説明

Fターム[5H730BB13]の内容

DC−DCコンバータ (106,849) | 主変換部の型式 (20,669) | 非絶縁型チョッパー方式 (5,778) | BUCK型 (2,646)

Fターム[5H730BB13]に分類される特許

81 - 100 / 2,646


【課題】電力変換回路において、ノーマリオン型トランジスタを利用したスイッチング素子への貫通電流を抑制する。
【解決手段】本発明による電力変換回路は、相互に直列接続されハーフブリッジ回路を構成するハイサイドトランジスタ11及びローサイドトランジスタ12と、ハイサイドトランジスタ11及びローサイドトランジスタ12のゲートを相補に駆動する2つの駆動回路21、22とを具備する。ハイサイドトランジスタ11はノーマリオフ型トランジスタであり、ローサイドトランジスタ12は、ノーマリオン型トランジスタである。 (もっと読む)


【課題】フィードバック制御によるオーバーシュートの発生を抑制する。
【解決手段】直流電源回路110は、光源回路830(負荷回路)に供給する直流電力を生成する。負荷電流検出回路140は、光源回路830を流れる負荷電流を検出して、負荷電流検出電圧を生成する。目標電圧生成回路170は、光源回路830を流れる負荷電流の目標値に基づいて、目標電圧を生成する。帰還信号生成回路180は、負荷電流検出電圧と目標電圧とを比較して、帰還信号を生成する。目標電圧生成回路170の積分回路172は、負荷電流の目標値が高くなった場合に、所定の時間が経過するまでの間、目標値に対応する電圧値よりも小さい電圧値の目標電圧を生成し、所定の時間が経過したのち、目標値に対応する電圧値の目標電圧を生成する。 (もっと読む)


【課題】モータの駆動を制御する駆動制御手段の制御内容を変更することなく、高トルク運転時にモータに対して十分な電力を供給することができるとともに、減速動作時にモータから生じる回生エネルギーを有効利用することを可能とする。
【解決手段】昇降圧回路29は、入力電圧を昇圧して出力する昇圧動作、入力電圧を降圧して出力する降圧動作、入力電圧の供給が遮断する電源遮断動作などを実行する。電源制御部26は、バス電圧の検出値に基づいて、モータMが加速動作状態であると判断される期間には昇圧動作を実行し、減速動作状態であると判断される期間には電源遮断動作を実行し、それらの期間を除く期間には降圧動作を実行するように昇降圧回路29の動作を制御する。 (もっと読む)


【課題】出力端子の数よりもコイルの数の少ないスイッチング装置を提供する。
【解決手段】メインスイッチング素子24のオンオフに伴って整流回路30に電流が流れ、第1サブスイッチング素子42及び第2サブスイッチング素子52のうちオンである方に整流回路30から電流が流れる。そして、第1サブスイッチング素子42及び第2サブスイッチング素子52のオンオフを制御して第1出力回路40及び第2出力回路40のいずれに整流回路から電流が流れるかを切り替えることで、第1出力回路40を流れる電流に応じて直流電源を変圧した電圧が第1出力端子21から出力され、第2出力回路50を流れる電流に応じて直流電源を変圧した電圧が第2出力端子22から出力される。したがって、1つの整流回路30を共用することにより、出力端子の数よりもコイルの数を少なくすることができる。 (もっと読む)


【課題】出力電流の可変範囲を広げたスイッチング電源及び照明装置を提供する。
【解決手段】スイッチング素子8は、オンのとき第1のインダクタ13に電源電圧を供給して電流を流す。定電流素子9は、スイッチング素子8に直列に接続され、スイッチング素子8の電流が所定の上限値を超えたときスイッチング素子8をオフさせる。整流素子10は、スイッチング素子8および定電流素子9のいずれかに直列に接続され、スイッチング素子8がオフしたとき第1のインダクタ13の電流を流す。第2のインダクタ14は、第1のインダクタ13と磁気結合し、第1のインダクタ13の電流が増加しているときスイッチング素子8をオンさせる電位が誘起され、スイッチング素子8の電流が減少しているときスイッチング素子8をオフさせる電位が誘起され、誘起された電位をスイッチング素子8の制御端子に供給する。制御回路11は、定電流素子9の制御端子に電位を出力する。 (もっと読む)


【課題】電流検出用の抵抗器が不要になり、部品点数の削減を図ることができ、該抵抗器に流れる電流による損失をなくすことができる、入力電圧を所望の出力電流に変換して出力する定電流出力制御型スイッチングレギュレータを得る。
【解決手段】クロック信号CLKがハイレベルのときに、スイッチングトランジスタM1に初期電流値i0の電流が流れたときの電流センス電圧VSNSをサンプリングし、クロック信号CLKがローレベルのときに、第1基準電圧VREF1とサンプリングした電流センス電圧VSNSとの電圧差ΔVSを第1基準電圧VREF1に加算して生成した第2基準電圧VREF2と、電流センス回路2の電流センス電圧VSNSとの電圧比較結果を示す信号CPOUTによって、PWM制御時におけるスイッチングトランジスタM1及び同期整流用トランジスタM2の各動作を制御するようにした。 (もっと読む)


【課題】小型化、高効率化、および、低コスト化が可能な電源ユニット19を提供する。
【解決手段】電源ユニット19は、直流電源21からの出力を平滑する平滑コンデンサC1を有する。電源ユニット19は、光源16に対して給電する電源回路22を有する。電源回路22は、平滑コンデンサC1の正極側に接続したスイッチング素子Q1、および、スイッチング素子Q1をスイッチングする制御端子回路26を備える。電源ユニット19は、直流電源21と平滑コンデンサC1との間に、電源回路22への突入電流を抑制する抵抗器R1を有する。電源ユニット19は、電源回路22のスイッチング素子Q1の制御端子回路26と接続したダイオードD2を有する。電源ユニット19は、ダイオードD2と接続したゲートG2を備え、抵抗器R1と並列に接続したサイリスタSCRを有する。 (もっと読む)


【課題】サージ発生時にもMOSFETの保護が可能な電源入力部の回路構成を提供する。
【解決手段】pチャネルMOSFET1、nチャネルMOSFET2、ツェナーダイオード3、ツェナーダイオード4、電流の逆流を抑制するコイル5、pチャネルMOSFET1のソースとnチャネルMOSFET2のドレイン間電圧差を保持する抵抗6、pチャネルMOSFET1のショート破壊時に回路を保護する抵抗7、nチャネルMOSFET2のショート破壊時に回路を保護する抵抗8、電源ICへの入力電圧の変動を抑制する電解コンデンサ9、ECUへ電圧を供給するバッテリー10、ECU内部のICを動作させる電圧を生成する電源IC11から構成される。 (もっと読む)


【課題】入力電圧を昇圧又は降圧させて所望の電圧を出力し、小型化、低コスト化が可能な電圧変換器を提供する。
【解決手段】第1スイッチング素子Tr1は、第1ダイオードDi1のアノードと電源Pdの低電圧側In2との間に配置されており、第2スイッチング素子Tr2は第2ダイオードDi2のアノードと電源Pdの低電圧側In2との間に配置されている。 (もっと読む)


【課題】フィードバック制御に伴う消費電力を削減する。
【解決手段】直流電源回路110は、光源回路830(負荷回路)に供給する直流電力を生成する。負荷電流検出回路140は、光源回路830を流れる負荷電流を検出して、負荷電流検出電圧を生成する。目標電圧生成回路170は、光源回路830を流れる負荷電流の目標値に基づいて、目標電圧を生成する。帰還信号生成回路180は、負荷電流検出電圧と目標電圧とを比較して、帰還信号を生成する。直流電源回路110は、制御電源回路160が供給した制御電力により動作し、目標電圧生成回路170は、制御電源回路160が供給した制御電力から、目標電圧を生成する。制御電源回路160は、負荷電流の目標値が0である場合に、直流電源回路110と目標電圧生成回路170とに対して制御電源を供給しない。 (もっと読む)


【課題】制御回路基板の誤動作を防止しやすく、かつ故障しにくい電力変換装置を提供する。
【解決手段】電力変換装置1は、複数の半導体モジュール2と、冷却器3と、制御回路基板4と、平滑コンデンサ5と、放電抵抗6とを備える。制御回路基板4は、半導体モジュール2の制御端子21に接続されている。放電抵抗5は、平滑コンデンサ5に並列接続され、制御回路基板4に取り付けられている。制御回路基板4は、タイミング制御部41と、ドライブ回路部42と、電源回路部40とを備える。タイミング制御部41および電源回路部40の少なくとも一方と、放電抵抗6との間にドライブ回路部42が配置されている。 (もっと読む)


【課題】インダクタを備える昇降圧スイッチング回路の昇降圧動作によって、インダクタで発生する電磁ノイズが撮影画像に影響を与えないようにする。
【解決手段】撮像素子モジュールの電源回路5-4であって、スイッチングトランジスタ22,23及びインダクタ6により入力直流電圧を降圧して出力する降圧回路部20と、降圧回路部20と並列に設けられトランジスタ31のリニア定電圧動作によって入力直流電圧を降圧して出力するリニアレギュレータ回路部30と、降圧回路部20の前段又は後段に直列に接続され入力直流電圧をチャージポンプ動作又はチャージポンプ動作と昇圧スイッチング動作の切替によって昇圧して出力する昇圧回路部40と、撮像素子モジュールの撮影記録モード時に降圧回路部20の動作を停止させると共にリニアレギュレータ回路部30を動作させて撮像素子の駆動に必要な定電圧を供給させる制御コントロール部56とを備える。 (もっと読む)


【課題】フィードバック制御によるオーバーシュートの発生を抑制する。
【解決手段】直流電源回路110は、光源回路830(負荷回路)に供給する直流電力を生成する。負荷電流検出回路140は、光源回路830を流れる負荷電流を検出して、負荷電流検出電圧を生成する。目標電圧生成回路170は、光源回路830を流れる負荷電流の目標値に基づいて、目標電圧を生成する。帰還信号生成回路180は、負荷電流検出電圧と目標電圧とを比較して、帰還信号を生成する。目標電圧生成回路170は、負荷電流の目標値が低くなった場合に、目標電圧を所定の減少率よりも低い減少率で徐々に減少させる。 (もっと読む)


【課題】出力電流の変動を抑圧するようにDC/DCコンバータを制御する。
【解決手段】帰還電流生成回路14及び合成回路16は、インダクタ電流ILの直流成分を表す第1の帰還電圧VFB1を生成する。リップル信号生成回路15は、入力電圧及び出力電圧に基づいて、インダクタ電流ILの交流成分を表す第2の帰還電圧VFB2を生成する。合成回路15は、第1及び第2の帰還電圧を合成して第3の帰還電圧VFB3を生成する。コンパレータ12は、基準電圧VREFと第3の帰還電圧VFB3とを比較し、ハイレベル又はローレベルの制御信号HYSOを出力する。ドライバ回路13は、スイッチング素子M1,M2を制御する。リップル信号生成回路15は、制御信号HYSOがローレベルであるとき、入力電圧と出力電圧との差に基づいて第2の帰還電圧を生成し、制御信号HYSOがハイレベルであるとき、出力電圧に基づいて第2の帰還電圧を生成する。 (もっと読む)


【課題】出力電圧の変動を抑圧するようにDC/DCコンバータを制御する。
【解決手段】帰還電圧生成回路14及び合成回路16は、インダクタ電流ILの直流成分を表す第1の帰還電圧VFB1を生成する。リップル信号生成回路15は、入力電圧及び出力電圧に基づいて、インダクタ電流ILの交流成分を表す第2の帰還電圧VFB2を生成する。合成回路15は、第1及び第2の帰還電圧を合成して第3の帰還電圧VFB3を生成する。コンパレータ12は、基準電圧VREFと第3の帰還電圧VFB3とを比較し、ハイレベル又はローレベルの制御信号HYSOを出力する。ドライバ回路13は、スイッチング素子M1,M2を制御する。リップル信号生成回路15は、制御信号HYSOがローレベルであるとき、入力電圧と出力電圧との差に基づいて第2の帰還電圧を生成し、制御信号HYSOがハイレベルであるとき、出力電圧に基づいて第2の帰還電圧を生成する。 (もっと読む)


【課題】ノイズ耐性が高く、且つ、製造プロセス、電源、及び電源電圧が変動するような場合においても精度が高い、出力トランジスタに対する電流制限回路を提供する。
【解決手段】電流制限回路が、基準トランジスタと、基準トランジスタに所定の電流を流す電流源と、出力トランジスタがオンした時の両端の第1の電位差と基準トランジスタの両端の第2の電位差を比較する比較器であって、第1の電位差が第2の電位差よりも大きくなった場合に、出力トランジスタをオフするように制御する電流制限信号を出力する、比較器とを備える。基準トランジスタは、出力トランジスタとは素子サイズの異なる同型のトランジスタであり、基準トランジスタがオンした時のオン抵抗は、出力トランジスタがオンした時のオン抵抗の1/Nの大きさ(Nは1より大きい数)であり、更に、基準トランジスタがオンするように基準トランジスタのゲートにバイアスがかけられている。 (もっと読む)


【課題】絶縁トランスの2次側の変換部の出力電圧を安定化できる充電装置を提供する。
【解決手段】この充電装置10は、DCバス21に接続可能な接続部11と、蓄電池31と接続可能な接続部12a,12bと、接続部11から供給される直流電流を交流電流に変換して絶縁トランス14に出力する変換部13aと、絶縁トランス14と、絶縁トランス14から出力される交流電流を直流電流に変換する変換部13bと、変換部13bの出力電圧を変圧して接続部12aに出力する変圧部Hと、変換部13bと変圧部Hの間に接続された蓄電池17とを備える。 (もっと読む)


【課題】スイッチング電源における電力損失を最小にするデッドタイムの設定に関して、信頼性をより高める。
【解決手段】DC−DCコンバータのスイッチング部18は、スイッチング駆動部5、温度検出部19、デッドタイム設定部21を有する。温度検出部19は、スイッチング駆動部5の温度Θを示す温度検出信号20をデッドタイム設定部21へ出力する。デッドタイム設定部21は、温度検出部19により出力された温度Θが示す温度検出信号に基づき、スイッチング駆動部5の温度Θがより低いデッドタイムdtを探索する。 (もっと読む)


【課題】瞬停から復電したときの不具合の発生を抑制する。
【解決手段】平滑コンデンサ11の蓄積電荷が残っている状態で交流電源100が復電すると、交流直流変換部1の出力電圧VDCが上昇する。このとき、制御部4の信号出力部40は強制オフ制御部6から与えられる停止信号によってスイッチング素子30をオフしているので、直流直流変換部2の出力電圧Voは上昇しない。よって、交流直流変換部1の出力電圧VDCが低電圧でクランプされることなく上昇を続ける。その結果、瞬停から復電したときの不具合の発生を抑制することができる。 (もっと読む)


【課題】出力電流の変動を抑圧するようにDC/DCコンバータを制御する。
【解決手段】帰還電流生成回路14及び合成回路16は、インダクタ電流ILの直流成分を表す第1の帰還電圧VFB1を生成する。リップル信号生成回路15は、入力及び出力電圧に基づいて、インダクタ電流ILの交流成分を表す第2の帰還電圧VFB2を生成する。合成回路15は、第1及び第2の帰還電圧を合成して第3の帰還電圧VFB3を生成する。オン時間調整回路17は、基準電圧VREFと第3の帰還電圧VFB3の比較結果に応じてハイレベル又はローレベルの制御信号HYSOを出力する。ドライバ回路13は、スイッチング素子M1,M2を制御する。リップル信号生成回路15は、制御信号HYSOがローレベルであるとき、入力電圧と出力電圧との差に基づいて第2の帰還電圧を生成し、制御信号HYSOがハイレベルであるとき、出力電圧に基づいて第2の帰還電圧を生成する。 (もっと読む)


81 - 100 / 2,646