説明

国際特許分類[F01D17/00]の内容

国際特許分類[F01D17/00]の下位に属する分類

国際特許分類[F01D17/00]に分類される特許

151 - 160 / 224


【課題】排気側の蒸気圧力を一定に保ちながら、大きな発電電力が得られる発電装置を提供する。
【解決手段】発電機6が接続された容積式スチームエキスパンダ5の吸気側と排気側とを接続するバイパス流路20に開度調節可能なバイパス弁19を設け、容積式スチームエキスパンダ5の排気圧力Pdの予め設定した目標排気圧力に対する偏差を負方向に帰還した排気帰還演算値Cdを算出し、排気帰還演算値Cdが所定の設定値Cs以下の場合は、排気帰還演算値Cdが大きいほど発電機運転周波数設定手段10の設定値を高くし、且つ、バイパス弁19を全閉状態に保持し、排気帰還演算値Cdが設定値Cs以上の場合は、発電機運転周波数設定手段10の設定値を最大にし、且つ、排気帰還演算値Cdが高いほど吸気調整弁19の開度を大きくする。 (もっと読む)


【課題】タービンガバナの開度調節に伴う蒸気タービンの効率低下を防止する発電システムを提供することを目的とする。
【解決手段】固体燃料または液体燃料を燃焼させる火炉と、該火炉で発生した蒸気を用いてタービンを回転させることにより発電する蒸気タービンと、前記火炉と前記蒸気タービンとの間に設けられ、蒸気を過熱する過熱器と、前記火炉と前記過熱器とを接続する第一蒸気配管と、前記過熱器と前記蒸気タービンとを接続する第二蒸気配管と、前記第一蒸気配管に設けられた第一の弁と、前記第二蒸気配管に設けられたタービンガバナと、前記蒸気タービンの負荷に応じて前記第一の弁の開度を調節する制御手段と、を具備することを特徴とする。 (もっと読む)


【課題】タービン効率を向上させることによって、発電効率を容易に向上させることができる。
【解決手段】本発明の火力発電所は、化石燃料の燃焼に伴う熱を利用して給水を加熱して、主蒸気Aを発生させるボイラ1と、ボイラ1内に設置された再熱器41,42と、タービン2と、タービン2に連結された発電機13とを備えている。このうち、タービン2は、ボイラ1からの主蒸気Aが導かれる高圧タービン8と、高圧タービン8と一軸に結合され、再熱器41,42で発生した再熱蒸気E,Fが導かれる中圧タービン9と、高圧タービン8および中圧タービン9と一軸に結合され、中圧タービン9から排出された再熱蒸気E,Fが導かれる低圧タービン11とを備えている。発電機7は、高圧タービン8、中圧タービン9および低圧タービン11と一軸に結合され、2極を超える極数を持っている。 (もっと読む)


【課題】供給蒸気圧力を安定させると共に長寿命な、蒸気タービンを利用したプロセス蒸気の制御装置を得ること。
【解決手段】 蒸気発生源1と高圧ヘッダー5を蒸気供給管2で接続する。高圧ヘッダー5と並列に配置した複数の蒸気タービン3,4を分岐管10,11で接続する。分岐管10,11には、制御弁6,7と流量センサー8,9を取り付ける。蒸気タービン3,4の出口を低圧ヘッダー12と接続し、蒸気供給管2を連通する。
高圧ヘッダー5から蒸気タービン3,4へ供給される蒸気流量は、制御弁6,7でそれぞれ設定値となるように制御されるために、蒸気使用箇所へ供給される蒸気圧力が安定する。 (もっと読む)


【課題】供給蒸気圧力を安定させると共に長寿命な、蒸気タービンを利用したプロセス蒸気の制御装置を得ること。
【解決手段】 蒸気発生源1と高圧ヘッダー5を蒸気供給管2で接続する。高圧ヘッダー5と並列に配置した複数の蒸気タービン3,4を分岐管10,11で接続する。分岐管10,11には、制御弁6,7と流量センサー8,9を取り付ける。制御弁6,7はスプリットレンジ制御を行う。蒸気タービン3,4の出口を低圧ヘッダー12と接続し、蒸気供給管2を連通する。
高圧ヘッダー5から蒸気タービン3,4へ供給される蒸気流量は、制御弁6,7でそれぞれ設定値となるように制御されるために、蒸気使用箇所へ供給される蒸気圧力が安定する。 (もっと読む)


【課題】供給蒸気圧力を安定させると共に長寿命な、蒸気タービンを利用したプロセス蒸気の制御装置を得ること。
【解決手段】 蒸気発生源1と高圧ヘッダー5を蒸気供給管2で接続する。高圧ヘッダー5と並列に配置した複数の蒸気タービン3,4を分岐管10,11で接続する。分岐管10,11には、制御弁6,7と圧力センサー8,9を取り付ける。蒸気タービン3,4の出口を低圧ヘッダー12と接続し、蒸気供給管2を連通する。
高圧ヘッダー5から蒸気タービン3,4へ供給される蒸気圧力は、制御弁6,7で高低差ができるように制御されるために、蒸気使用箇所へ供給される蒸気圧力が安定する。 (もっと読む)


【課題】アイドリング運転中の高圧タービンの動作に影響を与えずに、新しいレベルのトルクを送達する必要があることを考慮して、知られているシステムの改善を探究すること。
【解決手段】航空機に搭載された装置に必要な電力を生成する。補助動力は高圧タービン(21)によって駆動されるシャフト(27)によって取り出され、アイドリング運転中に、低圧タービン(23)の効率は高圧タービンが必要な補助動力を送達するのに十分な速度で動作できるように低下される。 (もっと読む)


【課題】複数のタービンを備える発電プラントにおいて、最も発電効率が高くなるように各タービンの負荷配分を制御する運転最適化方法を提供する。
【解決手段】発電プラントにおける制約条件を満たしつつ、最も高い発電効率を得る最適化制御に際して、発電プラントのモデル式から最適解を得るためのステップを、リプシッツ最適化アルゴリズムを用いるステップと、そのステップで得られた初期解を用いて逐次2次計画法を用いるステップとの2段階のステップを設け、初期解に依存して発生する局所的最適解による運転を防止する。 (もっと読む)


【課題】燃料ガスの温度を制御するためのシステムおよび方法を提供する。
【解決手段】タービン340の排気は導管342から排熱回収ボイラ344に接続している。弁392は、導管249および251への高圧給水流の相対流量を制御する。混合器380には、排熱回収ボイラ344からの中圧給水流が導管346を介して、排熱回収ボイラ344からの高圧給水流が導管390を介して、および冷水が導管382を介して導入される。混合器380の出力パラメーターは、測定装置396により測定され、測定装置396は弁392および弁384に制御信号を送って高圧給水流および冷水の流量を制御する。加湿燃料ガスと非加湿燃料ガスは、混合器326内で混合され、導管328を介して熱交換器330へ供給されて加熱された後、タービン340に導入される。燃料ガスの組成および温度を設定するための基準として修正ウォッベ指数を適用する。 (もっと読む)


【課題】ランキンサイクル動力回収装置において、蒸気熱量が変化しても、蒸気を無駄にせず、ランキンサイクル効率を略一定に保てるようにすることを目的としている。
【解決手段】複数の容積形膨張機5-1等と、各容積形膨張機用の複数の蒸気開閉弁15-1等と、蒸気発生器3により発生する蒸気の圧力を検出する蒸気圧力検出手段30と、前記容積形膨張機5-1等の運転台数を認識する認識手段と、前記容積形膨張機の運転台数を増減制御する制御装置31と、を備えている。前記蒸気圧力検出手段30により検出した蒸気圧力と、前記認識手段によって認識された膨張機運転台数に対応する設定圧力範囲とを比較し、前記検出蒸気圧力が前記適正蒸気圧力範囲の上限値を超えた場合は前記膨張機運転台数を増加させ、下限値を下回った場合は膨張機運転台数を減らすように制御する。 (もっと読む)


151 - 160 / 224