説明

Fターム[5H115TI09]の内容

車両の電気的な推進・制動 (204,712) | 電池の状態検出 (8,602) | 寿命、劣化状態 (172)

Fターム[5H115TI09]に分類される特許

1 - 20 / 172


【課題】リチウムイオンキャパシタ・ユニットを主電源として用い、二次電池を予備電源として用いる直流電源装置において、二次電池の負担を減らして二次電池の劣化を抑え、安定して電力の供給が可能な直流電源装置を提供する。
【解決手段】切換回路8は、電流制限抵抗4を有する第1の放電回路81と、電流制限抵抗4を短絡する第2の放電回路83から構成されている。電圧検出手段5がリチウムイオンキャパシタ・ユニット1の電圧がユニット下限電圧に達したことを検出すると、第1の放電回路81を通して二次電池3を放電する。リチウムイオンキャパシタ・ユニット1の電圧がユニット下限電圧よりも高い第1の設定電圧まで上昇したことを検出するかまたはリチウムイオンキャパシタ・ユニット1の電圧がユニット下限電圧よりも低い第2の設定電圧まで低下したことを検出すると、第2の放電回路83を通して二次電池3を放電する。 (もっと読む)


【課題】二次電池の連続放電に起因した劣化を抑制しながら、車両に要求される駆動力をより適正に確保する。
【解決手段】本発明のハイブリッド自動車20では、バッテリ50の放電が継続されるほど許容放電電力としての出力制限Woutが放電電力として小さく制限されるように当該出力制限Woutが補正される。そして、出力制限Woutの制限が開始されると、その後に少なくともバッテリ50の放電が停止されるように充放電要求パワーPb*が補正される(ステップS130およびS140)。 (もっと読む)


【課題】電力需要がある地点に効率的に電力を分配する技術を提供すること。
【解決手段】車両が出発地点から目的地点まで走行する場合の消費電力量を取得し、前記車両に搭載されたバッテリの前記出発地点における残電力量を取得し、前記目的地点において前記車両によって運搬された電力の電力需要があるか否かを判定し、前記消費電力量が前記残電力量よりも少なく、かつ、前記目的地点において前記車両によって運搬された電力の前記電力需要があると判定された場合には、前記目的地点に到達するまでの間に前記バッテリへの充電を行うように促す案内を行う。 (もっと読む)


【課題】電気自動車やハイブリッド自動車いずれの場合であっても、冷間始動のバッテリ暖機のスピードアップと環境配慮に充分に対応できる車両走行用モータの制御装置及びそれを搭載した車両を提供する。
【解決手段】車両走行用駆動モータをベクトル制御するモータ制御装置であって、暖機要の場合には、(i)車両が停止中は、モータのベクトル制御のq軸電流値を零或いは、もし制動解除ならば車両がクリープ走行し得る駆動トルクが生じる電流値に設定し且つバッテリ暖機運転可能なd軸電流値を設定し、(ii)車両走行中は、車両走行に必要な要求駆動トルクに応じてq軸電流値を設定し且つq軸電流値と協働してバッテリの暖機運転を促進するd軸電流値を設定し、前記(i)及び(ii)のいずれの場合にも、d軸電流値は、バッテリ温度が低いほど増えるよう設定されている。 (もっと読む)


【課題】蓄電装置が満充電状態になった場合においても、摩擦係合装置を係合させて内燃機関を回転させることなしに、車両の制動を精度良く行うことができる制御装置の実現。
【解決手段】摩擦係合装置を介して内燃機関に連結される入力部材と、車輪に連結される出力部材と、変速機構と、回転電機と、を備えた車両用駆動装置の制御装置であって、内燃機関の回転が停止し、摩擦係合装置の解放状態で、車両の制動要求があった場合に、制動トルク制御の実行を判定する制動トルク制御実行判定部と、要求制動トルクを設定する制動トルク設定部と、蓄電装置の充電量が充電制限判定値以上であるかを判定する充電状態判定部と、制動トルク制御を実行し、充電量が充電制限判定値以上であると判定された場合に、伝達トルクが要求制動トルクとなるように、内燃機関を回転させない範囲内で伝達トルク容量及び変速比を制御するトルク制御部と、を備える制御装置。 (もっと読む)


【課題】2次電池の残価値に関連する内部状態を2次電池の充電状態の制御に適正に反映させる。
【解決手段】電動車両10は、バッテリ11の各正極および負極および電解液毎の劣化度と容量維持率とに関係性を有する周波数に応じた交流インピーダンス値の単位時間当たりの変移挙動と、バッテリ11の状態に基づく使用履歴との対応関係を示す変移挙動マップを記憶する第1記憶部と、バッテリ11の使用履歴に応じて変移挙動マップを参照して、バッテリ11の正極側相関抵抗値および負極側相関抵抗値を推定する相関抵抗値推定部と、正極側相関抵抗値および負極側相関抵抗値に基づいてバッテリ11の正極の劣化状態と負極の劣化状態とのバランスを示す劣化バランスを算出し、該劣化バランスに基づいて目標充電状態を設定する目標充電状態設定部とを備える。 (もっと読む)


【課題】バッテリの劣化を防ぎつつ、効率よく電動機を使用することのできる電気自動車の電源制御装置を提供すること。
【解決手段】車両1を駆動する電動機6の電源としてバッテリ18及びキャパシタ20を備えた電気自動車において、バッテリ18の状態が過負荷状態となったときには(S2)、当該バッテリ18における充放電を制限し(S4)、この制限により生じる不足電力または余剰電力を(S5)、キャパシタ20に分配する(S7)。 (もっと読む)


【課題】ユーザの要求に応えつつ、バッテリ全体の寿命低下を抑制する。
【解決手段】車両は、複数の電池モジュール(電池セル)を含んで構成されるバッテリから供給される電力でモータを駆動させて走行する。ECUは、車両要求パワーP<バッテリの定格電力Wstdであると(S10にてNO)、モジュール接続数(モータに接続される電池モジュールの数)Nを最大数Nmaxとしつつ(S11)、バッテリの出力制限を行なう(S12)。一方、車両要求パワーPがバッテリの定格電力Wstdと最大電力Wmaxとの間に含まれる場合(S10にてYESかつS20にてYES)、ECUは、モジュール接続数Nを車両要求パワーPを満たす最小モジュール数N1としつつ(S50)、バッテリの出力制限を緩和する(S70)。 (もっと読む)


【課題】車両が必要とする電力の正確な予測を可能とする。
【解決手段】充電システム1は、サービスセンタ2と、基準車両3Aと、一般の車両3Bとを有する。基準車両3Aは、道路上の区間における基準消費電力を収集し、サービスセンタ2に送信する。サービスセンタ2は、基準消費電力を一般の車両3Bに提供する。一般の車両3Bでは、基準消費電力と、車両3Bに特有の補正情報とに基づいて目的地まで走行するために必要な電力を予測する。処理負担を適切に分散させながら、車両3Bの必要電力を正確に算出することができる。 (もっと読む)


【課題】車両への充電を予測したサービスを提供する。
【解決手段】充電システム1に所属する車両3Bは、過去の充電履歴に基づいて充電確率を求める。さらに、車両3Bでは、走行するために必要な電力を、充電確率に基づいて時間軸上に分布させた充電期待値を算出する。車両3Bは、充電期待値をサービスセンタ2に送信する。サービスセンタ2は、充電期待値に基づいて充電スタンド4を提案する。また、サービスセンタ2は、複数の車両3からの充電期待値を集計し、複数の車両3を充電するために必要な電力推移を示すデータを作成する。サービスセンタ2は、電力推移を示すデータを電力制御センタ6に提供する。この結果、時間軸上に分布した充電の確率に応じて、適切なサービスを提供することができる。 (もっと読む)


【課題】本開示では蓄電装置の異常を早期に検出できるようにする。
【解決手段】蓄電装置を持つ電気車において、前記蓄電装置に対する充電用回路に対する駆動指令を充電回数としてカウントする充電回数カウント手段と、前記カウント手段のカウント内容で前記蓄電装置の状態を検出した第1の検出出力を得る第1の検出手段と、前記蓄電装置の膨張状態を測定した第2の検出出力を得る圧力センサ装置と、前記第1の検出出力を前記第2の検出出力で補正する補正手段と、第1の検出出力の補正出力の値に応じて、前記蓄電装置の検査を促す表示出力を得る手段を有する。 (もっと読む)


【課題】外部電源による電池充電時の消費電力を節約する冷却システムを提供する。
【解決手段】本実施形態では、冷却システム1が、バッテリ使用上限温度から、想定されるいかなる走行状態においてバッテリの残容量をすべて使い切ったときのバッテリ温度上昇分を減算することによって、本実施形態における目標温度を算出する。その結果、本実施形態における目標温度は、SOCが大きくなるに従って、低くなる特性となる。それに対して、従来技術における目標温度は、SOCに対して一定に設定されていた。したがって、本実施形態における目標温度と、従来技術における目標温度との差分が、削減可能な消費電力となる。すなわち、本実施形態における冷却システム1は、外部電源による電池充電時の消費電力を節約することができる。 (もっと読む)


【課題】プラグインハイブリッド車において、モータジェネレータ16単独で車両を走行させるEVモードから、エンジン12をも利用するハイブリッドモードへの切り替えまでに走行可能な距離を十分に長くすることができないこと。
【解決手段】モータジェネレータ16は、インバータ22を介して高電圧バッテリ26に接続されている。高電圧バッテリ26の状態は、制御装置40によって定量化される。制御装置40では、特に、高電圧バッテリ26の劣化状態として内部抵抗Rを定量化する。そして内部抵抗に基づき、現在よりも小さいSOCにおいて高電圧バッテリ24から所定の電力を出力した際の高電圧バッテリ24の端子電圧が下限電圧となる際のSOCをSOCの下限充電率として、これに基づきハイブリッドモードへの切り替えの閾値を設定する。 (もっと読む)


【課題】車両の駆動に係る構成要素の動作又は状態に応じて総合的なエネルギ効率を向上可能なハイブリッド車両の制御装置を提供する。
【解決手段】内燃機関及び当該内燃機関の運転によって発電する発電機を有する発電部と、車両の駆動源である電動機に電力を供給する蓄電器を有する蓄電部と、蓄電部及び発電機の少なくとも一方からの電力供給によって駆動する電動機を有する消費部とを備えた車両の制御装置は、蓄電器の状態を導出する手段と、電動機の状態に基づいて導出される消費部の効率、並びに、ハイブリッド車両におけるアクセル操作に応じたアクセルペダル開度及び電動機の状態に基づく電動機に要求された出力から、消費部に要求された出力を導出する手段と、蓄電器の状態に応じて、消費部に要求された出力に対応する最適な発電部の出力を導出する手段と、最適な発電部の出力に対応する内燃機関の運転点を導出する手段とを備え、当該運転点で運転するよう内燃機関を制御する。 (もっと読む)


【課題】急速充電の回数を低減して電池寿命の向上を図る車両用電池パックを提供する。
【解決手段】電池パック10は、車両の走行に使用される電力を充電または放電する電池モジュール13と、電池モジュール13に対する充電運転を制御する監視制御部11と、を備える。監視制御部11は、過去の充電実績及び放電実績を充放電履歴マップに記憶するとともに、充電要求がある場合に、充放電履歴マップに記憶された充放電サイクルの学習データを解析して急速充電の実施が必要か否かを判定する急速充電要否判定を実行する。監視制御部11は、急速充電判定において肯定的に判定された場合には、急速充電を実施し、急速充電判定において否定的に判定された場合には、単位時間当たりの充電電流を急速充電時よりも小さくして充電する通常充電を実施する。 (もっと読む)


【課題】リチウムイオン電池は、電析により容量劣化が生じることが知られているため、予め設定された上限電圧の範囲内で充電を行なうよう制御している。リチウム電析による容量劣化を防止するため予め上限電圧を設定した場合でも、SOCの使用領域の減少を抑制可能なリチウムイオン電池を提供する。
【解決手段】負荷との間で電力を授受可能に構成されたリチウムイオン電池の制御装置であって、リチウムイオン電池の容量劣化に応じて、上限電圧を高くする。 (もっと読む)


【課題】車両外部の複数の電源から供給される電力により蓄電池に充電する際の充電電力を、適切に制御する充電装置を提供する。
【解決手段】複数の充電口1は、外部の電源と電気的に接続可能な充電ケーブル310を用いて、車両外部の複数の電源に対してそれぞれ電気的に接続する。電圧可変部5は、複数の充電口1から供給される電力の電圧を可変して蓄電池200に電力を供給する。検出部7は、蓄電池の状態を検出する。制御部8は、蓄電池200の状態に基づいて、電圧可変部5が供給する電力の電圧を、蓄電池200の状態に応じた電圧、または入力される充電時間に関する要求に応じた電圧の何れかを優先した電圧に制御する。 (もっと読む)


【課題】ユーザの好みに応じて電池の監視単位を変更する。
【解決手段】複数の単電池を接続したバッテリ2の劣化に関する診断を行う車両用バッテリの監視方法であって、バッテリ2の監視単位を設定する第1のステップと、第1のステップで設定された監視単位に基づき劣化に関する診断を行う第2のステップと、バッテリ2の診断方法を設定する第3のステップと、バッテリ2が搭載される車両1の車歴情報を入力する第4のステップとを有することを特徴とする請求項9又は10に記載の車両用バッテリの監視方法。 (もっと読む)


【課題】補機バッテリの劣化の有無を正確に判定することができる電動車両の制御装置を提供する。
【解決手段】DC/DCコンバータ8の駆動を制御するコンバータ制御手段11と、コンバータ制御手段11によってDC/DCコンバータ8が所定間隔で間欠駆動されている所定期間中に補機バッテリ5の電圧が所定の閾値以下まで低下した回数をカウントする計測手段12と、計測手段12の計測結果に基づいて補機バッテリ5の劣化の有無を判定する劣化判定手段13と、を備える構成とする。 (もっと読む)


【課題】車両の加速度を制限して、ハイレート放電による電池の劣化(ハイレート劣化)を防止する車両システムを提供する。
【解決手段】車両システムは、二次電池11と、二次電池からの電気エネルギによる力行を行うモータを含む動力源とを備える車両1の制御を行い、加速度検知手段で検知した増速方向の加速度Bと電池温度検知手段で検知した電池温度T(S2)とを用いて得られ、加速度Bの増加の影響と電池温度Tの増加の影響とが相反する関係に定めた制御値Cが、予め定めた範囲(A以下)を満たすように(S3)、増速方向の加速度の大きさを制限する加速度制限手段を有する。 (もっと読む)


1 - 20 / 172