説明

Fターム[5J055FX12]の内容

電子的スイッチ (55,123) | 制御、帰還信号の発生 (8,841) | 信号を得る箇所 (1,721) | 制御端子 (1,433)

Fターム[5J055FX12]に分類される特許

1 - 20 / 1,433




【課題】 広帯域無線通信を行う送信機に用いられ、電源変換効率を向上させると共に、電圧レベル切替の遷移時間の影響を低減し、出力信号の歪特性を改善することができる電源回路を提供する。
【解決手段】 入力信号をプッシュプル増幅方式で増幅するプッシュプル増幅部と、制御信号によりプッシュプル増幅部に提供する電源電圧の電圧レベルを可変とする可変電源部と、入力信号に基づいて電源電圧の電圧レベルを制御する制御信号を出力するスイッチ制御部83′と、入力信号を特定の時間遅延させるタイミング制御部121を備え、スイッチ制御部83′が、制御信号の立ち上げの場合に、タイミング制御部121での遅延時間に対して電圧レベル切り替えの遷移時間に応じた早いタイミングで制御信号を立ち上げ、立ち下げの場合には遅延時間のタイミングで立ち下げる電源回路としている。 (もっと読む)


【課題】回路面積を低減させることのできる電圧生成回路を提供する。
【解決手段】一の実施の形態に係る電圧生成回路は、第1の電圧値の第1電圧を発生させる第1の昇圧回路と、第2の電圧値の第2電圧を発生させる複数の第2の昇圧回路を含む第2昇圧回路群とを有する。複数の第2の昇圧回路は、第1の状態から第2の状態に移行する際に互いに直列に接続され第1昇圧回路とともに第1電圧を発生可能に構成されている。 (もっと読む)


【課題】スイッチ回路の誤動作の発生を防止する。
【解決手段】一つの実施形態によれば、シリアル・パラレル変換回路は、第一の高電位側電源が供給され、シリアルデータ信号が入力され、パラレルデータ信号を生成する。電源回路は、第二の高電位側電源が供給され、第二の高電位側電源に基づいて第一の正電圧、第二の正電圧、及び負電圧を生成する。ドライブ回路は、第一の正電圧が電源として供給され、パラレルデータ信号が入力されるインバータと、第二の正電圧及び負電圧が電源として供給され、パラレルデータ信号及びインバータの出力信号が入力される差動型レベルシフタを含むレベルシフト回路が設けられ、第二の正電圧をハイレベルの信号としてスイッチ回路に出力し、負電圧をローレベルの信号としてスイッチ回路に出力する。 (もっと読む)


【課題】変調信号の大きさ及び応答速度を向上可能な駆動回路及び光送信装置を提供する。
【解決手段】差動信号の入力に応じて発光素子LDの駆動電流を増減する駆動回路3である。差動信号の正相信号Vinpが入力される端子と、差動信号の逆相信号Vinnが入力される端子と、発光素子LDのアノードに接続されている端子と、正相信号Vinpが入力される端子に接続されている正相信号処理回路と、逆相信号Vinnが入力される端子に接続されている逆相信号処理回路と、アノードが接続されている端子に接続されている第1及び第2の電圧制御電流源回路を備える。第1の電圧制御電流源回路には、正相信号Vinpに対応する電圧及び逆相信号Vinnの逆相に対応する電圧が入力され、第2の電圧制御電流源回路には、逆相信号Vinnに対応する電圧及び正相信号Vinpの逆相に対応する電圧が入力される。 (もっと読む)


【課題】従来の半導体集積回路のレギュレータ回路では、出力電圧の制御精度を十分に高めることができない問題があった。
【解決手段】本発明の半導体集積回路は、制御端子に与えられるインピーダンス制御信号で示される制御値PLに応じて負荷電流Iloadの大きさに対する出力電圧VDDMの大きさを制御する複数の出力トランジスタPMと、出力電圧VDDMの電圧値を示す出力電圧モニタ値VMを出力する電圧モニタ回路12と、出力電圧VDDMの目標値を示す参照電圧Vrefと、出力電圧モニタ値VMと、の間の誤差値の大きさに応じて制御値PLの大きさを制御し、当該制御値PLにより複数の出力トランジスタPMいずれを導通状態とするかを制御する制御回路10と、を有し、制御回路10が負荷電流Iloadの変更を事前に通知する事前通知信号PACCに応じて、誤差値に対する制御値の変化ステップを一定期間の間大きくする。 (もっと読む)


【課題】スイッチング素子を誤動作させずに高速低損失動作が可能なゲート駆動回路を部品点数の少ない簡易な回路を提供する。
【解決手段】ローサイドゲート駆動回路2から正極性の電圧が出力されるとハイサイドゲート駆動回路1は0Vを維持または負極性の電圧を出力し、ローサイドゲート駆動回路2からの出力が0Vまたは負極性の電圧を出力する時はハイサイドゲート駆動回路1から正極性の電圧が出力されるように制御を行なう。ハイサイドスイッチング素子5のゲート・ソース間にNchノーマリーオン型補助スイッチング素子13のドレイン・ソースを接続し、トランス15の1次側をゲート駆動回路1の出力に接続し、2次側をNchノーマリーオン型スイッチング素子13のゲート・ソース間に接続し、ローサイドスイッチング素子6側もトランス及びNchノーマリーオン型スイッチング素子をハイサイドと同様に接続して電力変換回路を構成する。 (もっと読む)


【課題】電源ユニットの出力ラインにおける地絡などの故障に対し、電源の保護及び故障の検知を行う。
【解決手段】サブ電源供給ラインLSに、サブ電源101側をソースとして第1MOSFET102を直列に接続し、第1MOSFET102のドレインにドレインを接続させて第2MOSFET103を直列に接続する。制御ユニット200内のサブ電源供給ラインLSにも、サブ電源101側をソースとして第3MOSFET202を直列に接続し、第3MOSFET202のドレインにドレインを接続させて第4MOSFET203を直列に接続し、第1〜第4MOSFETを制御することで、サブ電源101の電力を負荷201に対して供給する。各MOSFETのドレイン電圧、及び、第2MOSFET103と第3MOSFET202との間の電圧をモニタし、MOSFETの故障及びサブ電源供給ラインLSの故障を診断する。 (もっと読む)


【課題】電圧変動の少ない電源切り換えを確実に行うことができる電源切換装置を提供する。
【解決手段】第2電源が接続される第2電源接続部、第2電源の電圧よりも高い電圧の第1電源が接続される第1電源接続部、負荷回路が接続される電源出力部、定電圧回路の出力端子と電源出力部とを接続するダイオード、第1電源接続部とダイオードとの間に挿入され第1電源の電圧を第2電源の電圧よりもダイオードの順方向電圧降下分高い電圧まで降圧する定電圧回路、第2電源接続部と電源出力部との接続をオン/オフするMOSスイッチと、第1電源接続部から電源が供給され、第2電源接続部または電源出力部の電圧と定電圧回路の出力電圧とを比較し、定電圧回路の出力電圧が第2電源接続部または電源出力部の電圧よりも高いとき、第1電源の電圧をMOSスイッチに導通することによってMOSスイッチをオフする比較回路と、を備える。 (もっと読む)


【課題】高周波信号の振幅に対する歪みを低減しつつ、スイッチングを実現することが可能なスイッチを提供する。
【解決手段】高周波信号が入力される入力端子と、高周波信号が出力される第1出力端子との間に接続され、入力される高周波信号を第1出力端子から選択的に出力させる第1スイッチング部と、入力端子と、入力された高周波信号が出力される第2出力端子との間に接続され、入力端子に入力される高周波信号を第2出力端子から選択的に出力させる第2スイッチング部とを備え、第1スイッチング部、第2スイッチング部それぞれは、信号線上に設けられるインピーダンス変成器と、エミッタが接地され、コレクタが信号線に接続され、制御電圧に応じた電流がベースに印加されるバイポーラトランジスタと、コレクタが接地され、エミッタが信号線に接続され、制御電圧に応じた電流がベースに印加されるバイポーラトランジスタとを備えるスイッチが提供される。 (もっと読む)


【課題】大型化することなく、アーム短絡および損失増大の問題を解消したスイッチング電源装置を構成する。
【解決手段】ローサイドスイッチング制御部81は、ローサイドスイッチング素子(Q1)へ駆動電圧信号を出力している期間にトランスの巻線電圧の極性反転を検出したときに、遅延時間(td1)の後にローサイドスイッチング素子(Q1)をターンオフさせるローサイドターンオフ回路を備え、ハイサイドスイッチング制御部61は、トランスの巻線電圧の極性が反転してからハイサイドスイッチング素子(Q2)をターンオンさせるまでの時間(td2)を遅延させる。そして、ローサイドターンオフ遅延回路の遅延時間(td1)はハイサイドターンオン遅延回路の遅延時間(td2)よりも短く設定されている。 (もっと読む)


【課題】簡略化された回路構成でノイズ低減効果を持つ多相駆動型の昇圧回路を実現する。
【解決手段】昇圧回路は、所定周期のクロック信号を出力する発振回路と、前記クロック信号の1本の配線に直列接続され、トータル遅延時間が前記所定周期よりも長い複数の遅延回路と、前記複数の遅延回路に対応して前記1本の配線に接続された複数の分割昇圧回路と、を含む。 (もっと読む)


【課題】互いにオンオフ状態が反転するように制御すべき2つのスイッチング素子の特性に応じて容易にデッドタイムを調整可能なスイッチ制御装置を提供する。
【解決手段】互いにオンオフ状態が反転するように制御する第1及び第2のスイッチング素子を備えるスイッチ制御装置であって、前記第1及び第2のスイッチング素子の内、一方のスイッチング素子に出力する制御信号をオフレベルに切替えた時点から、コンデンサの容量で設定される設定期間後に他方のスイッチング素子に出力する制御信号をオンレベルに切替える信号を出力する制御信号生成回路を備える。 (もっと読む)


【課題】低濃度ドープのPMOSトランジスタを用いて、高電圧ストレスに耐える電圧スイッチ回路を提供する。
【解決手段】該電圧スイッチ回路は、出力回路210、第1の電圧降下制御回路220、第2の電圧降下制御回路230、第3の電圧降下制御回路240、および入力回路250を備えている。また、高電圧源HVの電圧振幅は、基準電圧源Vrefの電圧振幅よりも高く、基準電圧源Vrefの電圧振幅は、論理電圧源VDDの電圧振幅よりも高い。 (もっと読む)


【課題】FETのゲートドライブ回路に正負の電源を必要とせず、簡単な受動素子のみの回路で、ゲート電位に正極/負極電位を印加しFETの高速スイッチングドライブを可能とする。
【解決手段】電流路が導通する電位を超える電位1を、電流路の一端を基準電位として、制御端に容量素子を介して断続的に印加されるべく構成され、電位1が印加されたとき、電位1が前記定電圧素子1に対して、電流路が導通に要す定電圧素子1の有する降伏電圧1を発生すべく、かつ電位1が定電圧素子2に対して順方向に、電位1が印加された後、電位1が低下されたとき、電位1により容量素子に充電された電位2が電流路の一端を基準電位とし定電圧素子2に対して、電位1と逆極性の、定電圧素子2の有する降伏電圧2を発生すべく、かつ電位2が定電圧素子1に対して順方向に、定電圧素子1と定電圧素子2の直列接続回路を、制御端と電流路の一端との間に介在させた。 (もっと読む)


【課題】安定動作させながら、RFパルス信号の波形を高速に立ち下げることができるRFパルス信号生成用スイッチング回路を提供することにある。
【解決手段】ドレインスイッチング回路21は、n型からなる第1、第2、第3のFET211,212,213を備える。第1、第3のFET211,213のゲートには、制御パルスが印加され、ソースは接地されている。第1のFET211のドレインは、第2のFET212のゲートに接続し、第2のFET212のドレインには、駆動電圧Vdsが印加される。第2のFET212のソースと第3のFET213のドレインは接続され、接続点がパワーFET31のドレインに接続されている。第2のFET212のゲートソース間には、第2のFET212がオフ状態からオン状態へ遷移する際のゲート電圧を補償するための電荷を供給するコンデンサ215が接続されている。 (もっと読む)


【課題】アナログデータ出力にクロック信号が混入しないアナログマルチプレクサを提供する。
【解決手段】アナログマルチプレクサは、2つのアナログデータ信号D1,D2の非反転信号を入力とし、クロック信号CLKに応じて2つのアナログデータ信号D1,D2のうち何れか一方を選択的に出力する第1のセレクタ4と、2つのアナログデータ信号D1,D2の反転信号を入力とし、クロック信号CLKに応じて2つのアナログデータ信号D1,D2のうち何れか一方を選択的に出力する第2のセレクタ5と、第1のセレクタ4の出力信号と第2のセレクタ5の出力信号との差信号を出力する減算回路6とを備える。 (もっと読む)


【課題】簡単な回路構成により誤動作を防止できる半導体装置を得る。
【解決手段】パワー素子Q1とパワー素子Q2がトーテムポール接続されている。駆動回路1が入力信号INに応じてパワー素子Q2を駆動し、駆動回路2が入力信号/INに応じてパワー素子Q1を駆動する。駆動回路1は、電源に接続された高圧端子と、低圧端子とを有する。抵抗R1の一端がパワー素子Q2のエミッタに接続され、抵抗R1の他端が駆動回路1の低圧端子に接続されている。スイッチング素子Q3が駆動回路1の高圧端子と抵抗R1の一端との間に接続されている。スイッチング素子Q3は入力信号INに応じてオン・オフする。入力信号INがオフ信号の場合に、駆動回路1は低圧端子の電圧VGNDをパワー素子Q2のゲートに供給してパワー素子Q2はオフする。入力信号INがオフ信号の場合に、スイッチング素子Q3はオンする。 (もっと読む)


【課題】設定に用いる端子数を減らすことができ、且つ回路規模の小型化を図りうるモード選択回路を提供する。
【解決手段】モード選択回路1には、通電経路5の電流状態に応じた定電流を複数の電流比較経路7に流す定電流生成回路9が設けられている。更に、複数の電流比較経路7に対してそれぞれ比較電流を流す定電流源40が設けられ、定電流源40によって複数の電流比較経路7に流される比較電流が互いに異なる電流値となるように構成されている。更に、電流比較部20は、それら複数の各比較電流と前記定電流とを比較したときの比較結果をモード判定部30に出力しており、モード判定部30はこのような比較結果を得ることで通電経路5の状態に応じたモードに設定している。 (もっと読む)


1 - 20 / 1,433