説明

Fターム[5H307BB01]の内容

流量の制御 (3,234) | 流体の種類 (400) | 気体 (195)

Fターム[5H307BB01]の下位に属するFターム

Fターム[5H307BB01]に分類される特許

1 - 20 / 155


【課題】混合ガスの濃度および流量を高速かつ正確に制御できる混合ガス流量制御装置を提供する。
【解決手段】各原料ガス供給源1a〜1dに原料ガス供給管路2a〜2dが接続され、原料ガス供給管路にガス混合管路3が接続される。各原料ガス供給管路に第1の流量制御バルブ4a〜4dが設けられる。ガス混合管路に第2の流量制御バルブ5の入口が接続される。ガス混合管路にオーバーフロー管路6が分岐接続される。第2の流量制御バルブの出口に混合ガス供給管路7が接続される。制御部8が、混合ガス供給管路に供給すべき混合ガスの濃度及び流量設定値に従って、第1の流量制御バルブの開度を調整すると同時に、第1の流量制御バルブの開度と第1の流量制御バルブの原料ガスに対するコンバージョンファクタとから算出した第2の流量制御バルブの混合ガスに対するコンバージョンファクタに基づき、第2の流量制御バルブの開度を調整する。 (もっと読む)


【課題】流量制御装置に用いられるセンサ等の部品点数を低減しつつ、流量装置内で生じる詰まりなどの不具合や測定流量値に生じている異常を精度よく診断することができる流量制御装置、流量測定機構、又は当該流量測定機構を備えた流量制御装置に用いられる診断装置及び診断用プログラムを提供する。
【解決手段】流量制御装置に流路ML上に設けられた流体抵抗4と、前記流体抵抗4の上流側又は下流側のいずれか一方に設けられた圧力センサ3と、前記流体抵抗4に対して前記圧力センサ3が設けられていない側の圧力を算出する圧力算出部6と、前記測定圧力値と、前記圧力算出部6で算出された算出圧力値と、に基づいて流量を算出する流量算出部7と、前記測定流量値と、算出流量値と、に基づいて当該測定流量値の異常を診断する異常診断部8と、を備えた。 (もっと読む)


【課題】煩雑な操作を行うことなく複数のガス種に対して流量制御を行うことが可能な流量制御装置を提供することである。
【解決手段】ガス通路28に流れるガス流量を制御する流量制御装置30において、主ガス管50と、これに流れるガスの流量を検出して流量信号を出力する流量検出手段52と、流量を制御する流量制御弁機構54と、外部より入力される流量指示信号Sbと目標流量との関係を表すための、複数のガス種に対応した複数の換算データを記憶する換算データ記憶部56と、外部より入力されるガス種選択信号Saに基づいて複数の換算データから対応する換算データを選択すると共に流量指示信号Sbに基づいて前記目標流量を求め、目標流量と流量信号とに基づいて流量制御弁機構を制御する流量制御本体58とを備える。 (もっと読む)


【課題】流量制御バルブに生じている異常を高い信頼性とともに診断することができ、例えば、流量制御バルブに異常が生じた場合には早急に適切なメンテナンス等を行うことができる流量制御装置及びそれに用いられる診断装置又は診断用プログラムを提供する。
【解決手段】第2測定流量値又は測定圧力値に基づいて第1測定流量値の異常を診断する第1測定流量診断部5と、前記第1測定流量診断部5が、前記第1測定流量値に異常が無いと診断している場合に、流量制御バルブ2の異常を診断するバルブ診断部6と、を備えた。 (もっと読む)


【課題】流量制御装置に用いられるセンサ等の部品点数を低減しつつ、流量装置内で生じる詰まりなどの不具合や測定流量値に生じている異常を精度よく診断することができる流量制御装置、流量制御装置に用いられる診断装置及び診断用プログラムを提供する。
【解決手段】流量制御装置100に、前記流路ML上に設けられた流体抵抗4と、流体抵抗の上流側又は下流側のいずれか一方に設けられた圧力センサ3と、前記測定流量値又は前記圧力センサで測定される測定圧力値に基づいて、前記流路MLを流れる流体の状態が安定状態であるかどうかを判定する安定状態判定部5と、前記安定状態判定部5が流体の状態が安定状態であると判定している場合に、前記測定圧力値の変化量に基づいて前記測定流量値の異常を診断する異常診断部6と、を備えた。 (もっと読む)


【課題】単一の質量流量を多数の流れラインに分割するための流量比制御装置を含むガス送出システム用のマルチ反対称最適(MAO)制御アルゴリズムを開示する。
【解決手段】MAO制御アルゴリズムでは、各流れラインには、流れセンサ124及びバルブ126が設けられている。このバルブは、ターゲット流量比設定点を得るため、線型サチュレータと組み合わせたSISOフィードバック制御装置によって積極的に制御される。最適制御性能のため、これらのSISO制御装置及び線型サチュレータは実質的に同じである。各バルブ制御コマンドは、全ての他のバルブ制御コマンドに対してマルチ反対称であるということがわかっている。従って、MAO制御アルゴリズムは、任意の時期に少なくとも一つのバルブが許容可能な最大開放位置にあり、これによって、流量比設定点の所与の組について、最大総バルブコンダクタンスに関して最適解を提供することを保証する。 (もっと読む)


【課題】複数の流体機器ユニットとそれらにセットで取り付けられる外部流体機器とを効率よくコンパクトに配置可能な流体機構を提供する。
【解決手段】各流体機器ユニットの長手方向側面同士を密着させて配置するとともに、外部流体機器V1、V2を、流体機器ユニットの幅方向外側に並べて配置するようにした。さらに、外部流体機器V1、V2と流体機器ユニットとを接続する流入経路9c及び流出経路9dにおいて、短い流入経路9cは長い流出経路9dに接続するようにした。 (もっと読む)


【課題】弁体の作動安定性を向上しながらも、計量面の形状測定を可能とする弁体を備えた流量制御弁を提供する。
【解決手段】PCVバルブ40は、ケース42とバルブ体60とスプリング68とを備える。ケース42のガス通路50に形成された計量孔53と、バルブ体60の計量面62とにより計量部66が構成される。バルブ体60の軸方向の移動により流量を制御する。バルブ体60は、ガイド70,80を備える。前側のガイド70は、計量面62上に放射状に突出された複数のリブ部72により構成される。後側のガイド80は、バルブ体60の後端部に鍔状に形成されかつ切欠部84を有する鍔部63により構成される。切欠部84は、計量面62の形状測定に際して基準となる基準面84として形成される。 (もっと読む)


【課題】簡単かつ占有面積の小さいコンパクトな構成で二次流路2への流体の流量分配が可能な流量制御システム100を構築する。
【解決手段】
仮想平面と平行に延伸する一次流路1と、前記仮想平面方向から視て前記一次流路1と交差するとともに、その交差ポイントにおいて前記一次流路1と接続されて該一次流路1を流れる流体の一部が流れ込むように構成された複数の二次流路2と、前記交差ポイントに設定された設置領域4に配置され、前記一次流路1から二次流路2に流れ込む流体流量の割合を定める流体抵抗素子3とを設けるようにした。 (もっと読む)


【課題】流路を構成する部材間の密閉性を高め、ハロゲン系ガスに対しても使用可能な耐腐食性を有するMEMS型流量センサを提供する。
【解決手段】実施形態によれば、流量センサ10は、基材11の表面と流路構成基材21の裏面とが対向するように貼り合わせて、固定部材によって固定される。基材11は、表面上の流路形成領域に、一対の感熱膜12と、一対の感熱膜間の中間に位置するヒータ膜13と、流路保護膜15と、を有し、流路形成領域以外の領域上に、耐腐食性を有する金属保護膜を有する。流路構成基材21の裏面の流路形成領域に形成される溝と、流路形成領域以外の他の領域と溝とを区切り、他の領域に比して突出する側壁構成部と、を有し、耐腐食性を有する材料によって構成される。流路構成基材21の側壁構成部は、基材11の金属保護膜上に位置するように圧着される。 (もっと読む)


【課題】液化ガスの再液化を防ぎながら液化ガスの流量を精密に制御可能なマスフローコントローラーを提供する。
【解決手段】実施形態のマスフローコントローラー100は、流入口11から流入した液化ガスを分流するセンサー用配管13とバイパス配管14と、前記センサー用配管を覆うように配置された熱式センサー7と、前記センサー用配管を覆って前記センサー用配管と共に二重配管を形成し、前記センサー用配管および前記バイパス配管に連通する断熱領域15と、前記連通を遮断して前記断熱領域を閉鎖領域とする閉鎖バルブ1と、を備える。実施形態のマスフローコントローラーは、前記センサー用配管と前記バイパス配管とから合流した前記液化ガスの流出口12と、前記熱式センサーの検出結果に基づいて前記流出口から流出する前記液化ガスの流量を制御する制御手段と、前記各部位の全体を下方から加熱するヒーター2と、をさらに備える。 (もっと読む)


【課題】単一のセンサを使って流量を制御できるフロー制御装置を提供すること。
【解決手段】制御装置(30)は、フローを受け入れるための流入口(32);フローをフロー・システムの他の構成要素に導くための流出口(34);圧力低減エレメント(36);上流の圧力を測定するよう構成された、圧力低減エレメント(36)の上流の圧力センサ(38);下流の圧力を測定するよう構成された、圧力低減エレメント(36)の下流の圧力センサ(40);プロセッサ、メモリ、及び流体の流量を算定しバルブ制御信号を発生させるためのソフトウエア命令を包含させることが可能なコントローラ(42);ならびに、バルブ制御信号に反応して流体フローを調節する、ちょう型バルブ、油圧駆動バルブなどのバルブ(44)を含む。 (もっと読む)


【課題】共通の体積流量計を用いて種類の異なるシールドガスの流量を制御することのできるシールドガス流量制御装置を提供する。
【解決手段】種類が異なるシールドガス3A,3Bを供給する複数のシールドガス供給源3と、レーザ溶接加工位置へシールドガスを噴射するガス噴射ノズル13と、当該ガス噴射ノズル13と前記シールドガス供給源3とを接続した接続管路14中に配置され、前記ガス噴射ノズル13へのシールドガスの流量を制御するための体積流量計11と、当該体積流量計11に流入されるシールドガスの圧力を所望の圧力に制御自在の圧力制御弁9とを備え、前記体積流量計11に対してシールドガスの流量を指令する流量指令制御部29に、前記圧力制御弁9の設定圧とシールドガスのガス種とガス流量とを関連付けして格納した流量・圧力データテーブル35を備えている。 (もっと読む)


【課題】圧力調整弁の二次側圧力の変動を低減して、流量制御機器から排出するガス流量を高精度に検定でき、測定用タンク内の圧力降下率を一定に維持する。
【解決手段】プロセスガス供給源からのガスを第1ライン遮断弁22と第2ライン遮断弁23と流量制御機器24とを経由しプロセスチャンバに供給する複数のプロセスガスライン2と、共用ガス供給源からのガスを第2ライン遮断弁23と流量制御機器24とを経由し排出すべく、分岐接続された共用ガスライン1とを有し、共用ガスライン1には、共用遮断弁12と測定用タンク13と第1圧力センサ141と圧力調整弁15とを備え、第1ライン遮断弁22及び共用遮断弁12を弁閉したとき、測定用タンク13内におけるガスの圧力降下を第1圧力センサ141により測定し流量制御機器24の流量検定を行うガス流量検定システムにおいて、圧力調整弁15は、該圧力調整弁15の二次側圧力を制御する。 (もっと読む)


【課題】小型で、かつ、流量制御の応答性が優れた流量制御装置を提供することである。
【解決手段】力が作用することによって変形する変形可能部を有する流体通路と、前記流体通路の前記変形可能部に、異なる方向から、力を作用させる力作用手段とを具備してなり、前記力作用手段は、チャンバ10、13と、該チャンバ10、13の少なくとも一部を構成する膜9,12と、前記チャンバ10、13内の圧力を制御する圧力制御手段とを具備してなり、前記圧力制御手段による前記チャンバ10、13内の圧力変動による前記膜9,12の変形によって、前記流体通路の前記変形可能部3には、異なる位置で、変形が起きるよう構成されてなり、前記流体通路の前記変形可能部3の変形度によって該流体通路を流れる流体の流量が制御される流量制御装置。 (もっと読む)


【課題】流量測定装置10や流量制御装置100においてコンパクト性を損なうことなく、流量測定精度を向上させる。
【解決手段】
測定対象流体が流れる流体抵抗部材3と、対象流体が導かれる感圧面に貼り付けられた抵抗素子2Bの電気抵抗値の変化から流体抵抗部材3の上流側圧力を測定することが可能であるとともに抵抗素子2Bの温度による電気抵抗値の変化から前記感圧面の温度を測定することが可能な上流側圧力センサ21と、流体抵抗部材3を流れる対象流体の温度を測定可能な位置に配置された温度検知手段8と、上流側圧力センサ21で測定された上流側流路の圧力及び前記流体抵抗部材の圧力−流量特性に加えて、上流側圧力センサ21で測定された圧力センサ温度及び温度検知手段8で測定された流体抵抗部材3における対象流体温度に少なくとも基づいて、当該対象流体の流量を算出する流量算出部9とを備えるようにした。 (もっと読む)


【課題】圧力脈動によって反応器中での化学反応(選択性、反応機構、副生成物の生成等)に悪影響を生じない送出システムと制御方法を提供する。
【解決手段】流体Aを静的ミキサ1へと送り込むための送出システムであって、所定の圧力の前記流体Aを含んだタンク2と、前記静的ミキサ1とタンク2とを接続する流路3と、前記流路3内に設けられ、前記タンク2から前記容器中への前記流体Aのフローを制御する制御バルブ4と;前記流体Aの目標流量SP_Q及び前記流体Aの実際の流量PV_Qを受けるための、並びに、バルブ位置を表す前記制御バルブ4への制御シグナルMV_Lを出力して前記流量を調節するための制御器6とを具備する。 (もっと読む)


【課題】ポンプされていない状態にある圧力チャンバにガスを供給するために圧力チャンバに接続されたマスフローコントローラー(MFC)を監視し、適切に機能させる。
【解決手段】試験期間の間、連続的な充填サイクルを生成すべくMFCを循環的に切り替えることと、試験期間の間、所定の間隔を置いてチャンバの圧力を測定することとを含み、MFCの全切替時間が充填サイクルのうちの少なくとも10%であり、さらに、圧力の測定値の平均値を得て、MFCが適切に機能しているかどうかを判定すべく平均値を過去のデータと比較する。 (もっと読む)


【課題】格段に優れた応答性を得ることができてガス濃度の安定化が図れ、しかも、従来のパネル型形状をそのまま維持できる集積型ガスパネル装置を提供する。
【解決手段】集積型ガスパネル装置1のパネル体2を、少なくとも主流路R2を形成する主流路用ブロック体32と、枝流路R1を形成する枝流路用ブロック体31とからなるものにし、その主流路用ブロック体32を中心として左右両側に対向するように前記枝流路用ブロック体31を配置する。 (もっと読む)


【課題】小流量の流量制御と大流量の流量制御とを高精度に達成する流量制御装置を実現する。
【解決手段】流体通路10は、バイパス流路16とセンサ用流路12,14を備える。センサ用流路12等は、バイパス流路16を流れる前の流体から一部を分岐させ、その後、バイパス流路16を流れた流体に合流させる。センサ用流路14は、センサ用流路12と等しい流路断面と、より長い流路とを有する。流量センサユニット30は、各センサ用流路について、上流側抵抗器と下流側抵抗器と出力部を備える。上流側抵抗器312,322は、センサ用流路12内の流体を加熱する。下流側抵抗器314,324は、上流側抵抗器312,322よりも下流に設けられ流体によって温度が変化する。出力部316,318は、上流側と下流側抵抗器の抵抗の差に応じた信号を出力する。センサ用流路12,14は、流体を分岐させる地点から流体を合流させる地点までの距離が等しい。 (もっと読む)


1 - 20 / 155