説明

Fターム[5H026EE15]の内容

燃料電池(本体) (95,789) | 構成物質 (18,438) | 無機化合物 (3,873) | リン酸塩 (96)

Fターム[5H026EE15]に分類される特許

1 - 20 / 96


【課題】燃料電池に用いられるプロトン伝導性が高く、機械的強度が高いプロトン伝導性電解質膜、および燃料電池を提供する。
【解決手段】プロトン伝導性電解質膜は組成物であって、ポリビニリデンフルオライド等のフッ素系樹脂、特定の金属リン酸塩、および必要に応じて層状珪酸塩を溶媒に分散させたスラリーから溶媒を除去することで得られる。この方法で得られたプロトン伝導性電解質膜は、潮解性がなく、高いプロトン伝導率と機械的強度を有している。 (もっと読む)


【課題】高温の作動条件下において、長期間にわたり電極触媒層内の構造を安定化し、発電性能を長期間維持するという耐久性を向上させることが可能な、燃料電池用電極とその製造方法、膜電極接合体および燃料電池を提供する。
【解決手段】高分子電解質膜に水溶性遊離酸を含浸させた電解質膜110を有する運転温度が100℃以上の燃料電池100に用いられ、電極触媒層121およびガス拡散層123を備える燃料電池用電極120において、電極触媒層121に、少なくとも1種の燃料電池用触媒と、酸性基および重合可能な官能基を有する重合性酸モノマーを重合させて得られるポリマー鎖を架橋剤により架橋したポリマーと、を含有させる。 (もっと読む)


【課題】停止時におけるMEAの劣化を低減させることができる燃料電池制御システムおよび燃料電池停止方法を提供する。
【解決手段】PBI−リン酸形燃料電池の燃料電池制御システム100は、燃料電池スタック1と、燃料改質部3と、燃焼部4と、脱硫部5と、を備える。燃料電池スタック1は、リン酸含浸塩基性ポリマーの電解質層と、電解質層を挟み配置されたアノードおよびカソードを含む。燃料改質部3は、燃料ガスを改質する。燃焼部4は、燃料ガスを含むガスを燃焼させる。脱硫部5は、燃料ガスを脱硫する。燃料電池スタック1のカソードへ供給する酸化剤ガスを燃料ガスへ切り替え、かつ、燃料電池スタック1のアノードへ燃料改質部3を介して供給していた燃料ガスを、供給路の切り替えにより燃料改質部3を介さずに燃料電池スタック1へ供給し、燃料電池制御システム100の停止を行う。 (もっと読む)


【課題】燃料電池において、安価で、優れた機械特性や耐酸化性を有する固体高分子電解質膜を提供し、高出力の燃料電池を提供する。
【解決手段】イオン伝導性成分を有するポリマーセグメント(A)と、イオン伝導性成分の組成比がポリマーセグメント(A)よりも少ないポリマーセグメント(B)とを含み、ポリマーセグメント(A)とポリマーセグメント(B)とがミクロ相分離構造を形成し、ポリマーセグメント(A)からなる親水性ドメイン9には、無機粒子8(金属酸化物、金属酸化物に硫酸イオンを担持したもの、金属水酸化物、金属水酸化物に硫酸イオンを担持したもの、金属リン酸塩、金属フッ化物又はカーボン)がポリマーセグメント(B)からなる疎水性ドメイン10よりも高濃度で存在する固体高分子電解質膜を用いる。 (もっと読む)


【課題】本発明は、直接メタノール形燃料電池において、アノードにて溶解した金属カチオンを捕捉する効果を長時間にわたり持続し、電解質膜やカソードへのカチオンの移動を抑制することで電解質膜の抵抗上昇や酸化分解,カソードでの排水性低下を抑制し、長時間にわたり安定に発電できる膜電極接合体、およびこれを用いた燃料電池を提供するものである。
【解決手段】本発明の膜電極接合体は、アノード,カソード、あるいは、固体高分子電解質膜の内部または表面のいずれかに、アノード触媒金属から溶出する金属カチオンを捕捉可能な官能基が共有結合によって固定された粒子状媒体を有することを特徴とする。 (もっと読む)


【課題】電解質膜が薄膜でありながら機械強度に優れ、触媒層と電解質膜との密着性が向上し、無加湿状態で高いプロトン伝導性を有する触媒層−電解質膜積層体、及びそれを用いた膜電極接合体と燃料電池、並びにその製造方法を提供する。
【解決手段】本発明の触媒層−電解質膜積層体は、電解質膜1と触媒層2a,2bとを含み、電解質膜1は、固体酸を含み、多孔質支持体3を備え、触媒層2a,2bは、触媒を含み、電解質膜1の両面にそれぞれ接合され、多孔質支持体3が、電解質膜1と少なくとも触媒層2a,2bの一方又は両方の一部を貫通している。本発明の製造方法は、少なくとも一部に多孔質支持体を備える触媒層を形成する工程と、多孔質支持体を備える電解質膜を形成する工程と、多孔質支持体を少なくとも一部に備えるか又は備えていない他方の触媒層を形成する工程とを含む。 (もっと読む)


【課題】再現性にすぐれ、良好な成形性を有し、機械強度に優れた、高いプロトン伝導性を有する燃料電池用電解質膜及びその製造方法並びに燃料電池用触媒層・電解質膜積層体、燃料電池用膜・電極接合体、燃料電池を提供する。
【解決手段】本発明による燃料電池用電解質膜1は、プロトン伝導性を有する固体酸により構成される電解質と、イオン交換基当量重量が1000g/eq未満であるフッ素系アイオノマーとを少なくとも含んだ材料で形成されている。 (もっと読む)


【課題】再現性にすぐれ、良好な成形性を有し、機械強度に優れた、無加湿状態で高いプロトン伝導性を有する燃料電池用電解質膜及びその製造方法並びに燃料電池用触媒層・電解質膜積層体、燃料電池用膜・電極接合体、燃料電池を提供する。
【解決手段】燃料電池用電解質膜1は、室温から200℃までの温度範囲で、かつ無加湿雰囲気下においてプロトン伝導性を有する固体酸により構成される電解質と、架橋構造を含み、主鎖に芳香族基を有する高分子電解質とを少なくとも含んで形成されている。 (もっと読む)


【課題】固体高分子形燃料電池に用いられるプロトン伝導材料であって、低湿環境下での中温運転において高いプロトン伝導性を有するプロトン伝導材料を提供する。
【解決手段】触媒層14,16に用いられているプロトン伝導材料は、ホスホン酸ジルコニウムにタングストケイ酸がドープされた複合材料である。従って、ホスホン酸ジルコニウムは、プロトン伝導性を有する高分子材料と比較して十分に耐熱性が高く、タングストケイ酸により低湿環境下でもプロトン伝導性が高く維持されるので、触媒層14,16に用いられているプロトン伝導材料は低湿環境下での中温運転において高いプロトン伝導性を有することが可能である。また、MEA10では上記高分子材料のような耐熱性の低い樹脂が不要となるので、MEA10は低湿環境下での中温運転において良好な発電性能を発揮することが可能である。 (もっと読む)


【課題】中温で且つ低湿環境下における固体高分子形燃料電池の運転において、良好な発電性能を得ることが可能な触媒層を提供する。
【解決手段】触媒層は、リン酸スルホフェニルホスホン酸ジルコニウム[Zr(HPO4)2-X(O3PC6H4SO3H)X・nH2O,0<X≦2]と、貴金属系触媒を担持した触媒担持微粒子とを含むので、触媒層のプロトン伝導性を高めるためにパーフルオロスルホン酸プロトン交換樹脂などの耐熱性の低い有機高分子材料を触媒層に用いる必要がない。そして、上記リン酸スルホフェニルホスホン酸ジルコニウムは上記有機高分子材料と比較して十分に耐熱性が高い。従って、上記中温で且つ低湿環境下における固体高分子形燃料電池の運転において良好な発電性能を得ることが可能な触媒層となる。 (もっと読む)


【課題】高温の作動条件下において、初期時から安定的に特性を維持することが可能な、燃料電池用電極、燃料電池用電極の製造方法及び燃料電池を提供すること。
【解決手段】本発明に係る燃料電池用電極は、水溶性遊離酸を含む高分子電解質膜がカソード電極及びアノード電極により挟持された膜電極接合体を備え、アノード電極に燃料ガスが供給されるとともに、カソード電極に酸化剤ガスが供給され、運転温度が100℃以上である燃料電池に用いられる燃料電池用電極であり、導電性担体と当該導電性担体に担持された触媒粒子とからなる電極触媒を含む電極触媒層を有し、電極触媒層は、酸による真空熱処理が予め実施され、導電性担体に酸が含浸した酸含浸電極触媒と、酸による真空熱処理が実施されていない酸未含浸電極触媒と、が均一に分散している。 (もっと読む)


【課題】本発明は、液体燃料のクロスオーバー現象及び触媒の被毒を抑えるとともに高濃度のアルコールを燃料とすることが可能な膜電極接合体及びそれを用いた直接型アルコール燃料電池を提供することを目的とするものである。
【解決手段】木材を厚さ10mm以下の薄板状に形成した基体の内部及び表面に無機イオン交換体が生成された電解質膜1と、電解質膜1の両側にそれぞれ接合するとともに電極基材に白金−ルテニウム触媒層を担持した一対の電極体2及び3とを備えた膜電極接合体Aを、空気極セパレータ4及び燃料極セパレータ5で挟持し、空気極側プレート6及び燃料極側プレート7で圧接保持して直接型アルコール燃料電池を構成した。 (もっと読む)


【課題】高温低湿度条件下においても高いイオン伝導性を発現すると共に、膜強度、柔軟性、機械的耐久性及び成形性に優れる電解質を提供する。
【解決手段】炭化水素系疎水性ポリマー(P)と、一般式M1-xx2y7z(式中、Mは、Sn、Ti、Si、Ge、Pb、Zr及びHfからなる群から選ばれる少なくとも一種の元素を表し、JはAl及び/又はInを表し、xは0.001〜0.5の範囲の数値を表し、y及びzは各々独立に0.9〜1.1の数値を表す。)で表されるピロリン酸金属塩(X)とを含む電解質であって、前記炭化水素系疎水性ポリマー(P)と前記ピロリン酸金属塩(X)との質量比[(P)/(X)]が70/30〜10/90である電解質。 (もっと読む)


【課題】燃料電池や水素生成装置としての使用条件下で化学的および機械的に安定であり、中温型燃料電池に好適に適用可能な膜電極接合体とその製造方法およびそれを用いた燃料電池セルを提供する。
【解決手段】燃料電池セル(10)に用いられる膜電極接合体(11)は、厚さが1μm以上であり、自己支持性を有する水素透過性金属箔(12)と、水素イオン伝導性を有する非晶質の無機固体電解質膜(13)とを有し、例えば、固体電解質膜の前駆体を含む反応液を調製する工程と、水素透過性金属箔の表面に反応液を塗布し、100〜600℃で熱処理しながら前駆体を反応させ無機固体電解質膜(13)を形成する工程とを有する方法によって製造される。 (もっと読む)


機械的に安定なポリアゾールポリマーを製造する方法であって、以下の工程:a)i)芳香族及び/又は複素環式芳香族ジアミンカルボン酸を反応させることによって得ることができるものを除く、少なくとも1つのアミノ基を繰り返し単位中に有するポリアゾール、ii)少なくとも1種の強酸、及びiii)少なくとも1種の安定化剤、を含み、且つ膜中、安定化剤の合計含有量は、0.01〜30質量%である膜を供給する工程、b)膜中の安定化反応を、直ちに、又は次の膜の処理工程で行う工程、c)適切であれば、追加的に、工程b)に従い得られた膜を、強酸でドープするか、又は存在する水を更に除去することによって、存在する酸を濃縮する工程、を含み、且つ前記安定化剤が、少なくとも1種のオキサジン−ベースの化合物を含むことを特徴とする方法。このようにして得られるポリアゾールポリマーは、特に、高い伝導性、及び非常に良好な機械的安定性でよって特徴付けられる。従って、これらは、燃料電池への適用に特に適切である。 (もっと読む)


【課題】再現性にすぐれ、良好な成形性を有し、機械強度に優れた、無加湿状態で高いプロトン伝導性を有するプロトン伝導性電解質膜、及びそれを用いた、触媒層−電解質膜積層体、膜−電極接合体及び燃料電池、並びにその製造方法を提供する。
【解決手段】本発明によるプロトン伝導性電解質膜1は、プロトン伝導性を有する無機粉体3と、バインダー4と、多孔質支持体2とを備え、無機粉体3、バインダー4及び多孔質支持体2が膜を構成している。固体酸3は、プロトン伝導性を有する無機固体酸又は有機固体酸からなる。 (もっと読む)


【課題】カソード流路下流の水蒸気を減らすことによって、結露による不具合を防止した燃料電池を提供する。
【解決手段】固体高分子型電解質膜にアノード触媒層,カソード触媒層が形成された膜電極接合体と、膜電極接合体をアノードガス拡散層7およびカソードガス拡散層6とで挟み、アノードガス拡散層7およびカソードガス拡散層6を、膜電極接合体とは反対側の面からアノードセパレータ9とカソードセパレータ8とで挟んで単セルを構成する燃料電池であって、膜電極接合体は、固体高分子型電解質膜、アノード触媒層及びカソード触媒層で構成される発電部と、固体高分子型電解質膜のアノード触媒層及びカソード触媒層が形成されていない領域に設けられた水蒸気交換部18を備え、水蒸気交換部18の両側にアノードセパレータ9とカソードセパレータ8のガス流路が形成される。 (もっと読む)


【課題】低温域から高温域の広い温度範囲で、従来のスルホン化ポリイミド電解質膜、リン酸ドープポリイミド電解質膜に比べ高いプロトン伝導性を有し、膜安定性、ガスバリア性にも優れた固体高分子電解質膜を提供する。
【解決手段】スルホン化ポリイミドとポリイミダゾールのブレンド電解質膜にリン酸をドープすることにより固体高分子電解質膜を作製する。 (もっと読む)


【課題】機械的強度を向上させることができる触媒層−電解質膜積層体を提供する。
【解決手段】プロトン伝導性を有する電解質材料、及びベースポリマーを含む電解質膜2と、電解質膜2の両面に形成された触媒層3と、触媒層−電解質膜積層体10の少なくとも一方面における外周縁部に接着する枠状のエッジシール4と、を備えている。 (もっと読む)


【課題】優れたプロトン伝導性と低燃料透過性とを両立し、且つ、比較的高い温度域における低湿度下においても高プロトン導電性を保持できるプロトン伝導性複合電解質膜を提供する。
【解決手段】本発明のプロトン伝導性複合電解質膜は、プロトン伝導性を有する無機材料と、プロトン伝導性を有する有機材料と、スルホン酸基を有する分散剤とを含むプロトン伝導性複合電解質膜であって、前記無機材料の含有量が、前記電解質膜の全重量に対して5〜30重量%であり、前記無機材料の平均一次粒子径及び平均分散粒子径が、1〜10nmであり、式:A=〔(平均一次粒子径−平均分散粒子径)/平均一次粒子径〕×100から求められる前記平均一次粒子径と前記平均分散粒子径との差の割合Aが±10%の範囲内にあることを特徴とする。 (もっと読む)


1 - 20 / 96