和が1.4ml/g以上であり、且つ、クラック占有面積が0.8%〜2.5%である。 (もっと読む)


【課題】燃料電池の発電性能を向上させる技術を提供する。
【解決手段】燃料電池100は、膜電極接合体10と、膜電極接合体10を狭持するセパレータ20,30を備える。セパレータ20,30には、空間的に互いに分離された閉塞流路溝である供給側並列流路溝23,33と、排出側並列流路溝33,35とが設けられている。膜電極接合体10の電極層2,3は、ガス拡散層5を有する。ガス拡散層5は、燃料電池100の積層方向に沿って見たときに、流路溝23,33,25,35と重なる流路溝領域GAと、並列流路隔壁29,39と重なる流路壁領域WAとを有する。ガス拡散層5は、流路溝領域GAに、拡散抑制部6が設けられることにより、流路溝領域GAの方が流路壁領域WAよりガス拡散性が高くなっている。 (もっと読む)


【課題】耐久性に優れ、燃料電池に適用可能な電極材料を提供する。
【解決手段】電極材料は、一般式ABOで表されるペロブスカイト構造を有する複合酸化物を含有し、1つの視野内の10スポットにおいてエネルギー分散型X線分光法により測定されたAサイト内の各元素の原子濃度の標準偏差値が10.3以下である。 (もっと読む)


【課題】比較的安価で資源量も比較的多い材料を用いて得ることができ、また、酸性電解質中で高電位下にて使用しうる高活性な電極触媒を提供する。
【解決手段】長周期型周期表における第4族元素および第5族元素からなる群より選択される1種以上の金属元素および酸素原子を含む金属化合物と、該金属化合物の少なくとも一部を被覆する炭素材料と、から構成され、金属元素のEXAFS測定によるEXAFS振動をフーリエ変換することで求められる動径分布関数における、第一位近接元素のピーク値の逆数として示される酸素欠陥指数が0.125以上0.170以下であり、動径分布関数における第二位近接元素のピーク値として示される結晶性指数が4.5以上8.0以下である。 (もっと読む)


【課題】燃料電池の発電領域における温度分布を改善する技術を提供する。
【解決手段】燃料電池は、膜電極接合体60と、膜電極接合体60を狭持するセパレータとを備える。膜電極接合体60は、電解質膜61と、電解質膜61の両面に配置された電極62,63とを備える。電極62,63は、触媒層70と、ガス拡散層72と、それらを接合する接合層75とを有する。セパレータには、膜電極接合体60の電極面に沿って冷媒を流すための冷媒流路が設けられている。接合層75には、冷媒の上流側に、冷媒の下流側の領域より触媒層70とガス拡散層72との間の熱の移動が抑制されている熱移動抑制領域が設けられている。 (もっと読む)


【課題】導電性およびガス透過性が共に高く且つフッ素を用いなくとも撥水性の高いガス拡散電極用基材、その製造方法、およびこれを備えたMEAを提供する。
【解決手段】ガス拡散電極用基材18,20は、炭素繊維26とアクリルシリコン系樹脂30とを含み、各々の炭素繊維26がアクリルシリコン系樹脂30により接合されているので、ガス拡散電極用基材18,20は、そのアクリルシリコン系樹脂の撥水機能により、フッ素を含むこと無く高い撥水性を有するという利点がある。そのため、ガス拡散電極用基材18,20に撥水皮膜を付加する等の後工程が必要とされない。また、ガス拡散電極用基材18,20は、多孔質であり、多数の炭素繊維26が相互に接合されて構成されているので、高いガス透過性および高い導電性を有することができる。 (もっと読む)


【課題】 撥水撥油性、防汚性、耐熱性、耐候性および耐磨耗性に優れた表面処理剤を提供する。
【解決手段】 (A)重合性基を含有する含フッ素シルセスキオキサン単量体(a)から誘導された構成単位を有して成る含フッ素重合体を含んでなる表面処理剤を提供する。含フッ素重合体は、構成単位(A)に加えて、(B)フッ素原子を含まない単量体(b)から誘導された構成単位、および(C)必要により存在する、架橋性単量体(c)から誘導された構成単位、を有して成ることが好ましい。 (もっと読む)


【課題】低温下においても性能が高い膜−電極接合体及び固体高分子形燃料電池を提供すること。
【解決手段】高分子電解質膜5と、前記高分子電解質膜5を両側から挟むように配置された酸化剤電極7及び燃料電極9と、を備え、前記高分子電解質膜5、前記酸化剤電極7、及び燃料電極9のうちの少なくとも1つは、(a)プロトン伝導性高分子電解質と、(b)水溶性高分子群から選ばれる1種以上とを含むイオノマーを有することを特徴とする膜−電極接合体10。また、その膜−電極接合体10を備えることを特徴とする固体高分子形燃料電池1。 (もっと読む)


【課題】耐久性と触媒の担持し易さ(触媒担持性能)との両立を高いレベルで達成できる触媒担持用担体を提供する。
【解決手段】本発明に係る触媒担持用担体は、窒素含有有機物と金属とを含む原料を炭素化して得られた触媒担持用担体である。前記触媒担持用担体は、X線回折図形における回折角26°付近のピークが、20〜45%の黒鉛類似構造成分と、55〜80%のアモルファス成分と、を含むこととしてもよい。また、前記触媒担持用担体は、ラマンスペクトルにおける1360cm−1バンドの1580cm−1バンドに対する強度比(I1360/I1580)が0.3以上、1.0以下であることとしてもよい。また、前記触媒担持用担体は、前記原料を炭素化して得られた炭素化材料に、金属除去処理を施し、さらに熱処理を施して得られたこととしてもよい。この場合、前記金属は、遷移金属であることとしてもよい。 (もっと読む)


【課題】触媒利用率を改善させ、出力特性の高い触媒電極を提供し、さらに、これを用いた膜電極接合体及び燃料電池を提供する。
【解決手段】触媒電極を形成するための燃料電池用触媒インクが、少なくとも、触媒と、プロトン伝導性高分子電解質と、無機物に接触させた水とを含む。また、この燃料電池用触媒インクは、水に無機物を接触させる工程と、触媒と水とを混合し、次いで溶媒を混合して分散処理する工程と、さらに、プロトン伝導性高分子電解質を混合して分散処理する工程を経ることで製造される。 (もっと読む)


【課題】貴金属以外の金属が均一に担持され、酸素還元活性が充分に高く、精製容易かつ幅広い構造を選択できる低分子の有機化合物を焼成して得られる含窒素カーボンアロイ、その製造方法及びそれを用いた炭素触媒を提供する。
【解決手段】含窒素カーボンアロイは、分子量60〜1000の含窒素結晶性有機化合物を含む有機材料を焼成して得る。製造方法は(1)含窒素結晶性有機化合物と前記無機金属及び/又は無機金属塩とを混合する工程(2)不活性雰囲気下で室温から炭素化温度まで昇温する工程(3)500℃〜1000℃で、0.1時間〜100時間保持する炭素化工程(4)炭素化温度から室温まで冷却する冷却工程を含む。 (もっと読む)


【課題】触媒利用率を改善させ、出力特性の高い触媒電極を提供し、さらに、これを用いた膜電極接合体及び燃料電池を提供する。
【解決手段】触媒電極を形成するための燃料電池用触媒インクが、少なくとも、触媒と、プロトン伝導性高分子電解質と、超音波を照射された水とを含む。また、この燃料電池用触媒インクは、水に超音波を照射する工程と、触媒と水とを混合し、次いで溶媒を混合して分散処理する工程と、さらに、プロトン伝導性高分子電解質を混合して分散処理する工程を経ることで製造される。 (もっと読む)


【課題】本発明は、燃料電池用電極およびその製造方法に関し、カーボンの一次凝集体に形成される細孔に、酸素を良好に到達させることが可能な燃料電池用電極およびその製造方法を提供することを目的とする。
【解決手段】本実施形態のカソード電極は、ミセル径の異なる2種類のアイオノマーを用いる。カーボンの一次凝集体140間に形成される空洞148の入口径よりも小さいミセル径のアイオノマー(アイオノマー146A)と、それよりも大きいミセル径のアイオノマー(アイオノマー146B)を用いる。これにより、空洞148の内壁や、一次凝集体140の外表面をアイオノマー146A,146Bで万遍なく被覆することができる。アイオノマー146Aには、アイオノマー146Bよりも高い酸素透過性の高分子材料を用いる。これにより、空洞148内における酸素透過性を確保できる。 (もっと読む)


【課題】
厚みむらが小さい厚膜燃料極基板用グリーンシートを効率的に製造する方法、およびASC製造に好適な燃料極基板用グリーンシートを提供することにある。
【解決手段】
多孔質燃料極基板を構造体とし、酸素イオン伝導体からなる緻密質固体電解質と多孔質空気極で構成された燃料極支持型固体酸化物形燃料電池セルの燃料極基板用グリーンシートの製造方法において、安定化ジルコニア粉末および/またはドープセリア粉末、酸化ニッケル粉末、および樹脂球状微粒子を主成分とする混練物を押出成形することを特徴とする燃料極基板用グリーンシートの製造方法。 (もっと読む)


【課題】アノード支持型ハーフセルの反りを低減することができ、かつ、その断面形状が波打っていないアノード支持型ハーフセルが得られる製造方法を提供する。
【解決手段】本発明の製造方法は、アノード支持基板(A)と、前記アノード支持基板に積層されたアノード層(B)と、前記アノード層上に積層された電解質層(C)とを有するアノード支持型ハーフセルを製造する方法であり、アノード支持基板グリーンシート(a)、アノード層前駆体(b)および電解質層前駆体(c)の積層体を形成する工程;前記積層体に重しを載せずに焼成する一次焼成工程;および、一次焼成後の積層体に重しを載せ、前記一次焼成時の温度以上で焼成する二次焼成工程を含むことを特徴とする。 (もっと読む)


【課題】触媒金属粒子の使用量(重量)の増大を引き起こすことなく、燃料電池に高い出力と高い耐久性を確保する。
【解決手段】燃料電池1において固体電解質膜2と拡散層26との間に介在される空気極側の反応層21であって、固体電解質膜2に接する第1の層22と拡散層26に接する第2の層24とを備え、第1の層22の第1の担体は第2の層24の第2の担体と異なる材料であり、第1の担体の耐久性が第2の担体の耐久性より高い。 (もっと読む)


61 - 80 / 747