説明

国際特許分類[H01M4/36]の内容

電気 (1,674,590) | 基本的電気素子 (808,144) | 化学的エネルギーを電気的エネルギーに直接変換するための方法または手段,例.電池 (142,747) | 電極 (36,090) | 活物質からなるまたは活物質を含有した電極 (27,570) | 活物質,固形活物質,流体活物質の材料の選択 (12,097)

国際特許分類[H01M4/36]の下位に属する分類

国際特許分類[H01M4/36]に分類される特許

2,021 - 2,030 / 2,032


金属酸化物を含む種々の組成物、その組成物の1種以上を含むフィルムおよび電池、ならびにそれらを作製する方法。本発明は、金属酸化物を含む種々の複合材料、フィルム、および、1種以上の複合材料を含む電池、ならびに、これらの作製方法を提供する。一局面において、本発明は、第一ペプチドに配位させた金属酸化物を提供し、この第一ペプチドは、金属の還元形態に対する親和性を示す。本発明の特定の実施形態において、金属は、遷移金属(例えば、コバルト、バナジウム、ニッケル、マンガン、鉄、カドミウム、タングステン、クロム、ジルコニウム、チタン、スカンジウム、イットリウム、銅、カルシウム、アルミニウム、バリウム、ベリリウム、マグネシウムおよびストロンチウム)を含む。 (もっと読む)


本発明は、リチウム遷移金属酸化物のコア、および該コアの表面上に被覆された水酸化アルミニウム系沈殿物層を含んでなる、粉末状複合材料前駆物質、および該複合材料前駆物質の製造方法を提供する。該製造方法は、リチウム遷移金属酸化物粉末を水中に分散させることにより、水系スラリーを形成すること、およびアルミニウム塩と塩基塩の沈殿反応を行うこと含んでなり、その際、該リチウム遷移金属粒子が種粒子として作用し、それによって、厚さが一様な機械的に安定した沈殿物層が達成される。該複合材料前駆物質は、熱処理により、再充電可能なリチウムバッテリーのカソード活性材料に好適な、アルミニウムを含む、例えばアルミニウムドーピングされた、リチウム遷移金属酸化物に転化することができる。
(もっと読む)


化学式xLiMnO・(1−x)LiMn2−yで表されるリチウム金属酸化物の前駆体であって、0<x<1および0≦y<1であり、LiMnO成分およびLiMn2−y成分が、それぞれ、層状およびスピネル型の構造を有し、Mが1以上の金属カチオンである前駆体を備えた非水電荷質電気化学セル用の活性電極を開示する。電極は、酸化リチウム、または、リチウムおよび酸化リチウムを前駆体から除去することにより活性化する。開示した陽極を備えたセルおよび電池も開示する。
(もっと読む)


【課題】多成分系酸化物コート層を有する電極活性物質及びその製造方法を提供する。
【解決手段】(a)リチウムが吸蔵・放出可能な電極活性物質粒子と、(b)前記粒子表面の一部または全部に形成され、アルミニウム、リン及びハロゲン元素を含む多成分系酸化物コート層と、を有する電極活性物質及びその製造方法、この電極活性物質を含む電極、この電極を有する電気化学素子、好ましくは、リチウム二次電池。これにより、構造的な安定性及び熱的安全性が向上した多成分系酸化物コート層を有する電極活性物質が得られ、その結果、高容量、長寿命及び安全性が確保可能な電気化学素子を提供することができる。
(もっと読む)


本発明は、陰極材料及びその製法、及び、この材料を備える陰極及びリチウムイオン電池に関する。この材料は、Al、Si、Sn、Sb又は組合せを主成分とした材料Mからなる活性相と材料Xからなる支持相とを備える陰極材料であり、Oは酸素、Yは酸化度m=3、4、5又は6を有するカチオン、Xは酸化度d=1、2、3、4又は5を有するカチオンでXの電気的中性を保証するもので、cは2≦c≦10で、bは1≦b≦4、a=(2c−bm)/dである。活性相及び支持相の間に混合組成物の接触部があり、接触部は元素M、X、Y及びOからなる。XはBPOでもよい。製法は、X及びYの酸化混合物を第1熱処理してXYOを得て、材料を冷却粉砕し、粉砕材料をMと混合して、得られた材料を第2熱処理して本発明の材料を得て、この材料を冷却する。 (もっと読む)


本発明は、微結晶から構成され、以下の製造方法により得られた少なくとも一種のリチウム層間化合物を含んでなるリチウム電池に関する。上記製造方法は、少なくとも以下の工程を含んでなる:前記リチウム層間化合物の少なくとも一種の前駆体と、微結晶に対して化学的に安定であり且つ微結晶又は微結晶前駆体の形成中に微結晶又は微結晶前駆体の成長を制限するように構成された一定の補助剤との均質混合物を形成する工程、微結晶の形態の前記リチウム層間化合物を合成するための前記均質混合物を熱処理し、それぞれ前記リチウム層間化合物と前記補助剤により形成された少なくとも2つの相を含んでなる複合材料を得る工程、前記複合材料を賦形して前記電極を得る工程。本発明は、さらに前記方法により得られた電極及びこのような電極を含んでなるリチウム電池に関する。 (もっと読む)


本発明は、再充電可能なリチウム電池の負極物質を提供する。これらの物質は、リチウム複合合金を含む。各リチウム複合合金は、コア−シェル構造を有し、1つ以上のリチウム合金顆粒をそのコアとして、炭素材料をそのシェルとして有する。上記リチウム合金顆粒の平均顆粒径は5μm〜40μmである。シェル層の平均厚さは5nm〜100nm(50Å〜1,000Å)である。上記リチウム複合合金の平均径は10μm〜50μmである。上記物質の製造方法は、以下の工程、すなわち、リチウム合金顆粒を有機系溶液中で、コーティング物質とともに攪拌する工程、固体生成物を上記有機系溶液中で、コーティング物質とともに乾燥させる工程、リチウム複合合金を有する負極物質を得るために、乾燥させた生成物をか焼する工程を含む。このようにして製造されるリチウム複合合金は、炭素材料のシェルでコーティングされたコアとしてのリチウム合金顆粒を有する。本発明の負極を有する再充電可能なリチウムイオン電池、又は本発明の方法によって製造される再充電可能なリチウムイオン電池は、優れた初期充放電効率、電池容量及びサイクル寿命を有する。
(もっと読む)


本発明は、スピネル構造を有する特定のリチウムマンガン−金属複合酸化物(A)、および層状構造を有する特定のリチウムニッケル−マンガン−コバルト複合酸化物(B)の混合物をカソード活性材料として含んでなる、耐用寿命が長く、室温および高温の両方で、高電流充電および放電を繰り返した後でも、優れた安全性を有する、非水性電解質系の高出力リチウム二次バッテリーを提供する。
(もっと読む)


【課題】電気化学セルのカソード材料として好適なものが望まれていた。
【解決手段】一般式LixMgyNiO2を有し、式のうち0.9<x<1.3、0.01<y<0.1、0.91<x+y<1.3である組成物は、電気化学セルにおいてカソード材料として使われ得る。一般式LixMgyNiO2を有し、式のうち0.9<x<1.3、0.01<y<0.1、0.9<x+y<1.3であるコア、及び一般式LiaCobO2を有し、式のうち0.7<a<1.3、0.9<b<1.2である上記コア上のコーティングを有する組成物も電気化学セルにおいて、カソード材料として使われ得る。 (もっと読む)


(a)炭素材と、(b)前記炭素材の表面の一部または全部に形成された金属及び准金属よりなる群から選ばれた1種以上の元素を含む炭化物コート層と、を備える負極活物質及びその製造方法、並びに、前記負極活物質から得られた負極及び前記負極を備える電気化学素子が開示されている。
本発明に係る金属、准金属の炭化物コート層を含む炭素材は、不活性雰囲気中での高温熱処理を通じて炭素材とその表面コート層間の界面結合力を強めてリチウムとの反応性が極力抑えられたコート層を形成することにより、電池の初期の充放電中にSEI膜の形成に必要となる負極の非可逆容量が最少化でき、その結果、高容量化、高効率化及び負極特性の大幅な向上を図ることができる。
(もっと読む)


2,021 - 2,030 / 2,032