説明

Fターム[5J055DX56]の内容

電子的スイッチ (55,123) | 出力部 (8,827) | スイッチの形態 (2,011) | プッシュプル(インバータ、SEPP) (601)

Fターム[5J055DX56]の下位に属するFターム

Fターム[5J055DX56]に分類される特許

1 - 20 / 596




【課題】 広帯域無線通信を行う送信機に用いられ、電源変換効率を向上させると共に、電圧レベル切替の遷移時間の影響を低減し、出力信号の歪特性を改善することができる電源回路を提供する。
【解決手段】 入力信号をプッシュプル増幅方式で増幅するプッシュプル増幅部と、制御信号によりプッシュプル増幅部に提供する電源電圧の電圧レベルを可変とする可変電源部と、入力信号に基づいて電源電圧の電圧レベルを制御する制御信号を出力するスイッチ制御部83′と、入力信号を特定の時間遅延させるタイミング制御部121を備え、スイッチ制御部83′が、制御信号の立ち上げの場合に、タイミング制御部121での遅延時間に対して電圧レベル切り替えの遷移時間に応じた早いタイミングで制御信号を立ち上げ、立ち下げの場合には遅延時間のタイミングで立ち下げる電源回路としている。 (もっと読む)


【課題】出力波形に付加される遅延の増大を抑制することが可能な出力回路を提供すること。
【解決手段】本発明にかかる出力回路は、高電位側電源端子と外部出力端子Voutとの間に設けられ、電源電圧VDD〜接地電圧VSS間の電圧範囲を振幅する一対の増幅信号の一方に基づいてソース−ドレイン間に流れる電流が制御される出力トランジスタMP11と、低電位側電源端子と外部出力端子Voutとの間に設けられ、一対の増幅信号の他方に基づいてソース−ドレイン間に流れる電流が制御される出力トランジスタMN11と、電源電圧VDDより低く接地電圧VSSより高い中間電圧VMLが供給されている低電位側電源端子と、出力トランジスタMP11のゲートと、の間に設けられ、出力トランジスタMP11のゲート電圧と中間電圧VMLとの電圧差に基づいて出力トランジスタMP11のゲートをクランプするクランプ用トランジスタMP12と、を備える。 (もっと読む)


【課題】スイッチング素子を誤動作させずに高速低損失動作が可能なゲート駆動回路を部品点数の少ない簡易な回路を提供する。
【解決手段】ローサイドゲート駆動回路2から正極性の電圧が出力されるとハイサイドゲート駆動回路1は0Vを維持または負極性の電圧を出力し、ローサイドゲート駆動回路2からの出力が0Vまたは負極性の電圧を出力する時はハイサイドゲート駆動回路1から正極性の電圧が出力されるように制御を行なう。ハイサイドスイッチング素子5のゲート・ソース間にNchノーマリーオン型補助スイッチング素子13のドレイン・ソースを接続し、トランス15の1次側をゲート駆動回路1の出力に接続し、2次側をNchノーマリーオン型スイッチング素子13のゲート・ソース間に接続し、ローサイドスイッチング素子6側もトランス及びNchノーマリーオン型スイッチング素子をハイサイドと同様に接続して電力変換回路を構成する。 (もっと読む)


【課題】電流回生ルートから電流還流ルートへの切替時におけるホールドコンデンサの電荷抜けを抑制して電流検出精度の向上を実現可能な誘導性負荷駆動装置を提供する。
【解決手段】第1のスイッチング素子と、第2のスイッチング素子と、還流回路と、逆起電流回生回路と、第2のスイッチング素子とアースとの間に介挿されたシャント抵抗とを備えた誘導性負荷駆動回路から誘導性負荷に供給される駆動電流を検出する誘導性負荷駆動装置であって、シャント抵抗の両端に接続された差動増幅器と、第1及び第2のスイッチング素子を制御するプロセッサと差動増幅器の出力端子とを結ぶ配線に介挿されたサンプルスイッチと、プロセッサから第2のスイッチング素子に出力される制御信号がオンレベルに遷移してから所定の遅延時間の経過後にサンプルスイッチをオンにさせる遅延回路とを備える。 (もっと読む)


【課題】トランスの補助巻線を用いることなく、制御回路の電源を確保して安価にできるドライブ回路を提供する。
【解決手段】ノーマリオン型のハイサイドスイッチQ1とノーマリオフ型のローサイドスイッチQ2との直列回路が直流電源に並列に接続され、ハイサイドスイッチとローサイドスイッチとをオンオフドライブするドライブ回路であって、ハイサイドスイッチとローサイドスイッチとを制御信号によりオンオフさせる制御回路10と、ハイサイドスイッチとローサイドスイッチとの接続点に一端が接続された整流手段D2と、整流手段の他端と直流電源の一端とに接続され且つ制御回路に電源を供給するコンデンサC2と、制御回路からの制御信号とコンデンサからの電圧とに基づいてハイサイドスイッチとローサイドスイッチとをオンオフドライブするドライブ部A1,AND1,Q3,Q4とを備える。 (もっと読む)


【課題】PVT変動に応じて動作駆動力を変更することが可能な、プリエンファシス動作をサポートするデータ出力回路を備える半導体装置を提供する。
【解決手段】インピーダンスコードPCODE<0:2>,NCODE<0:2>の変動に応じて値が調節されるプリエンファシスコードEM_PCODE<0:1>,EM_NCODE<0:1>を生成するコード生成部360と、出力データP_DATA,N_DATAを受信してデータ出力パッドDQに駆動し、インピーダンスコードに応じて駆動力が調節されるメイン駆動部311〜313,321〜323と、出力データを受信してデータ出力パッドに駆動し、プリエンファシスコードに応じて駆動力が調節される補助駆動部314〜315,324〜325とを備える。 (もっと読む)


【課題】電力変換回路において、ノーマリオン型トランジスタを利用したスイッチング素子への貫通電流を抑制する。
【解決手段】本発明による電力変換回路は、相互に直列接続されハーフブリッジ回路を構成するハイサイドトランジスタ11及びローサイドトランジスタ12と、ハイサイドトランジスタ11及びローサイドトランジスタ12のゲートを相補に駆動する2つの駆動回路21、22とを具備する。ハイサイドトランジスタ11はノーマリオフ型トランジスタであり、ローサイドトランジスタ12は、ノーマリオン型トランジスタである。 (もっと読む)


【課題】電力制御回路、それを含む半導体装置及び該電力制御回路の動作方法を提供する。
【解決手段】本発明の電力制御回路は、電源電圧とロジック回路との間に連結されてロジック回路への電源供給をスイッチングする回路であって、外部から並列的にモード転換信号を受信する複数の第1パワーゲーティングセルと、第1パワーゲーティングセルのうちの何れか1つと連結される少なくとも1つの第2パワーゲーティングセルと、第2パワーゲーティングセルと直列連結される複数の第3パワーゲーティングセルと、直列連結された複数の第3パワーゲーティングセルのうち、先端の第3パワーゲーティングセルと並列連結される複数の第4パワーゲーティングセルとを含み、モード転換信号は、第1パワーゲーティングセルのうちの何れか1つ、第2及び第3パワーゲーティングセルを経て第4パワーゲーティングセルに伝達され、第1ないし第4パワーゲーティングセルのそれぞれは、各自のセルに入力されるモード転換信号に応答して電源供給をスイッチングする。 (もっと読む)


【課題】安定して動作することが可能なパルス信号出力回路及びそれを含むシフトレジスタを提供する。
【解決手段】酸化物半導体を用いたトランジスタを複数用いて、パルス信号出力回路を構成する。また、パルス信号出力回路の動作に応じて、酸化物半導体を用いたトランジスタのしきい値電圧を変動させる。また、該パルス信号出力回路を含むシフトレジスタを構成する。これにより、安定して動作することが可能なパルス信号出力回路及びそれを含むシフトレジスタを提供することができる。 (もっと読む)


【課題】P型電界効果トランジスタとN型電界効果トランジスタとが同時にオン状態になる期間内で発生する短絡電流に起因する消費電力の増大を抑制するともに、パワー素子を高速スイッチングさせることが可能なゲート駆動回路を提供する。
【解決手段】このゲート駆動回路11は、PchFET12と、NchFET13と、駆動信号が入力される入力側とPchFET12のゲート(G)およびNchFET13との間に設けられ、電源電位VCCに接続されているツェナーダイオード14およびツェナーダイオード15とを備え、ツェナーダイオード14および15は、PchFET12およびNchFET13のゲート(G)に印加される電圧を、PchFET12およびNchFET13のゲート(G)の閾値電圧側にシフトさせるように構成されている。 (もっと読む)


【課題】出力信号を高速に変化させかつオーバーシュートやアンダーシュートを抑制できるようにする。
【解決手段】入力信号を反転して出力する主ドライバ11に加えて、補助ドライバ12を設け、入力信号の電圧変化に応じて出力信号が第1の電圧レベルから第2の電圧レベルへ変化するときに、変化開始から主ドライバの出力信号がある電圧レベルを超えるまでの期間では信号変化を補助するように制御部15により補助ドライバの動作を制御し、主ドライバの出力信号がある電圧レベルを超えてから第2の電圧レベルになるまでの期間に信号変化を抑制するように制御部により補助ドライバの動作を制御するようにして、出力信号における信号変化の高速性を向上させ、かつオーバーシュートやアンダーシュートを抑制できるようにする。 (もっと読む)


【課題】本発明は、出力駆動回路及びトランジスタ出力回路を提供する。
【解決手段】第1のスイッチ113のオン動作によって駆動され、出力トランジスタのゲートに高電圧電源を供給する第1のトランジスタ111を含む第1の駆動回路部110と、第1のスイッチ113と相補的に動作する第2のスイッチ133のオン動作によって生成されたワンショットパルスによって駆動され、出力トランジスタのゲート−ソースのキャパシタンスを放電させる第2のトランジスタ131を含む第2の駆動回路部130と、第1の駆動回路部110と並列されるように高電圧電源端と出力トランジスタのゲートとの間に配置され、第2のスイッチ133のオン動作によって放電した出力トランジスタのゲート電位を保持させる出力駆動電圧クランピング部150とを含む。 (もっと読む)


【課題】動作を不安定にすることなく、各トランジスタの特性劣化を抑制することが可能
な半導体装置を提供することを課題とする。
【解決手段】非選択期間において、トランジスタが一定時間毎にオンすることで、シフト
レジスタ回路の出力端子に電源電位を供給する。そしてシフトレジスタ回路の出力端子は
、該トランジスタを介して電源電位が供給される。該トランジスタは非選択期間において
常時オンしていないので、該トランジスタのしきい値電位のシフトは、抑制される。また
、シフトレジスタ回路の出力端子は、該トランジスタを介して一定期間毎に電源電位が供
給される。そのため、シフトレジスタ回路は、ノイズが出力端子に発生することを抑制で
きる。 (もっと読む)


【課題】パワーデバイスの誤動作を防ぐ。
【解決手段】直列に接続された2つのパワーデバイスのうち高電位側のパワーデバイスを駆動制御する半導体装置であって、高電位側のパワーデバイスの導通を示す第1状態及び高電位側のパワーデバイスの非導通を示す第2状態を有する入力信号の第1,第2状態へのレベル遷移に対応して、それぞれ第1,第2のパルス信号を発生させるパルス発生回路と、第1,第2のパルス信号を高電位側へレベルシフトして、それぞれ第1,第2のレベルシフト済みパルス信号を得るレベルシフト回路と、第1,第2のレベルシフト済みパルス信号を少なくとも第1,第2のパルス信号のパルス幅分遅延させて、それぞれ第1,第2の遅延済みパルス信号を得る遅延回路と、第1の遅延済みパルス信号をセット入力から入力し、第2の遅延済みパルス信号をリセット入力から入力するSR型フリップフロップとを備える。 (もっと読む)


【課題】ノイズを低減することができるインターフェース回路を提供することを課題とする。
【解決手段】インターフェース回路は、電源電圧端子が第1の電源電圧ノードに接続され、入力信号を増幅する第1のバッファ(111)と、第2の電源電圧ノード及び前記第1のバッファの電源電圧端子間に接続されるスイッチ(124)と、前記第1のバッファの入力信号がローレベルからハイレベルに立ち上がると、遅延時間経過後に前記スイッチをオフからオンに切り換える第1の制御回路(127)とを有する。 (もっと読む)


【課題】半導体装置の制御に好適な制御信号発生回路を提供する。
【解決手段】ジョンソンカウンタ31は、フリップフロップFF1〜FF4およびゲート回路41〜44を含み、順次入力されるスタート信号ST1〜ST4に応答してそれぞれ制御信号C1〜C4を「H」レベルにした後、順次入力されるストップ信号SP1〜SP4に応答してそれぞれ制御信号C1〜C4を「L」レベルにする。したがって、多数のフリップフロップを用いることなく、所望の時間間隔で制御信号C1〜C4を順次「H」レベルにし、順次「L」レベルにすることができる。 (もっと読む)


【課題】InやZnなどを含む酸化物半導体をチャネル領域に用いたトランジスタを、P型トランジスタのように駆動できる半導体装置を提供する。
【解決手段】トランジスタとインバータを有し、インバータの出力はトランジスタのゲートに入力され、トランジスタのチャネル領域はIn、Zn若しくはSnを含む酸化物半導体膜を有し、インバータを構成するトランジスタのチャネル領域はシリコンを有し、インバータにハイ電圧を入力すると、インバータからロー電圧が出力されるとともにトランジスタのゲートにロー電圧が入力されてトランジスタはオフし、インバータにロー電圧を入力すると、インバータからハイ電圧が出力されるとともにトランジスタのゲートにハイ電圧が入力されてトランジスタはオンする半導体装置によって解決する。 (もっと読む)


【課題】半導体を用いた半導体装置として、論理回路がある。論理回路にはダイナミック論理回路とスタティック論理回路とがあり、トランジスタ等を用いて構成される。ダイナミック論理回路は情報を一定期間保持することができる。そのため、ダイナミック論理回路は、スタティック論理回路と比較して、トランジスタからのリーク電流が問題となる。
【解決手段】論理回路は、オフ電流が小さい第1のトランジスタと、ゲートが電気的に接続された第2のトランジスタと、を有し、第2のトランジスタのゲートのノードには第1のトランジスタを介して電荷が供給される。ノードに対して、第1及び第2の容量を介して電荷を供給する。電荷の状態に応じて、第2のトランジスタのオン、オフが制御される。第1のトランジスタは、チャネル形成領域に酸化物半導体を有する。 (もっと読む)


1 - 20 / 596