説明

ガスシールド溶接用フラックス入りワイヤ

【課題】溶接作業性に優れたフラックス入り溶接ワイヤを提供する。
【解決手段】管状の鋼製外管2の内部に、螺旋状鋼線3が挿入されるとともにフラックス4が充填され、螺旋状鋼線3が鋼製外管2の内面2cと直接に接触されており、ワイヤの任意断面における螺旋状鋼線3の断面積合計が、鋼製外管2の内部の断面積の10〜40%であり、且つ螺旋状鋼線3のピッチが15〜50mmの範囲であるガスシールド溶接用フラックス入りワイヤを採用する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスシールド溶接用フラックス入りワイヤに関するものである。
【背景技術】
【0002】
フラックス入り溶接ワイヤには、特許文献1に記述されているように、種々の断面構造のものがあり、それぞれに特有の得失がある。即ち、複雑断面の構造を有する溶接ワイヤは、アーク安定性に優れるが、細径への加工が困難であり、更にワイヤ送給性も不十分である。一方、単純断面を有する溶接ワイヤは溶接時に外皮のみからアークが発生するため、外皮が早く溶融して充填フラックスの溶融が遅れる、いわゆる未溶融フラックスの突き出しが生じ、アークの安定性やスパッタ発生量など特に溶接作業性の面で問題を有している。
上述の課題を改善すべく、特許文献1や2に記載の発明では、複雑断面の溶接ワイヤを単純断面形状のワイヤ内部に挿入して製造される2重管構造を持つフラックス入り溶接ワイヤが提唱されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平5−293687号公報
【特許文献2】特開平7−284990号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1または特許文献2に記載された溶接ワイヤは、内管の断面形状が、ワイヤの長手方向に沿って一定である。このため、内管近傍のフラックスは、溶接時に早く溶融するが、内管から比較的離れたフラックスは溶融が遅れやすい。このため、所謂未溶融フラックスの突き出しが起こり、アークの安定性や溶接作業の面で十分に満足するものではない。
また、特許文献1の溶接ワイヤを製造する場合は、あらかじめ複雑断面のフラックス入りワイヤを製造する必要がある。また、特許文献2の溶接ワイヤを製造する場合は、あらかじめ複数本のフラックス入りワイヤを用意する必要がある。いずれの場合も、溶接ワイヤの製造工程が煩雑となるという問題があり、実用的ではない。
【0005】
そこで、本発明は、上述のような従来技術の問題点に鑑み、従来には無い全く新しい構造を有する、ガスシールド溶接用フラックス入りワイヤを提供することを目的とするものである。
【課題を解決するための手段】
【0006】
上記課題を解決するための本発明の要旨は、以下の通りである。
(1) 管状の鋼製外管の内部に、螺旋状鋼線が挿入されるとともにフラックスが充填され、前記螺旋状鋼線が前記鋼製外管の内面と直接に接触されており、ワイヤの任意断面における前記螺旋状鋼線の断面積合計が、前記鋼製外管の前記内部の断面積の10〜40%であり、且つ前記螺旋状鋼線のピッチが15〜50mmの範囲であるガスシールド溶接用フラックス入りワイヤ。
(2) 前記鋼製外管の合わせ目にスリット状の隙間が無いことを特徴とする、(1)に記載のガスシールド溶接用フラックス入りワイヤ。
【発明の効果】
【0007】
本発明のガスシールド溶接用フラックス入りワイヤを使用すれば、未溶融フラックスの突き出し問題は十分に改善され、溶接作業性は飛躍的に改善する。また、その製造工程も非常に簡便であり、産業上での利用価値はきわめて高いと言える。
【図面の簡単な説明】
【0008】
【図1】図1は、本発明の実施形態であるフラックス入り溶接ワイヤを示す図であって、(a)はフラックス入り溶接ワイヤの一例を示す断面模式図であり、(b)はフラックス入り溶接ワイヤの別の例を示す断面模式図である。
【図2】図2は、図1のA−A’線に対応する断面模式図である。
【図3】図3は、本発明の実施形態であるフラックス入り溶接ワイヤの製造工程を示す断面工程図である。
【図4】図4は、本発明の実施形態であるフラックス入り溶接ワイヤの製造工程を示す側面工程図である。
【発明を実施するための形態】
【0009】
以下、本発明の実施形態である溶接作業性に優れたフラックス入り溶接ワイヤについて、図面を参照して説明する。
本実施形態の溶接作業性に優れたフラックス入り溶接ワイヤ1(以下、「溶接ワイヤ」という)は、図1(a)に示すように、管状の鋼製外管2と、鋼製外管2に挿入された螺旋状鋼線3と、螺旋状鋼線3とともに鋼製鋼管2の内部に充填されたフラックス4と、から概略構成されている。
【0010】
鋼製外管2は、鋼帯を管状に成形させてなるものである。この鋼製外管2は、図1(a)に示すように合わせ目に隙間2aが設けられているものでもよく、図1(b)に示すように鋼製外管2の合わせ目に溶接部2bが設けられていてもよい。
【0011】
螺旋状鋼線3は、鋼製外管2の内部に挿入されている。螺旋状鋼線3は、溶接ワイヤ1の任意の断面において、鋼製外管2の内面2cに直接に接している。つまり、螺旋状鋼線3は、螺旋の進行方向に沿って、鋼製外管2の内面2cとほぼ連続的に接している。
また、フラックス4は、鋼製外管2の内部であって鋼製外管2の内面2c及び螺旋状鋼線3の隙間に充填されている。
【0012】
本発明は、フラックス入りワイヤの溶接作業性の向上を達成するために、螺旋状の鋼線を用いている。これにより未溶融フラックスの突き出しが十分に解消されてアーク安定化が飛躍的に向上する。以下にそのメカニズムを述べる。
【0013】
本発明は、鋼製外管2の内部に鋼材を挿入することで、鋼製外管2以外に内部のフラックス充填部分からもアークを発生させる点において、従来知見と同じである。しかしながら、従来知見においては、鋼製外管2を内部に折り込む手段を取っているので、溶接ワイヤ1の断面におけるアーク発生場所が一定となり、未溶融フラックスの改善は十分ではなかった。
【0014】
一方、本発明では、螺旋状の鋼線3を鋼製外管2の内部に有しており、これが鋼製外管2と直接に接しているので、螺旋状鋼線3からもアークが発生する。螺旋状鋼線3は溶接に伴って溶接ワイヤ1が消耗される際に、ワイヤ断面において円軌道を描いてフラックス4の充填部分を常に規則的に移動する。このため、未溶融フラックスの突き出しを効率よく解消し、アークの安定も従来に知られていた方法より格段に向上する。
【0015】
次に、本発明で規定した各項目について、その規定理由を述べる。
【0016】
まず、螺旋状鋼線3の断面積合計を規定した理由であるが、鋼製外管2の内部に形成される全断面積に対し、螺旋状鋼線3の断面積合計が10%未満では、アーク発生面積が少なすぎて、未溶融フラックスの突き出しを解消することができない。一方、螺旋状鋼線3の断面積合計が40%を超えると、螺旋状鋼線3の強度が高くなりすぎて、伸線中に鋼製外管2部分で断線を生じ、生産に支障をきたす。このため、螺旋状鋼線3の断面積合計は、鋼製外管2の内部断面積に対して10〜40%の範囲とした。
【0017】
次に、螺旋状鋼線3のピッチPに関してその規定理由を述べる。鋼製外管2の内部に挿入された螺旋状鋼線3のピッチPが15mm未満である場合は、螺旋状鋼線3が密になりすぎるため、溶接ワイヤ1の曲げ剛性が高くなりすぎてワイヤ送給性が劣化し、溶接作業に支障をきたす。逆に、そのピッチPが50mmを超える場合は、溶接ワイヤ1の断面における螺旋状鋼線3の円周移動速度が遅すぎて、未溶融フラックスの突き出しを十分に抑制することができない。したがって、螺旋状鋼線3のピッチPは15〜50mmと規定した。なお、ここでピッチPと称しているのは、図2に示すように、ワイヤ軸方向に螺旋が一周して進む長さのことである。また、螺旋状鋼線3のピッチPは、螺旋状鋼線3の長手方向に渡って一定であることが、アークの安定化の点で好ましい。
【0018】
また、本発明は、鋼製外管2の合わせ目に溶接部2bを設けることで、大気浸入の危険性のあるスリット状の合わせ目(隙間)をなくすことが好ましい。大気浸入の危険性のあるスリット状の合わせ目は、例えば、鋼製外管の合わせ目を溶接することで容易に無くすことができる。このような大気浸入の危険性のあるスリット状の合わせ目を溶接することで、大気中の水蒸気に起因するフラックス4の吸湿を抑制することが可能となり、好ましい。溶接ワイヤ1中の水分は、溶接時の拡散性水素量を増加させて遅れ割れの原因となる。従って溶接部2bを設けることは、遅れ割れが懸念される場合に好ましい態様になる。
更に、合わせ目に溶接部2bを設けてスリットの隙間を無くすことで、鋼製外管2の外面2dに銅めっきを施すことができ、送給性、直進性、更には耐錆性の向上が可能になる。
【0019】
次に、本発明の溶接ワイヤ内に挿入されるフラックス4や合金元素に関して述べる。本発明で得られるアーク安定性向上やスパッタ発生量の減少は、既存フラックス系の全て、具体的にはTiOを主成分とするルチル系、CaFやBaF等の弗化物を主成分とする弗化物系、鉄粉やその他の金属粉を主成分とするメタル系等のフラックスに有効であり、フラックス4の種類を適宜選択して使用することができる。また、C、Si、Mn、Cu、Ni、Cr、Mo、V、Al、Ti、Mg、B等やその他の合金元素も適宜選択してワイヤ内に添加することが可能である。
【0020】
また、溶接ワイヤ1の外径に特に制限はないが、例えばガスシールドアーク溶接用としては使用特性面から2mm以下の細径が好ましい。また、鋼製外管2及び螺旋状鋼線3の成分も特に限定されず、用途に応じて適宜選択できる。
【0021】
次に、本実施形態の溶接ワイヤの製造方法について、図3及び4を参照して説明する。
先ず、図3(a)及び図4(a)に示すように、鋼製外管2の鋼製材料として、鋼帯2eを用意する。次に、図3(b)及び図4(b)に示すように、鋼帯2eの幅方向両端部を曲げて溝状に成形することで、側壁部2fと底壁部2gとを設ける。次に、図3(c)及び図4(c)に示すように、鋼帯2eの底壁部2gに、螺旋状鋼線3を設置する。
【0022】
次に、図3(d)及び図4(d)に示すように、鋼帯2eの底壁部2gに、フラックス4の粉末を充填する。次に、図3(e)及び図4(e)に示すように、鋼帯2eの側壁部2f同士を突き合わせるように丸めて、鋼帯2eを管状に成形する。この時点では、丸めた鋼帯2eの内部には空隙部Sが存在している。側壁部2f同士を突き合わせた後の合わせ目は、溶接して接合してもよいし、溶接しなくてもよい。
【0023】
次に、図3(f)及び図4(f)に示すように、伸線加工を行い、鋼帯2eを縮径させ、鋼製外管2とする。伸線加工によって、鋼製外管2の内面と螺旋状鋼線3とが直接に接するようになる。また、伸線加工によって空隙部Sが潰され、フラックス4は鋼製外管2の内面と螺旋状鋼線3との隙間に充填された状態になる。このようにして、本実施形態の溶接ワイヤ1が製造される。
【0024】
本実施形態の溶接ワイヤ1によれば、螺旋状の鋼線(螺旋状鋼線3)が、鋼製外管2の内部に配置され、螺旋状鋼線3が鋼製外管2と直接に接しているので、溶接時には螺旋状鋼線3からもアークが発生する。螺旋状鋼線3は、溶接に伴って溶接ワイヤ1が消耗される際に、ワイヤ断面において円軌道を描いてフラックス4の充填部分を常に規則的に移動する。このため、未溶融フラックスの突き出しを効率よく解消することができ、また、アークの安定性も向上できる。
【実施例】
【0025】
次に、実施例を用いて本発明の効果を検証していく。まず、溶接ワイヤの製造方法であるが、表1の成分組成を有する鋼帯(鋼製外管(フープ材))と螺旋状鋼線を用いて、図3及び図4に示すごとく、フープ材をU型にロール成形し(図3(b)、図4(b))、この段階で螺旋状鋼線を上部から挿入した(図3(c)、図4(c))。次に、表2または表3の成分組成を有するフラックスを、フープ材の上部の開口部分から充填し(図3(d)、図4(d))、この後にO型へと成形した(図3(e)、図4(e))。O型成形が完了した後に鋼製外管の合わせ目部分を溶接するものと、そうでないものを両方作成し、これらを縮径、伸線工程を経て直径φ1.2mmの溶接ワイヤを製造した(図3(f)、図4(f))。
【0026】
上記の製造方法で製造した直径φ1.2mmの溶接ワイヤを用いて溶接試験を行い、溶接作業性の向上を評価した。なお、溶接は、JIS G 3106で定めるSM400B鋼板に、ビードオンプレートで下向き溶接を行った。その溶接条件は、電流270A、電厚28V、溶接速度30cm/分とした。
【0027】
評価した項目は、(1)未溶融フラックスの突き出しが発生しているか否か、(2)ビード幅の安定性、(3)スパッタ発生量の3点である。
未溶融フラックスの突き出しは、高速度ビデオでワイヤ溶融現象を撮影し評価した。未溶融フラックスの突き出しは、突き出し長さが3mm以上を不合格、3mm未満を合格とした。ビード幅の安定性はビードの最大幅と最小幅の比率が95%以上であるものを合格とした。また、スパッタ発生量は、アークタイム1分間で発生するスパッタ粒を収集し、その質量を計測して、0.7g未満を合格、0.7g以上を不合格とした。
以上の評価結果をまとめて表4及び表5に示す。
【0028】
【表1】

【0029】
【表2】

【0030】
【表3】

【0031】
【表4】

【0032】
【表5】

【0033】
表4に示すように、実験番号1〜24については、未溶融フラックスの突き出しが少なく、スパッタ発生量も少なくなっている。
一方、表5に示すように、実験番号25、26は、螺旋状鋼線が挿入されず、未溶融フラックスの突き出し量が大きくなっている。
また、表5に示すように、実験番号27〜29及び33〜35は、螺旋状鋼線の断面面積比率が小さく、このためアークの発生面積が少なくなり、未溶融フラックスの突き出し量が大きくなっている。更に実験番号29及び35については、螺旋状鋼線のピッチが広すぎるため、溶接時の螺旋の円周移動速度が低下し、未溶融フラックスの突き出し量が大きくなった。
【0034】
また、表5に示すように、実験番号30〜32及び36〜38は、螺旋状鋼線の断面面積比率が大きく、このため螺旋状鋼線の強度が高すぎて、溶接ワイヤの製造時に断線が発生した。よって溶接実験が不可能になった。
【0035】
また、表5に示すように、実験番号39〜46は、螺旋状鋼線のピッチが小さすぎるため、螺旋状鋼線が密になりすぎて溶接ワイヤ自体の曲げ剛性が高まり、送給性が低下し、溶接実験が不可能になった。
また、表5に示すように、実験番号47〜54については、螺旋状鋼線のピッチが広すぎるため、溶接時の螺旋の円周移動速度が低下し、未溶融フラックスの突き出し量が大きくなった。
また、実験番号25から54において溶接実験が可能であったワイヤに関しては、全て未溶融フラックスの突き出し量が大きくなっているため、これが溶融池に接触する現象が確認された。このため溶融池が不安定となり、ビード幅の最大部と最小部の比が95%に満たない形状不良のビードが確認された。
【符号の説明】
【0036】
1…溶接ワイヤ、2…鋼製外管、2b…溶接部、2c…鋼製外管の内面、3…螺旋状鋼線、4…フラックス、P…螺旋状鋼線のピッチ。

【特許請求の範囲】
【請求項1】
管状の鋼製外管の内部に、螺旋状鋼線が挿入されるとともにフラックスが充填され、前記螺旋状鋼線が前記鋼製外管の内面と直接に接触されており、ワイヤの任意断面における前記螺旋状鋼線の断面積合計が、前記鋼製外管の前記内部の断面積の10〜40%であり、且つ前記螺旋状鋼線のピッチが15〜50mmの範囲であることを特徴とする、ガスシールド溶接用フラックス入りワイヤ。
【請求項2】
前記鋼製外管の合わせ目にスリット状の隙間が無いことを特徴とする、請求項1に記載のガスシールド溶接用フラックス入りワイヤ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−140052(P2011−140052A)
【公開日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2010−2847(P2010−2847)
【出願日】平成22年1月8日(2010.1.8)
【出願人】(000006655)新日本製鐵株式会社 (6,474)