説明

Fターム[5J070AC06]の内容

レーダ方式及びその細部 (42,132) | 測定量 (6,664) | 速度 (1,297)

Fターム[5J070AC06]の下位に属するFターム

Fターム[5J070AC06]に分類される特許

1,221 - 1,238 / 1,238


本発明は自動車のためのレーダセンサに関し、このレーダセンサは送信装置及び受信装置を有する。本発明によれば、センサ特性は、自動車の走行動作中に送信パラメータ及び受信装置の受信パラメータが可変的であることにおいて適合される。 (もっと読む)


本発明は、信号に対する送信機および受信機を備えた2つ以上のセンサを有しており、そのうち1つのセンサは他のセンサのクロスエコー信号を受信可能である、2つ以上のセンサを有する装置に関する。ここで本発明によれば、各センサが他のセンサの反射信号をそれぞれ別個に分離された状態で相互の障害なく受信および評価できるようにするために、各センサは受信動作において送信信号と受信信号とのあいだの時間遅延により相互に時間的に分離される。
(もっと読む)


バックグラウンドノイズの強度によって第1のしきい値(TH1)を定め、ピーク(P1),(P2),(P3)の各裾野部分にピーク位置から所定の近傍周波数領域にしきい値(TH21),(TH22),(TH23)を設定し、各FFTビンでこれらのしきい値のうち値の高い方を最終的なしきい値として採用し、そのしきい値を超えるピークをターゲットピークと見なして検出する。これにより、ビート信号の周波数スペクトルに含まれている物標からの反射波に起因して生じるターゲットピークを確実に検出し、物標の探知精度を高める。
(もっと読む)


測定装置(10…)と少なくとも1つの物体(20)の間の距離を測定するための、および/または、測定装置と少なくとも1つの物体(20)の間の速度差分(v)を測定するための、自動車(1)用の測定装置に関する。測定装置は、信号部分(A(t)…)の2つのシーケンスと、各々が2つの一時的に変化する信号部分(Al…)を有する信号部分(A(t))の第1シーケンスおよび信号部分(B(t))の第2シーケンスとを包括する、送信信号を送信するための放出装置(35、55)を備える。信号部分(A(t)…)のシーケンスの2つの信号部分(A1…)の周波数は、それぞれ1差分周波数だけ異なり、信号部分(A(t))の第1シーケンスの差分周波数は、信号部分(B(t))の第2シーケンスの差分周波数と異なる。 (もっと読む)


所定方位幅に広がる探知用電波のビームを送信し、物標からの反射波を受信するとともにビームの中心方位を変化させて所定単位角度毎且つ所定距離毎の受信信号の強度分布を検出し、方位変化に対する受信信号強度分布を直角座標で表した時にビームの方位幅により定まる方位幅を底辺とする二等辺三角形で近似させたときの頂点方位を物標の中心方位として検知する。これにより、探知用電波のビーム幅より高い分解能で、または方位方向のサンプリング間隔より高い分解能で物標の方位を検知できるようにし、また受信信号強度のピーク位置が物標の中心からずれる問題を解消する。
(もっと読む)


本発明は、線形サブアンテナを含む十字アンテナ及びその一連の処理に関するものである。特に、本発明は、第1及び第2線形部を形成し、基本信号(Si´,Gj´)を生成するセンサ(21−2M,31−3N)を備え、第1及び第2線形部のそれぞれの中間点に接する、第1及び第2のそれぞれの接線方向ベクトル間の角度が、30°から150°の間の角度である第1(2)及び第2(3)線形サブアンテナと、結合信号(VSi,VGj)を形成するアンテナ処理装置(4,5)と、有用な結合信号(TSi,TGj)を生成する信号処理装置(6,7)と、有用な結合信号間の相関係数([Cij])を算出する装置(8)と、相関係数が閾値を超える場合に、検出信号([Rij])を生成する装置(8)とを有するアンテナ(1)に関するものである。本発明は、例えば、同等の性能レベルのためのいくつかのセンサを有するアンテナを得るために用いることができる。
(もっと読む)


物体(102)に関する位置情報を決定するための機器(200)であって、複数の受信エレメント(212、214、216、218)を含む、受信するための手段(210)と、受信エレメント(212、214、216、218)で受信された信号(106)を検出し、受信信号を表す出力信号を生成するための検出手段(230)と、各受信エレメント(210)ごとに、他の任意の受信エレメント(212、214、216、218)で受信される信号から生成される任意の出力信号とは別に、その受信エレメント(210)で受信される信号から生成される出力信号にプロセスを適用し、その結果、その受信エレメントで受信される信号(106)を表すパラメータのそれぞれの値を得るように動作可能な処理手段(260)とを含み、処理手段(260)はさらに、こうして得られたパラメータの値を比較し、その結果、物体に関する位置情報を取得するように動作可能な機器(200)。
(もっと読む)


本発明は、特に自動車(1)に連行される間隔センサ(5)と物体(5)との間の間隔測定を、電磁パルス(6)の送信及び物体により反射される信号(7)の受信、及び信号伝搬時間の検出により行う方法と、この方法の実施に適した装置に関し、物体(2)における反射後受信される信号(10)が量子化され、加算され、続いて平均値が形成され、方法の実施形態において、受信されるパルスが、変調信号(18)に重ねられる。 (もっと読む)


制御領域内のアイテムの位置を追跡する位置追跡システムは、位置判定の要求精度によって配置される複数のRFIDタグを備える。追跡されるアイテムを運搬するよう構成される車両は、複数のRFIDタグからRFID情報を獲得し、RFIDタグ情報をロケーション・オーソリティに伝送するよう構成される2つのRFIDインテロゲータを含む。2つのRFIDインテロゲータの間隔は、要求精度が生じるような、複数のRFIDタグの間隔に基づいて設定される。ロケーション・オーソリティは、複数のタグ毎の各々について記憶される座標情報にRFIDタグを単にマッピングして、車両と、よって、運搬されるアイテムとの位置を得ることができる。
(もっと読む)


プリクラッシュセンサシステムを用いて自動車自身の速度を求める、自動車自身の速度の測定装置を提案する。測定は、道路表面で反射される信号に基づき行われる。当該測定は、車輪のロック状態または空転状態または浮遊状態のような所定の動作状態が生じている場合にのみ行われる。
(もっと読む)


車両と衝突対象の間の相対速度を突き止める装置を提案する。この装置は車両自体内に配置されている。この装置はアクティブな周辺センサシステム(10)とコンタクトセンサシステム(11)を有している。この装置は周辺センサシステム(10)の第1の信号とコンタクトセンサシステム(11)の第2の信号に基づいて相対速度を求める。
(もっと読む)


【課題】 車両の姿勢角を検出するための専用のセンサを使用することなく車載レーダのビームの上下角を適切に制御し、コスト低減とレーダ性能の向上とを同時に達成する。
【解決手段】 画像認識装置16でカメラユニット15で撮像した画像から道路の左右白線を認識して撮像画像平面上の近似直線を求め、この近似直線の交点から車両のピッチ角を推定し、このピッチ角に基づいてレーダヘッド11の上下方向のアンテナ角度を可変するアクチュエータ12に対する制御指令値を算出する。そして、コントローラ13を介してアクチュエータ12を駆動し、レーダヘッド11の電磁波放射方向を道路面と平行に維持することで、ピッチ角を検出するための専用のセンサを使用することなく、コスト低減とレーダ性能の向上とを同時に達成する。 (もっと読む)


【課題】 自移動体の航路策定に対する影響の高い周辺移動体の識別を容易にする。
【解決手段】 レーダ装置10は、探知信号に基づいて周辺移動体の動作変化量を算出する動作変化量算出部24と、動作変化量の所定値に対する大小を判別する動作変化量判別部26と、を備える。出力部12は、探知結果に加えて、動作変化量判別部26による動作変化量の判別結果を出力する。 (もっと読む)


【課題】 不要波抑圧性能を向上させる。
【解決手段】 ドプラ数周期分の波形を模した非ゼロ区間及び全てゼロ値のゼロ区間を含む信号抽出ベクトル1及びこれを正負反転し半波長ずらした信号抽出ベクトル2を準備する。適宜シフトを与えつつ両者を個々に用いて受信データベクトルとの内積を求め、その結果を対応要素毎即ち同一シフト毎に加算する。 (もっと読む)


【課題】 基準エコーマップと観測エコーマップの基準原点がオフセット誤差を持つ場合でもエコー照合時の誤照合を少なくする。
【解決手段】 重心追尾手段1は、捜索レーダからの目標群の位置情報をもとに、目標群の重心推定位置と重心推定速度を求め、基準エコーマップ作成手段2は、目標群の位置情報をもとに基準エコーマップを作成する。エコーマップ補正手段3は、別レーダから得られた観測エコーマップと、重心推定速度と、基準エコーマップを入力し、観測エコーマップの位置補正を行い、相関手段4は基準エコーマップの基準エコーと観測エコーマップの観測エコーの対応付けを行う。 (もっと読む)


【課題】 ドップラシフト測定用の送信波の入射角および反射波の反射角が変化して測定ドップラシフト値ひいては、それから演算される速度値に影響を及ぼすことを防止し、常に高精度の速度測定を行う。
【解決手段】 超音波もしくは電波である送信波(4)を路面(5)に向けて照射し、反射波(6)のドップラ効果による周波数偏移を検出して、対地速度(V)を測定する速度計において、送信器(3)からの送信波(4)をオフセットパラボラ型の反射器(10)で反射させて路面(5)に当て、路面からの反射波(6)を別のオフセットパラボラ型反射器(12)で反射させて受信器(7)で受信する。 (もっと読む)


【課題】 IQバランスの悪化により、偽スペクトルが発生し、距離,相対速度演算時間が増大するのを防止する。
【解決手段】 送信電磁波を出力する送信手段と、送信電磁波が目標物体で反射されて戻ってきた受信電磁波をIQ位相検波する受信手段と、この受信手段の出力信号を、FFT処理する信号変換手段と、この信号変換手段で変換されたデータの中に周波数の絶対値が同じで正負の両方に振幅レベルのピーク値を持つ一対のスペクトルがあれば、振幅レベルのピーク値の大きい方が真のスペクトルであると判定し、判定された真のスペクトルの周波数を用いて、目標物体との距離,相対速度を演算する信号処理手段とを備えたものである。 (もっと読む)


【課題】 移動物と静止物を正確に認識できるFMCWレーダ装置及び記録媒体を提供すること。
【解決手段】 ステッフ゜200では、周波数シフト量の幅を決定する。ステッフ゜210では、周波数シフトを行う。ステッフ゜220では、評価値|Vp|を算出する。ステッフ゜230では、近傍和Sum2を算出する。ステッフ゜240では、スペクトル全体和Sum1を算出する。ステッフ゜270では、全てのスペクトル全体和Sum1の値を比較して、真の周波数シフト量TSnを決定する。ステッフ゜280では、真の周波数シフト量にて周波数シフトしたスペクトルに関し、スペクトルピークの近傍和Sum2が閾値Thp以下か否かを判定する。ステッフ゜290では、移動物予測フラグがセットされているか否かを判定する。ステッフ゜300では、近傍和Sum2が閾値Thp以下で且つ移動物予測フラグがセットされていないので、そのスペクトルピークは静止物のスペクトルピークであると判断する。 (もっと読む)


1,221 - 1,238 / 1,238