説明

国際特許分類[G01T1/167]の内容

物理学 (1,541,580) | 測定;試験 (294,940) | 原子核放射線またはX線の測定 (7,738) | X線,ガンマ線,微粒子線または宇宙線の測定 (6,349) | 放射線強度の測定 (5,456) | 物体の放射能含有量,例.汚染,の測定 (290)

国際特許分類[G01T1/167]に分類される特許

61 - 70 / 290


【課題】設備費及び保守費を低減し、保守作業を簡便化できる放射性物質のモニタシステムを提供すること。
【解決手段】被検査ガス中の酸性ガスを除去する酸性ガス除去装置から流出するサンプルガスを冷却装置により冷却して、このサンプルガスに含まれている放射性ヨウ素を捕集すると共に上記冷却装置による冷却により析出するタール状物質をヨウ素捕集装置により除去し、上記ヨウ素捕集装置から流出する気体の水蒸気密度を水蒸気密度測定装置により測定し、上記水蒸気密度測定装置から流出する気体を試料水捕集装置により冷却して上記気体に含まれていたトリチウムを含む試料水を得る。 (もっと読む)


【課題】捕集した放射性物質から放出される放射線の検出効率を向上させると共に、検出器の汚染除去を容易に行なう。
【解決手段】シンチレータを含有し、放射性物質を含む混合物から放射性物質をろ過可能な放射線検出用フィルターであるろ紙31は、シンチレータから発するシンチレーション光を透過可能な材質からなる。放射線検出器10は、放射線検出用フィルターであるろ紙31と、ろ紙ホルダ32からなるフィルター部20と、ろ紙31のシンチレータから発するシンチレーション光を検出する光検出器21とを備える。 (もっと読む)


【課題】放射線のバックグランド値の変動が生じる場合において放射能の測定精度を向上できるクリアランス放射線測定方法を提供する。
【解決手段】クリアランス対象物である、低圧タービンのローターの分割体1から放出される放射線を放射線検出器11で測定し、併せて、分割体1と放射線検出器10の間の距離を距離センサ11で測定する。放射線検出器10から出力された放射線検出信号及び距離センサ11で測定された距離を入力した演算装置12は、以下の処理を実行する。入力した距離に基づいてBGデータベース15からバックグラウンド補正データを求める(S2)。この補正データを用いて入力した放射線検出信号の計数率を補正する(S3)。S4で求めた、計数率を放射能強度に換算する換算係数、及び補正された計数率に基づいて、放射能強度を算出する。 (もっと読む)


【課題】ラドン含有岩石について当該岩石の単位面積当たりのラドンの放出量を測定することができるラドンフラックスの測定方法を提供する。
【解決手段】ラドンを含有する岩石10を、その表面積が測定できる形状である略直方体形状に加工して単位試料21を形成し、水が充填された気密容器30内に単位試料21を収納して水に浸し、単位試料21から水に放出されたラドンの放出量を測定し、その放出量を、単位試料21を測定して得た表面積で除することで、岩石10の単位面積当たりに放出される単位ラドン量を算出する。 (もっと読む)



Notice: Undefined index: from_cache in /mnt/www/gzt_ipc_list.php on line 285

【課題】欠測することなくIKPの点検を行うことを実現した放射線計測装置を提供する。
【解決手段】排気筒30内の放射線を計測するために、排気筒30内の排ガスを吸引する第1IKP50、第1IKP50が吸引した排ガスの一部を採取する第1サンプリング装置54及び第1サンプリング装置54によって採取された排ガスの放射線を検出する第1放射線検出器56を備えた第1放射線計測部と、第1放射線計測部と同様に、第2IKP60、第2サンプリング装置64及び第2放射線検出器66を備え、第1放射線計測部100a及び第2放射線計測部100bは、それぞれ独立して放射線の検出を行い、一方の放射線計測部のIKPを点検する場合には、他方の放射線計測部によって放射線の検出を行い、欠測が生じないようにする。 (もっと読む)


【課題】エネルギーが異なるカスケードγ線の同時計数を精度良く行うことができる放射線計測方法及び放射線計測装置を提供する。
【解決手段】カスケードγ線を検出した放射線検出器1Aから出力されたγ線検出信号が波高弁別器5A及び遅延回路6Aに入力される。波高弁別器5Aは、設定エネルギーよりエネルギーが大きいγ線検出信号を除去し、エネルギーが設定エネルギー以下のγ線検出信号(例えば、カスケードγ線の検出信号)をリニアゲート7Aに出力する。リニアゲート7Aは、波高弁別器5Aからγ線検出信号を入力したときに、遅延回路6Aからのγ線検出信号を加算増幅器8に出力する。放射線検出器1Bから出力されたγ線検出信号が、波高弁別器5B及びリニアゲート7Bで同様に処理され、加算増幅器8に入力される。多チャンネル波高分析装置10が加算増幅器8の出力でカスケードγ線の同時計数を行う。 (もっと読む)


【課題】放射線検出器に不要な負荷を与えない水中放射線測定装置を提供する。
【解決手段】測定装置10は、流動する放水Wの放射線量を測定する。測定装置10は、ケーブル1wを延出する放射線検出器1と長尺のガイド鋼管2を備える。ガイド鋼管2は、ケーブル1wで吊るされた状態で、放射線検出器1を内部に収容する。ガイド鋼管2は、上端面に設けられた開口2aと、下端面を水密可能に閉塞する底蓋2bを有する。ガイド鋼管2の開口2aが放水Wの水面より上に位置するように、ガイド鋼管2を放水Wの中に略鉛直に設置することにより、放射線検出器1を濡らすことなく、かつ、放射線検出器1に不要な負荷を与えないようにできる。 (もっと読む)


【課題】排気筒に設置するサンプリングノズルの長さを短くすることが可能で、サンプリングノズルの点検足場を小さくすることが可能な鉄塔支持型排気筒へのサンプリングノズル設置方法を提供する。
【解決手段】原子力発電プラントの鉄塔支持型排気筒1への排気筒放射線モニタ装置のサンプリングノズルの取付方法であって、サンプリングノズル3a、3bを鉄塔支持型排気筒1の左右両側から抜き出し可能に挿入し、該左右のサンプリングノズル3a、3bを鉄塔支持型排気筒1の中心を通る一直線上に配置する。左右のサンプリングノズル3a、3bは、鉄塔支持型排気筒1の外側で導管13a、13bを介してサンプリング配管に接続する。等速サンプリングノズル3a、3bの長さが従来の等速サンプリングノズルのほぼ半分となり、等速サンプリングノズル3a、3bの点検に必要な点検足場27も鉄塔支持型排気筒1を支持する鉄塔内に収めることができる。 (もっと読む)


【課題】源流点の排ガスの放射能濃度変化に対して指示が正確に追従し、試料ガスの圧力低下を抑制して測定対象の希ガスを高精度で測定できる放射性ガスモニタを提供する。
【解決手段】高い測定レンジを分担する検出部5の試料容器52は、試料ガスを導入する入口ノズル56と試料ガスを排出する排気ノズル57を有する容器底板54と、容器底板54に取り付けられて取り外し可能な容器キャップ55を具備する。容器キャップ55は、試料ガスから放出されるβ線を所望の割合に削減して放射線検出器51に入射させる取り外し可能なコリメータ58を具備する。コリメータ58は、試料ガスの流れを大きく妨げないように容器底板54に向かって突起状に配置されると共に、先端に入射窓59を有し、入射窓59と容器底板54との隙間で放射線検出器51から見た実効容積が、その実効容積とコリメータ58の内径で放射線検出器51の検出効率が決まるように構成する。 (もっと読む)


61 - 70 / 290