説明

Fターム[5H018HH09]の内容

無消耗性電極 (49,684) | 数値限定、大小の特定 (7,446) | 圧力、力 (291)

Fターム[5H018HH09]に分類される特許

1 - 20 / 291



【課題】コア・シェル構造のクラスターを高速で効率良く製造するクラスター製造装置および製造方法を提供する。
【解決手段】クラスター製造装置は、一列に並べられかつ同一方向に向けられたアブレーション面31〜33をそれぞれ有する複数のターゲット材料21〜23と、該アブレーション面31〜33に一定の繰り返し周波数のレーザ51〜53を同時に照射するレーザ手段と、該アブレーション面31〜33にそってこれと平行にキャリヤガス15を流すガス手段とを備えている。該キャリアガス15の流れ方向に隣り合うターゲット材料21、22において、上流側ターゲット材料21にレーザ51が照射されプルームP1が発生し、キャリヤガス15によって、下流側ターゲット材料22上まで搬送される間に、プルームP1中にコアが形成され、その周囲に下流側のターゲット22で生成したプルームP2によるシェルが形成される。 (もっと読む)


【課題】膜電極ガス拡散層接合体を備える燃料電池において、膜電極接合体の耐久性を向上させる。
【解決手段】燃料電池において、膜電極ガス拡散層接合体は、アノード側セパレータプレート、および、カソード側セパレータプレートと向かい合う面内に、アノード側セパレータプレート、および、カソード側セパレータプレートによって挟持されたときに作用する押圧力が比較的高い領域Aと、上記押圧力が領域Aよりも低い領域Bと、を含む。そして、領域Bには、膜電極接合体120のアノード側触媒層120aとアノード側ガス拡散層122(撥水層122p)との間に、イオン交換樹脂からなり、膜電極接合体120のアノード側触媒層120aとアノード側ガス拡散層122(撥水層122p)とを接合する接合層126が設けられる。一方、領域Aには、接合層126が設けられない。 (もっと読む)


【課題】抄造により製造することが可能で、かつ通気性及び導電性が高い、燃料電池用電極材に適した撥水性導電シート及びその製造方法を提供する。
【解決手段】芳香族ポリアミドパルプと、フッ素樹脂粒子と、炭素系導電物質と、焼失物質と、を原料とするスラリー中で、フッ素樹脂粒子を芳香族ポリアミドパルプに沈着させた後、このスラリーを抄造して導電シート前駆体を得、この導電シート前駆体を所定条件で熱プレスし、次いでこのシートを所定の温度で焼成することにより、芳香族ポリアミドパルプと、前記芳香族ポリアミドに融着されたフッ素樹脂と、炭素系導電性物質とを含んで成る導電シートであって、通気度が30〜10000ml/min.・cmであり、かつ面間電気抵抗値が2000mΩ/cm以下であることを特徴とする導電シート。 (もっと読む)


【課題】燃料電池用触媒ペーストの材料となる電解質溶液における電解質の分散性を向上する。
【解決手段】燃料電池用触媒ペーストの材料となる電解質溶液の製造方法であって、電解質を含む溶液を用意し、前記溶液を、前記電解質のガラス転移点から300℃までの温度で熱処理を行う。前記熱処理は、常圧を上回る高圧条件下で行い、前記高圧条件は、上限が100気圧以下である。前記用意した溶液を、耐圧容器に入れ、前記熱処理を、前記耐圧容器内が前記温度の条件を満たすように加熱することで行い、前記高圧条件は、前記加熱したことにより発生する前記溶液の溶媒の蒸気圧によって満たされる。 (もっと読む)


【課題】繊維外径が10nm未満である炭素含有繊維が略平行に配列した配列体の繊維表面にアイオノマを担持させる場合において、繊維間の凝集を抑制すること。
【解決手段】繊維外径が0.4nm以上10nm未満である複数の炭素含有繊維からなり、前記炭素含有繊維の繊維軸が略平行に配列している配列体と、前記炭素含有繊維の側壁と接触しているアイオノマと、前記炭素含有繊維及び前記アイオノマが存在していない空隙とを備え、前記配列体の繊維軸方向と略垂直な任意の断面において、隣接する前記炭素含有繊維同士の距離が1μm未満である領域の面積の総和が全断面積の20%より大きい微細構造材料及びその製造方法、並びに、このような微細構造材料を用いた燃料電池用膜電極接合体。 (もっと読む)


【課題】固体酸化物電池の製作方法の提供。
【解決手段】サポート(1)上にアノードサポート層をテープキャストするステップと、サポート(2)上にアノード層をテープキャストするステップと、サポート(3)上に電解質層をテープキャストするステップとを有し、当該方法は、前記アノードサポート層の上部に前記アノード層を積層するステップ、前記アノード層から前記サポート(2)を取り外すステップ、前記アノード層の上部に前記電解質層を積層するステップ、および前記多層化構造を焼結するステップ、までのステップを有し、または、当該方法は、前記電解質層の上部に前記アノード層を積層するステップ、前記アノード層から前記サポート(2)を取り外すステップ、前記アノード層の上部に前記アノードサポート層を積層するステップ、および前記多層化構造を焼結するステップまでのステップを有する方法。 (もっと読む)


【課題】燃料電池内で発生するフラッディング又はドライアップを抑制することができる燃料電池を提供する。
【解決手段】電解質膜10と電解質膜10の両側に配置されるアノード極12及びカソード極14とを備える膜電極接合体16と、膜電極接合体16の両側に配置される細孔層18,20と、細孔層18,20の外側に配置される反応ガス流路となる多孔体流路層22,24と、を備える燃料電池1であって、少なくともカソード極14側の細孔層20と多孔体流路層24との間にはガス拡散層が配置されず、カソード極14側の細孔層20と多孔体流路層24とは接しており、多孔体流路24は、カソードガス供給における入口側領域24a及び出口側領域24bが、入口側領域24a及び出口側領域24bの間に位置する中央領域24cよりも、ガスに対する圧力損失が低い。 (もっと読む)


【課題】
排水性が良好で高発電性能を発現し、なおかつ、電極基材表面からの炭素繊維の剥離が少なく短絡や反応ガスのクロスリークを抑制し、耐久性に優れる燃料電池ガス拡散電極基材を提供する。
【解決手段】
炭素繊維を抄紙してなる炭素繊維シートかに樹脂成分を含浸した後、炭素化してガス拡散電極基材を製造する方法において、前記炭素繊維100質量部に対する前記樹脂成分の配合量が20〜110質量部の範囲であって、なおかつ前記樹脂成分に対して界面活性剤0.05〜5質量部を添加することを特徴とするガス拡散電極基材の製造方法。 (もっと読む)


【課題】本発明は、燃料電池セルで有用に用いられる気孔体の表面において、疎水特性を向上させることができる装置及び方法を提供することを目的とする。
【解決手段】本発明の疎水性が改善された気孔体は、マイクロメータスケールの粗さを有する気孔体の表面に、ナノメータスケールのナノ突起または陥没した形態の気孔が形成されてマイクロ−ナノ二重構造の表面をなしているとともに、前記マイクロ−ナノ二重構造の表面上に疎水性薄膜が形成され、前記気孔体は、巨大気孔支持体単独であるか、または巨大気孔支持体に微細気孔層が積層されてなり、前記疎水性薄膜、より好ましくは、ケイ素と酸素を含む炭化水素系薄膜、またはフッ素を含む炭化水素系薄膜であり、前記疎水性薄膜が形成された表面は、純水の静的接触角が150°以上であるることを特徴とする。 (もっと読む)


【課題】ナノ構造複合体空気極を含む固体酸化物燃料電池及びその製造方法を提供する。
【解決手段】本発明は、a)燃料極支持体と、b)燃料極支持体上に形成された固体電解質層と、c)固体電解質層上に形成されたナノ構造複合体空気極層と、を含み、複合体空気極層は、電極物質と電解質物質とが分子単位で混合されていながら、互いに反応または固溶されて単一物質を形成しないことを特徴とする固体酸化物燃料電池及びその製造方法に関するものであって、低温作動が可能であり、高性能を有し、安定性に優れる燃料電池を提供することができる。 (もっと読む)


【課題】垂直配向CNTやカーボンナノウォールなどのカーボン材料に均一に金属を担持させることができる方法を提供すること。
【解決手段】本発明により、第一の容器と、第一の容器とバルブを介して連通可能に接続された第二の容器を有する装置を利用する、超臨界流体を用いた金属担持カーボンの製造方法であって、(a)第一の容器に金属化合物と超臨界流体前駆体ガスを、第二の容器にカーボンと超臨界流体前駆体ガスをそれぞれ封入する工程、(b)第一の容器内の圧力が第二の容器内の圧力よりも低くなるよう第一の容器および第二の容器のそれぞれを加圧し、超臨界流体前駆体ガスを超臨界状態とする工程、(c)バルブを開いて第一の容器と第二の容器とを連通させる工程、を含む方法が提供される。 (もっと読む)


【課題】 圧縮前後における厚みの変動が小さく、径の小さな芯材に巻き取り可能な多孔質炭素電極基材を提供することを目的とする。
【解決手段】 炭素短繊維を炭素により結着した炭素繊維紙であって、
シートマシン流れ方向(MD)の曲げ強度(F)と流れに対して直角方向(TD)の曲げ強度(W)との比X(X=W/F)が0.20〜0.40の範囲にあり、
厚み方向に対して繰り返し3.5MPaの面圧を付与する圧縮試験において、初回圧縮時の付与面圧2.0MPaにおける多孔質炭素電極基材の厚みと10回目圧縮時の付与面圧2.0MPaにおける多孔質炭素電極基材の厚みとの差が0.1〜10μmの範囲にある、
多孔質炭素電極基材。 (もっと読む)


【課題】
比較的広い面積および比較的多いアイテムの数について連続的に操作することができ、既知の製造方法の上記欠点を有さない、特にクロルアルカリ電気分解に用いるための酸素消費電極の製造方法、および該方法、特に非粘着性剤の複雑な使用により製造された電極を見出すこと。
【解決手段】
圧縮およびプレスを、プレスローラーがタングステンカーバイドで被覆された、0.5μm以下の表面粗さを有するローラープレスを用いて行う。 (もっと読む)


【課題】高い発電性能を有する固体高分子形燃料電池を製造できる触媒層用キャリアフィルム、触媒層転写フィルムおよび膜触媒層接合体の製造方法を提供する。
【解決手段】DSC法による融点が200℃以上である樹脂を含む樹脂材料(A)からなる第1の層12と、ビカット軟化温度が119〜128℃であり、DSC法による融点が127℃以上であり、かつDSC法による融点からビカット軟化温度を引いた温度差が6℃以上であるオレフィン系樹脂を含む樹脂材料(B)からなる第2の層14とを有する触媒層用キャリアフィルム10;および、触媒層用キャリアフィルム10と、触媒層用キャリアフィルム10の第2の層14の表面に形成された触媒層22とを有する触媒層転写フィルム20を用いる。 (もっと読む)


【課題】三相界面の面積が大きく触媒粒子表面利用率が高い、燃料電池用電極の製造方法を提供する。
【解決手段】燃料電池用電極の製造方法は、電解質前駆体溶液を調製する工程と、炭素粒子からなる多孔体S11と触媒粒子で構成される触媒多孔構造体に電解質前駆体を塗布する工程S12と、触媒多孔構造体に塗布された電解質前駆体を重合することで上記多孔構造体中において電解質層を形成する工程S13と、を有する。高分子電解質が導入できない細孔構造中の触媒粒子近傍まで、低分子状態の電解質前駆体は隈無く配置され、その後重縮合反応を経由した電解質前駆体の高分子量化が進行し、プロトン輸送パスとなる電解質層を触媒粒子近傍まで高密度高分散形成することができるので、三相界面の面積が大きくなり、触媒粒子表面利用率が高くなる。 (もっと読む)


【課題】本発明は、燃料電池の製造方法に関し、垂直配向CNTを用いた電極層と電解質膜とを接合した膜電極接合体の製品ばらつきを低減可能な燃料電池の製造方法を提供することを目的とする。
【解決手段】(4)転写工程においては、先ず、電解質膜の表面と、CNT層のCNT成長端面とを対向させ、電解質膜に用いた高分子電解質のガラス転移温度以上、かつアイオノマに用いた高分子電解質のガラス転移温度未満の温度に加温しながらこれらの間に高圧を印加して熱圧着する(ステップ130)。次いで、電解質膜に用いた高分子電解質のガラス転移温度よりも低い温度まで冷却させる(ステップ140)。このような熱圧着条件とすれば、アイオノマを軟化させずにCNTの強度を上げることができるので、圧力印加によるCNTの収縮や傾斜を抑制することができる。 (もっと読む)


【課題】本発明は、燃料電池用CNTの製造方法および燃料電池用電極触媒に関し、CVD法を用いて製造したCNTの純度を向上可能な燃料電池用CNTの製造方法および燃料電池用電極触媒を提供することを目的とする。
【解決手段】CVD法を用いてCNTを成長させると、成長触媒がカーボンに覆われたり(A−1)、基板から浮いてCNT内部に入る(A−2)ことがある。そこで、CNTを1500℃以上に加熱して、CNTの成長端を開く((B−1)、(B−2))。また、成長触媒に使用した鉄の蒸気圧は、約1500℃において10−2Torrである。そのため、基板上に成長させたCNTを1500℃以上に加熱し、10−2Torr以下の真空とすれば、鉄を蒸発させることができる。従って、CNTの純度を良好に向上でき、燃料電池の電極触媒として好適なCNTを得ることができる。 (もっと読む)


【課題】電極材料及び触媒担体などとして使用することのできる、新規な構造の炭素ナノ構造体を提供する。
【解決手段】金属塩を含む溶液に対してメチルアセチレンガスを吹き込み、金属メチルアセチリドのワイヤー状結晶体を作製し、前記棒状結晶体及び/又は前記板状結晶体に第1の加熱処理を施して、前記金属メチルアセチリド中の金属を偏析させるとともに、前記棒状結晶体及び/又は前記板状結晶体中の炭素を偏析させ、炭素を含む棒状体及び/又は板状体が3次元的に結合してなる炭素ナノ構造中間体を得るとともに、この炭素ナノ構造中間体中に前記金属が内包されてなる金属内包炭素ナノ構造体を作製し、前記金属内包炭素ナノ構造体を硝酸と接触させ、前記金属内包炭素ナノ構造物に対して第2の加熱処理を施して、前記金属内包炭素ナノ構造物に内包される前記金属を噴出させ、グラフェン多層膜壁で画定される肺胞状空孔を有する炭素ナノ構造体を得る。 (もっと読む)


【課題】長期に亘り燃料電池の酸化剤極におけるガス拡散性低下を抑制する。
【解決手段】燃料電池に、電解質膜13と、燃料極と、酸化剤極とを備える。燃料極は、燃料極触媒層14と燃料極ガス拡散層16とを備える。酸化剤極は、酸化剤極触媒層15と酸化剤極ガス拡散層17とを備える。酸化剤極ガス拡散層17は、多孔質基材であるカーボンペーパー20と、その表面に形成されたカーボン多孔質層21とを備える。カーボン多孔質層21は、カーボン粒子およびフッ素樹脂で気孔率が80%以上90%以下かつ密度が0.24g/cm以上0.30g/cm以下に形成される。 (もっと読む)


1 - 20 / 291