説明

Fターム[5H730FG02]の内容

DC−DCコンバータ (106,849) | 制御態様 (8,760) | パルス幅制御 (3,833)

Fターム[5H730FG02]の下位に属するFターム

Fターム[5H730FG02]に分類される特許

1 - 20 / 150



【課題】入力電圧が高い電源に対して好適で高い変換効率が得られるスイッチング電源装置を得る。
【解決手段】トランスT1は一次巻線と二次巻線44Aとを有し、共振コイルLr1は一次巻線の一端にその一端が接続され、共振コンデンサCi1は一次巻線の他端にその一端が接続される。第1スイッチング回路10は共振コイルLr1の他端と直流電源150の+端子とに接続され、第2スイッチング回路20は共振コンデンサCi1の他端と直流電源150の−端子とに接続される。補助スイッチング回路30は共振コイルLr1の他端と共振コンデンサCi1の他端とに接続され、信号生成部50Aは、第1スイッチング回路10及び第2スイッチング回路20に供給するスイッチング信号と補助スイッチング回路30に供給する補助スイッチング信号とを生成する。スイッチング信号は補助スイッチング信号がLOWになっているときにHIなる。 (もっと読む)


【課題】調光時など負荷回路に対して供給する電力が小さい場合でも力率の低下を防ぎ、電源装置における電力損失を抑えつつ、力率改善回路の動作を安定させる。
【解決手段】力率改善回路110は、交流電圧を入力し、入力した交流電圧を直流電圧に変換して、変換した直流電圧を出力するとともに、入力する交流電流の力率を高める。制御回路140は、力率改善回路110に入力される交流電圧の電圧値が高いほど、力率改善回路110が出力する直流電圧の電圧値を高くする。制御回路140は、調光信号入力回路180に入力される調光信号が表わす調光度が低いほど、上記力率改善回路110が出力する直流電圧の電圧値を高くする。 (もっと読む)


【課題】コンバータのリアクトルを流れる電流を検出するための電流センサの異常をより高い精度で検出することが可能な電力供給システムを提供すること。
【解決手段】この電力供給システムは、リアクトルに電流が流れ続ける連続モードと、リアクトルに電流が断続的に流れる不連続モードとのいずれかによってコンバータの動作を制御するものであって、連続モードの場合に電流センサの異常を判定する第1判定モード(ステップS002)は、と、不連続モードの場合に電流センサの異常を判定する第2判定モード(ステップS003)とを選択して電流センサの異常を判定する。 (もっと読む)


【課題】フィードフォワード型ΔΣ変調制御を用いたDC/DC変換回路を備えてさらなる早い応答速度を実現するスイッチング電源回路を得ること。
【解決手段】DC/DC変換回路71と制御回路70とから構成され、制御回路70は、エラーアンプ72とFF型ΔΣ変調回路73とドライブ回路74とから構成されている。入力電圧がDC/DC変換回路71に入力されると、その出力電圧がエラーアンプ72とFF型ΔΣ変調回路73とドライブ回路74を介してΔΣ変調制御され、DC/DC変換回路71から出力電圧を得る。このΔΣ変調制御は、入力信号に比例して出力のパルス密度が変化する。 (もっと読む)


【課題】高効率化を図ることができる双方向DC/DCコンバータを提供する。
【解決手段】DC/DCコンバータは、第1DC/DCコンバータ部と、前記第1DC/DCコンバータ部から供給される電圧をDC/DC変換する第2DC/DCコンバータ部とを備える。前記第1DC/DCコンバータ部及び前記第2DC/DCコンバータ部の一方が固定倍率DC/DCコンバータ部CNV2であり、前記第1DC/DCコンバータ部及び前記第2DC/DCコンバータ部の他方が可変倍率DC/DCコンバータ部CNV1である。 (もっと読む)


【課題】無負荷から最大負荷までゼロ電圧スイッチングを維持しながら一定のスイッチング周波数とデューティ比で動作し、スイッチング素子の電圧ストレスおよび装置のサイズとコストを低減する。
【解決手段】DC−DCコンバータ21を、DC−ACコンバータの第1変換部24、AC−DCコンバータの第2変換部25、変換制御回路26および電圧検出回路27から構成する。MOSトランジスタQ1がオンオフすると共振電流Irが流れる。インダクタL1と共振用のインダクタLrとをタップ付インダクタLtとして構成したので、MOSトランジスタQ1の電圧ストレスを低減できる。検出した出力電圧Voに基づいて制御変数K(MOSトランジスタQ2、Q3の通電幅)を制御すると、第1変換部24から負荷23に送られるエネルギーを制御することができ、無負荷の状態でも一定のスイッチング周波数とデューティ比で制御できる。 (もっと読む)


【課題】特別な回路を用いることなく、トランスの飽和の抑制、損失の低減化を図ることのできるDCDCコンバータおよびDCDCコンバータの制御方法を得る。
【解決手段】一次巻線および二次巻線を有し、電圧変換比を決定するトランス(8)と、トランスの一次巻線側に接続されたスイッチング素子(4−1、4−2)と、スイッチング素子のオン・オフ制御を行うことで、1次巻線側に入力されるDC電圧を所望のDC電圧に変換して2次巻線側に出力させる制御部(3)とを備え、制御部は、一次巻線側の電圧計測値、一次巻線側の電流計測値、二次巻線側の電圧計測値、二次巻線側の電流計測値のうち何れか1つ以上の計測値に基づいて、スイッチング素子のソースとドレインの間に電流が流れ始めるときのゲート電圧のばらつき量の影響を示す指標値を検出し、検出した指標値を抑制するようにスイッチング素子のオン・オフ制御のタイミングを調整する。 (もっと読む)


【課題】目標電流が小さい場合でも、スイッチング素子が確実にオンできるようにする。
【解決手段】直流変換回路120は、スイッチング素子Q25と、点灯制御IC130(駆動回路)とを有し、光源回路810(負荷回路)に対して直流を供給する。電流検出回路140は、負荷電流を検出する。オン時間算出回路160は、電流検出回路140が検出した負荷電流と、光源回路810に流すべき目標電流とに基づいて、スイッチング素子Q25のオン時間を算出する。点灯制御IC130は、オン時間算出回路160が算出したオン時間に基づいて、スイッチング素子Q25を駆動し、オン時間及び負荷電流及び目標電流のうち少なくともいずれかを指標値とし、指標値が小さいほど、スイッチング素子Q25のオフ時間を長くする。 (もっと読む)


【課題】スイッチング電源における電力損失を最小にするデッドタイムの設定に関して、信頼性をより高める。
【解決手段】DC−DCコンバータのスイッチング部18は、スイッチング駆動部5、温度検出部19、デッドタイム設定部21を有する。温度検出部19は、スイッチング駆動部5の温度Θを示す温度検出信号20をデッドタイム設定部21へ出力する。デッドタイム設定部21は、温度検出部19により出力された温度Θが示す温度検出信号に基づき、スイッチング駆動部5の温度Θがより低いデッドタイムdtを探索する。 (もっと読む)


【課題】出力電流の変動を抑圧するようにDC/DCコンバータを制御する。
【解決手段】帰還電流生成回路14及び合成回路16は、インダクタ電流ILの直流成分を表す第1の帰還電圧VFB1を生成する。リップル信号生成回路15は、入力電圧及び出力電圧に基づいて、インダクタ電流ILの交流成分を表す第2の帰還電圧VFB2を生成する。合成回路15は、第1及び第2の帰還電圧を合成して第3の帰還電圧VFB3を生成する。コンパレータ12は、基準電圧VREFと第3の帰還電圧VFB3とを比較し、ハイレベル又はローレベルの制御信号HYSOを出力する。ドライバ回路13は、スイッチング素子M1,M2を制御する。リップル信号生成回路15は、制御信号HYSOがローレベルであるとき、入力電圧と出力電圧との差に基づいて第2の帰還電圧を生成し、制御信号HYSOがハイレベルであるとき、出力電圧に基づいて第2の帰還電圧を生成する。 (もっと読む)


【課題】出力電流の変動を抑圧するようにDC/DCコンバータを制御する。
【解決手段】帰還電流生成回路14及び合成回路16は、インダクタ電流ILの直流成分を表す第1の帰還電圧VFB1を生成する。リップル信号生成回路15は、入力及び出力電圧に基づいて、インダクタ電流ILの交流成分を表す第2の帰還電圧VFB2を生成する。合成回路15は、第1及び第2の帰還電圧を合成して第3の帰還電圧VFB3を生成する。オン時間調整回路17は、基準電圧VREFと第3の帰還電圧VFB3の比較結果に応じてハイレベル又はローレベルの制御信号HYSOを出力する。ドライバ回路13は、スイッチング素子M1,M2を制御する。リップル信号生成回路15は、制御信号HYSOがローレベルであるとき、入力電圧と出力電圧との差に基づいて第2の帰還電圧を生成し、制御信号HYSOがハイレベルであるとき、出力電圧に基づいて第2の帰還電圧を生成する。 (もっと読む)


【課題】スイッチ端子の短絡状態をより速く検出することが可能な短絡保護回路を提供する。
【解決手段】DC−DCコンバータ100は、第1導電型の第1MOSトランジスタM1と、第2導電型の第2MOSトランジスタM2と、第1ドライバ回路3と、第2ドライバ回路6と、コントローラ7と、短絡保護回路101と、スイッチ端子SWとを備える。短絡保護回路101は、電源電位VDDとの短絡を検出する第1論理回路1と、第1検出回路2と、第1抵抗R1と、第1導電型の第3MOSトランジスタM3と、第1導電型の第4MOSトランジスタM4と、を有すると共に、接地電位VSSとの短絡を検出する第2抵抗R2と、第2導電型の第5MOSトランジスタM5と、第2導電型の第6MOSトランジスタM6と、第2論理回路4と、第2検出回路5とを有し、検出結果に基づいた第1、第2検出信号Sd1、Sd2をコントローラ7に出力する。 (もっと読む)


【課題】入力電流の変化を抑制しつつ効率を改善できるスイッチング電源回路を提供する。
【解決手段】モード制御部51はチョッパ回路3a,3bにおける電力が増大するにしたがって、チョッパ回路3a,3bの動作モードを第1モードから第2モードを経て第3モードへと遷移させる。動作制御部52は、第1モードにおいてチョッパ回路3aにチョッピング動作をさせつつチョッパ回路3bのチョッピング動作を停止し、第2モードにおいてチョッパ回路3a,3bに交互にチョッピング動作をさせ、第3モードにおいてチョッパ回路3a,3bの両方に前記チョッピング動作をさせる。 (もっと読む)


【課題】昇圧チョッパ回路に付属回路を設けることなく、単純な回路構成でスイッチング損失を低減したソフトスイッチングを実現容易にする。
【解決手段】入出力間にリアクトル11およびブロッキングダイオード12が直列接続され、入出力間に単一のスイッチング素子13が並列接続され、スイッチング素子13のオンオフにより入力電圧VINを所定の昇圧比でもって昇圧した固定値の出力電圧VOUTを生成し、スイッチング素子13のオン時間TONを演算式TON=ILA×2L/VINで算出し、オン時間TONに基づいて、スイッチング素子13のスイッチング周期Tを演算式T=TON×VOUT/(VOUT−VIN)で算出すると共に、スイッチング素子13の両端電圧をそのスイッチング素子13がオンする直前で検出し、両端電圧が入力電圧に近似する不連続モードでスイッチング素子13をオンさせ、スイッチング素子13を零電流スイッチングする。 (もっと読む)


【課題】発光素子を駆動する降圧DC/DCコンバータの動作周波数を安定化する。
【解決手段】電流検出回路10は、スイッチングトランジスタM1に流れる電流IM1が所定のピーク電流に達するとアサートされるオフ信号SOFFを生成する。パルス生成回路30は、オン信号SON、オフ信号SOFFがアサートされる度にレベルが遷移するパルス信号S2を生成する。電流源24は、DC/DCコンバータ6の出力電圧VOUTに応じた充電電流により第1キャパシタ22を充電する。演算回路50は、DC/DCコンバータ6の入力電圧VINおよび出力電圧VOUTに応じたしきい値電圧VC4を、VC4=(VIN−VOUT)×VOUT/VIN×m(mは定数)にもとづいて生成する。第1コンパレータ28は、第1キャパシタ22の電圧がしきい値電圧VC4に達するとアサートされるオン信号SONを生成する。 (もっと読む)


【課題】適切なリップルインジェクションにより安定したスイッチング制御を行う。
【解決手段】本発明に係るスイッチング電源装置1において、リップルインジェクション部17は、出力トランジスタ11のオン/オフ制御に応じて充放電電流Iを生成する充放電部171と、充放電電流Iを用いて充放電されるキャパシタ172と、基準電圧REFを用いてキャパシタ172の一端をバイアスするgmアンプ173と、を含み、キャパシタ173の一端からリップル基準電圧REF2を出力する。より好ましい構成として、リップルインジェクション部171は、基準電圧REFと帰還電圧FBとの差分を増幅して誤差電圧ERRを生成するエラーアンプ174をさらに含み、gmアンプ173は、誤差電圧ERRを用いてキャパシタ172の一端をバイアスする。 (もっと読む)


【課題】スイッチング損失を低減することができる電源装置の提供。
【解決手段】スイッチング素子を制御回路19によりオンオフ制御することで、所定電圧(Vos)を出力するDC/DCコンバータ21を備え、制御回路19は、所定電圧(Vos)を出力するためのスイッチング素子のオンオフにおける時比率(D)が時比率閾値(Ds)より小さければ、スイッチング素子のオン回数(C)が所定オン回数(N)に至るごとに、スイッチング素子のオン動作を停止する。 (もっと読む)


【課題】精度よく電力の最大出力のばらつきを低減することのできる自励式のRCC方式のスイッチング電源装置を提供することを目的とする。
【解決手段】
発振周期測定回路22aは、スイッチング素子の発振周期Tを測定する。2次側導通時間測定回路22bは、2次巻線に電流が流れる時間T2ONを測定する。過電流保護値調整回路22cは、発振周期Tと2次側導通時間T2ONを用いて過電流保護検出電圧値VLIMITを定める。 (もっと読む)


【課題】不定周期でパルス信号を発生させる構成を採用しながら、制御対象による所望の制御を実現できるようにしたパルス発生回路を提供する。
【解決手段】予め定められた所定時間が経過すると、計数回路7のカウンタCO1のカウント値が既定値に達する。すると、計数回路7のカウンタCO1がパルスを出力することで、閾値電圧切換回路8が制御スイッチSW2を用いて比較回路5の比較対象となる閾値を強制的に変更する。その後、インダクタL1の磁気エネルギーが負荷側に伝達されるとノードN4の電圧が低下し、パルス検出回路6がこの電圧低下タイミングを検出するとパルスを出力する。すると、信号発生回路3の出力電圧は初期化される。 (もっと読む)


1 - 20 / 150