説明

ガス絶縁母線用導体

【課題】導体の構成及び形状によって、短絡電流の電磁力による変位量と地震振動による共振を抑制して機械的強度を上げると共に、良好な絶縁性能及び通電性能を発揮することができ、これによりガス絶縁母線の長尺化と小径化に寄与するガス絶縁母線用導体を提供する。
【解決手段】導体41Aは、中実形状の中央部材41aと、パイプ形状の両端部材4b、4cからなり、中央部材41aを銅材から構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体に係り、特に、長尺化及び小径化に適したガス絶縁母線用導体に関するものである。
【背景技術】
【0002】
近年、電力設備間を接続する母線として、ガス絶縁母線が主流となっている。ガス絶縁母線は、絶縁ガスを封入した密閉金属容器内に通電用の導体を収納して構成されたものである。ガス絶縁母線の長さは電力設備の規模に比例し、電力設備の規模が大きくなれば、ガス絶縁母線も長尺化する。このとき、ガス絶縁母線の長尺化に伴って、金属容器は勿論のこと、そこに収納されるガス絶縁母線用導体も長くなる。
【0003】
ただし、電力設備同士を接続するほどの長さにわたって、金属容器及び導体を単体で形成することが不可能である。そこで、金属容器及び導体は、複数個に分割し、それらを連続して接続することによって、構成している(例えば、特許文献1参照)。なお、ガス絶縁母線に使用される金属容器は、基本的に、円筒形状の本体部からなり、その両端部に、隣接機器との接続用フランジを溶接一体化して形成している。
【0004】
また、導体は通常、中空のパイプ状部材からなり、支持絶縁物によってこれを金属容器内に支持している。さらに、ガス絶縁母線としては、従来、3相各相の単相型のガス絶縁母線が使用されていたが、最近では、ガス絶縁母線全体の設置スペースの縮小化を図るべく、3相の導体を同じ容器内に一括収納してなる3相一括型のガス絶縁母線が普及している。
【0005】
ここで、電力系統における同軸円筒構造のガス絶縁母線の従来例について、図15を参照して、具体的に説明する。すなわち、図15に示すように、接地電位の密閉された同軸円筒形の金属容器1の内部には、絶縁性媒体として絶縁ガス6が高圧充填されている。金属容器1の両端には絶縁スペーサ2a、2bが設けられ、これら絶縁スペーサ2a、2bには通電用の接触子3a、3bが設けられている。
【0006】
また、金属容器1内には通電用の導体4が配置されている。導体4はパイプ状部材から構成され、アルミニウムや銅など単一材料が用いられている。また、導体4の両端部にはスライドコンタクト5a、5bが設けられ、絶縁スペーサ2a、2bの接触子3a、3bと電気的に接続されている。なお、図中の符号Lは、導体4の支持スパンを示している。
【0007】
ところで、ガス絶縁母線用導体には、機械的強度・絶縁性能・通電性能が必要である。このうち、機械的強度に関しては、短絡時の短絡電流によって他相の導体との間に電磁力が働く際、この電磁力による変位によって、導体が破壊されないだけの強さ、さらには地震振動により共振しない強さが求められている。
【0008】
また、絶縁性能に関しては、導体表面が滑らかで高電圧の印加に耐えることは勿論のこと、電磁力などにより変位した状態でも絶縁性能を維持することが要求される。さらに、通電性能については、通電電流による発熱量及び温度上昇値が規定値以下であることが要請されている。
【特許文献1】特許第3564182号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、ガス絶縁母線の長尺化に応じて、従来のガス絶縁母線用導体を長尺化した場合、次のような問題点があった。すなわち、導体の長尺化によって、短絡時の短絡電流による電磁力が増えると、導体の機械的強度が足りずに破壊するおそれがある。さらに、導体長が長くなると、固有振動数が下がるので地震振動により共振し易くなるといった課題があった。
【0010】
また、導体の破壊にまで至らなくとも、電磁力により変位量が増えることで、導体が金属容器の内周部に接近して絶縁距離が減少する。これにより、導体の絶縁性能が不足する心配がある。特に、電磁力による変位量の増大は、ガス絶縁母線(より詳しくは金属容器)を小径化した場合に、絶縁距離の減少度合いが大きくなるため、導体の絶縁性能の確保が問題となっている。
【0011】
さらに、ガス絶縁母線の小径化を進めると、熱容量が小さくなるので、通電電流による発熱量が同じでも、温度上昇値は上がる。したがって、導体の通電性能が不足するという不具合があった。ガス絶縁母線の小径化は、電力設備のコンパクト化を実現する上で、重要な要素であるため、優れた絶縁性能及び通電性能を備えたガス絶縁母線用導体の開発が待たれていた。
【0012】
一般的に、導体の機械的強度を強くする場合、単に材料自体の強度が高いものを用いるのではなく、所定の通電性能を確保しなくてはならない。このため、導電率が良好なアルミ材又は銅材を用いて、導体の機械的強度を上げることが考えられる。ただし、銅はアルミより導電率及び通電性能は良い分、重く、且つ高価なので、これらの材料を導体全体に使用するとなると、組立作業性・経済性が低下するという問題点があった。
【0013】
本発明は、上記の問題点を解決するために提案されたものであり、導体の構成及び形状によって、短絡電流の電磁力による変位量と地震振動による共振を抑制して機械的強度を上げると共に、良好な絶縁性能及び通電性能を発揮することができ、これによりガス絶縁母線の長尺化と小径化に寄与するガス絶縁母線用導体を提供することを目的とする。
【課題を解決するための手段】
【0014】
上記目的を達成するために、本発明は、絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、一部分を中実部又は他の部分よりも肉厚の厚いパイプからなる高強度部とし、該他の部分をパイプとして、両者を接合したことを特徴としている。
【0015】
以上のような本発明では、導体の一部分に、中実部又は肉厚の厚いパイプから構成した高強度部を設けることにより、地震発生時の共振を防ぐと同時に、導体を全てパイプで構成した場合よりも、短絡時の短絡電流による電磁力に対する導体の機械的強度を強くすることができる。また、電磁力による導体の変位量も減るので、絶縁距離の確保が容易であり、高い絶縁性能を得ることができる。さらに、導体の断面積が増えるため、通電電流による発熱量は減り、熱容量の増加と合わせて温度上昇が小さくなる。したがって、優れた通電性能を獲得することが可能である。
【発明の効果】
【0016】
本発明のガス絶縁母線用導体によれば、導体の一部分に中実又は肉厚の厚いパイプからなる高強度部を設けることにより、短絡電流の電磁力による変位量と地震振動による共振を抑制して機械的強度を高めると共に、良好な絶縁性能及び通電性能を発揮することができ、ガス絶縁母線の長尺化と小径化に寄与することができた。
【発明を実施するための最良の形態】
【0017】
以下、本発明に係るガス絶縁母線用導体の実施形態について、図1〜図14を参照して具体的に説明する。なお、図15に示した従来例と同一部材に関しては同一符号を付して説明は省略する。
【0018】
(1)第1の実施形態
[構成]
図1に示すように、導体41Aは、中実形状の中央部材41aと、パイプ形状の両端部材4b、4cからなり、中央部材41aを銅材から構成した点に構成上の特徴がある。なお、中心部材41aと両端部材4b、4cは接合されている。
【0019】
[第1の実施形態の変形例の構成]
なお、第1の実施形態の変形例としては、中実部材を導体の中央部ではなく、両端部に設けることも可能である。すなわち、図2に示すように、導体41Bは、中実形状の両端部材41b、41cと、パイプ形状の中央部材4aからなり、両端部材41b、41cを銅材から構成した点に構成上の特徴がある。なお、中心部材4aと両端部材41b、41cは接合されている。
【0020】
[作用効果]
このように構成された第1の実施形態によれば、通電用の導体41A(又は導体41B)は、中央部材41a(又は両端部材41b、41c)を中実構成としたことで、固有振動数の低下を抑えることができ、地震時の共振を防ぐことができる。また、導体41A(又は導体41B)は、中実形状の中央部材41a(又は両端部材41b、41c)を有するので、導体41A(又は導体41B)を全てパイプで構成した場合に比べて、導体41A(又は導体41B)の機械的強度を強くすることができ、短絡時の短絡電流による電磁力による変位量を抑えることが可能である。
【0021】
また、機械的強度の上昇に伴い、電磁力による変位量が減ったことで、絶縁距離の確保が容易となり、たとえ金属容器1が小径化した場合でも、導体41A(又は導体41B)は優れた絶縁性能を維持することができる。さらに、中央部材41a(又は両端部材41b、41c)を中実とした分、導体41A(又は導体41B)の断面積は増えるので、通電電流による発熱量は減り、熱容量の増加と合わせて温度上昇が小さくなる。すなわち、導体41A(又は導体41B)は良好な通電性能を容易に得ることが可能となる。しかも、中央部材41a(又は両端部材41b、41c)だけを銅から構成したので、導体全体を銅から構成した場合に比べて経済的であると同時に、銅が良好な導電性を持つので、発熱・温度上昇を効率よく抑制することができる。
【0022】
このような第1の実施形態によれば、中実で銅製の中央部材41a(又は両端部材41b、41c)を備えたことで、機械的強度・絶縁性能・通電性能に優れた導体41A(又は導体41B)を得ることができ、導体41A(又は導体41B)の支持スパンL(図1に図示)を延ばすことができる。その結果、ガス絶縁母線の長尺化及び小径化に関して、確実に対応可能である。
【0023】
(2)第2の実施形態
[構成]
図3に示すように、導体42Aは、肉厚が厚いパイプ形状で、且つ銅材からなる中央部材42aと、パイプ形状の両端部材4b、4cとから構成され、中心部材4aと両端部材4b、4cは接合されている。
【0024】
[第2の実施形態の変形例の構成]
第2の実施形態の変形例として、肉厚のパイプ形状部材を導体の中央部ではなく、両端部に設けることも可能である。すなわち、図4に示すように、導体42A(又は導体42B)は、肉厚が厚いパイプ形状で、且つ銅材からなる中央部材42b、42cと、パイプ形状の中央部材4aからなり、両端部材42b、42cを銅材から構成した点に構成上の特徴がある。なお、中心部材4aと両端部材42b、42cは接合されている。
【0025】
[作用効果]
このように構成された第2の実施形態によれば、通電用の導体42A(又は導体42B)は、中央部材42a(又は両端部材42b、42c)のみを肉厚のパイプで構成することにより、固有振動数の低下を抑えることができ、地震時に共振する固有振動数にならず、高い機械的強度を確保することができる。と同時に、中央部材42a(又は両端部材42b、42c)よりも肉厚の薄いパイプで導体4全体を構成した場合に比べて、短絡時の短絡電流による電磁力に対する導体42A(又は導体42B)の機械的強度は強くなる。
【0026】
また、機械的強度が上がったことで電磁力による変位量も減るため、導体42A(又は導体42B)の絶縁性能が向上する。さらには、中央部材42a(又は両端部材42b、42c)が肉厚なので、導体42A(又は導体42B)の断面積が増えることになる。したがって、通電電流による発熱量が減って熱容量の増加と合わせて温度上昇は小さくなり、所望の通電性能を獲得できる。しかも、中央部材42a(又は両端部材42b、42c)だけを銅から構成したので、優れた経済性を確保しつつ、発熱・温度上昇を効率よく抑制することができる。
【0027】
このような第2の実施形態では、肉厚で銅製の中央部材42a(又は両端部材42b、42c)を備えたことにより、上記第1の実施形態と同じく、機械的強度・絶縁性能・通電性能に優れた長尺の導体42A(又は導体42B)を容易に得ることができ、長尺化及び小径化の進んだガス絶縁母線を獲得することが可能となる。
【0028】
(3)第3の実施形態
[構成]
図5に示すように、導体43Aは、中央部材43aと、パイプ形状の両端部材4b、4cから構成されており、中央部材43aの内部にステンレス材又は鉄材からなる中実の内蔵部材7が固定された点に特徴がある。なお、中心部材43aと両端部材4b、4cは接合されている。
【0029】
[第3の実施形態の変形例の構成]
第3の実施形態の変形例としては、内蔵部材7を導体の中央部に入れるのではなく、両端部に入れるようにしてもよい。すなわち、図6に示すように、導体43Bは、両端部材43b、43c側に前記内蔵部材7を入れて固定した点に特徴がある。なお、中心部材4aと両端部材43b、43cは接合されている。
【0030】
[作用効果]
以上のような第3の実施形態によれば、通電用の導体43A(又は導体43B)は、その中央部(又は両端部)の内部に、ステンレス材又は鉄材からなる中実の内蔵部材7を入れて固定するので、地震時に共振する固有振動数にならず、しかも、導体43A(又は導体43B)を全てパイプで構成した場合よりも、短絡電流の電磁力による変位量は少なくなり、機械的強度に優れた導体43A(又は導体43B)とすることができる。
【0031】
電磁力による変位量が少ないので、導体43A(又は導体43B)は、高い絶縁性能を得ることができる。さらには、内蔵部材7を備えた分だけ、導体43A(又は導体43B)の断面積が増えており、通電電流による発熱量が減って、熱容量の増加と合わせて温度上昇が小さくなるといった利点がある。
【0032】
このような第3の実施形態によれば、内蔵部材7が固定された中央部材43a(又は両端部材43b、43c)を備えたことで、上記第1及び第2の実施形態と同じく、機械的強度・絶縁性能・通電性能に優れた長尺の導体43A(又は導体43B)を容易に実現することができ、ガス絶縁母線の長尺化及び小径化に貢献することができる。また、内蔵部材7をステンレス材又は鉄材から構成しているため、銅材に比べて、軽量、安価で済み、組立作業性・経済性が格段に向上する。
【0033】
(4)第4の実施形態
[構成]
図7に示すように、導体44は、外径が大きく且つ銅製であるパイプ形状の中央部材44aと、パイプ形状の両端部材4b、4cから構成され、中心部材44aと両端部材4b、4cは接合されている。
【0034】
[作用効果]
このように構成された第4の実施形態によれば、通電用の導体44は、外径の大きいパイプ形状である中央部材44aを備えるといった極めて簡単な構成によって、上記第1〜第3の実施形態と同様の作用効果を獲得することができるので、経済的にも極めて有利である。
【0035】
(5)第5の実施形態
[構成]
図8に示すように、導体45は、中央部の外周に長尺パイプ8が設けられている点に特徴がある。長尺パイプ8の材料としては、ステンレス材、鉄材あるいはFRP材でもよく、また、不織布を含浸した構成であっても良い。
【0036】
[作用効果]
長尺パイプ8は、ステンレス材、鉄材あるいはFRP材、または、不織布を含浸したことで良好な機械的強度及び絶縁性能を有している。したがって、第5の実施形態では、導体45の中央部外周に、このように機械的強度及び絶縁性能に優れた長尺パイプ8を設けたことにより、短絡時の短絡電流による電磁力に対する導体の機械的強度は強くなり、導体の変位量も減るので絶縁性能も上がる。
【0037】
(6)第6の実施形態
[構成]
図9に示すように、導体46Aは、内径寸法が異なる複数の肉厚が厚いパイプからなる中央部材460aと、パイプ形状の両端部材4b、4cから構成されており、中心部材460aと両端部材4b、4cは接合されている。
【0038】
[第6の実施形態の変形例の構成]
第6の実施形態の変形例としては、肉厚のパイプは内径寸法が異なるのではなく、外径寸法が異なるように構成することも可能である。すなわち、図10に示すように、導体46Bは、外径寸法が異なる複数の肉厚が厚いパイプからなる中央部材461aと、パイプ形状の両端部材4b、4cから構成されている。なお、中央部材460a、461aは、肉厚のパイプ形状ではなく、中実形状としても良い。
【0039】
[作用効果]
このように構成された第6の実施形態によれば、上述した、機械的強度・絶縁性能・通電性能の向上といった作用効果に加えて、次のような独自の作用効果がある。すなわち、導体46A(又は46B)の中央部に、内径(又は外径)寸法が異なる複数の肉厚が厚いパイプを設けたことで、固有振動数にばらつきを持たせて、地震振動による共振をアンバランスにすることができる。これにより、共振しづらくなり、機械的強度がいっそう向上するといった作用効果を発揮することができる。
【0040】
(7)他の実施形態
本発明は、前期実施形態に限定されるものではなく、各部材の構成や形状、材質、配置箇所や配置数などは適宜変更可能であり、次のような実施形態も包含する。すなわち、図11に示すように外周部に数箇所(図11では4箇所)の凸部47aを設けた導体47や、図12に示すように内周部に数箇所(図12では8箇所)のリブ48aを有した導体48であってもよい。
【0041】
さらには、対向側と繋がったリブ49aを内周側に設けた導体49であってもよい(図13参照)。これらの実施形態によれば、凸部47aやリブ48a、49aを設けたことにより、地震時に共振する固有振動数になり難くなり、機械的強度は強くなって、変位量も減るので絶縁性能も上がり、断面積が増えるため、温度上昇を抑えて通電性能も良好となる。
【0042】
また、図14に示した導体40は,内側に芯材40aを設け、この芯材40aの外側に芯材40aよりも導電率の高い被覆材40bを被覆している。このように構成された実施形態によれば、芯材40aの外側に導電率の高い被覆材40bを設けたことで、導体を全て単一のパイプ形状部材で構成した場合よりも、通電電流による発熱量が減り、温度上昇が小さくなって、優れた通電性能を発揮することができる。
【図面の簡単な説明】
【0043】
【図1】本発明の第1の実施形態を示す断面図。
【図2】本発明の第1の実施形態の変形例の断面図。
【図3】本発明の第2の実施形態を示す断面図。
【図4】本発明の第2の実施形態の変形例を示す断面図。
【図5】本発明の第3の実施形態を示す断面図。
【図6】本発明の第3の実施形態の変形例を示す断面図。
【図7】本発明の第4の実施形態を示す断面図。
【図8】本発明の第5の実施形態を示す断面図。
【図9】本発明の第5の実施形態の変形例を示す断面図。
【図10】本発明の第6の実施形態を示す断面図。
【図11】本発明の他の実施形態を示す正面断面図。
【図12】本発明の他の実施形態を示す正面断面図。
【図13】本発明の他の実施形態を示す正面断面図。
【図14】本発明の他の実施形態を示す正面断面図。
【図15】従来のガス絶縁母線の一例を示す断面図。
【符号の説明】
【0044】
1…金属容器
2a、2b…絶縁スペーサ
3a、3b…接触子
4、40、41A、41B、42A、42B、43A、43B、44、45、46A、46B、47、48、49…導体
4a、41a、42a、43a、43a、44a、460a、461a…中央部材
4b、4c、41b、41c、42b、42c、43b、43c、41b、41c…両端部材
40a…芯材
40b…被覆材
47a…凸部
48a、49a…リブ
5a、5b…スライドコンタクト
6…絶縁ガス
7…内蔵部材
8…長尺パイプ


【特許請求の範囲】
【請求項1】
絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、
一部分を中実部又は他の部分よりも肉厚の厚いパイプからなる高強度部とし、該他の部分をパイプとして、両者を接合したことを特徴とするガス絶縁母線用導体。
【請求項2】
前記高強度部を銅材から構成したことを特徴とする請求項1に記載のガス絶縁母線用導体。
【請求項3】
前記高強度部にステンレス材又は鉄材からなる中実材料を入れて固定したことを特徴とする請求項1又は2に記載のガス絶縁母線用導体。
【請求項4】
前記高強度部の外径を他の部分よりも大径としたことを特徴とする請求項1〜3のいずれか1項に記載のガス絶縁母線用導体。
【請求項5】
前記高強度部を、中央部に設けたことを特徴とする請求項1〜4のいずれか1項に記載のガス絶縁母線用導体。
【請求項6】
前記高強度部を、両端部に設けたことを特徴とする請求項1〜4のいずれか1項に記載のガス絶縁母線用導体。
【請求項7】
絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、
中央部外周に、ステンレス材、鉄材及びFRP材の少なくとも1つからなる長尺パイプを設けたことを特徴とするガス絶縁母線用導体。
【請求項8】
絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、
中央部外周に、不織布を含浸する長尺パイプを設けたことを特徴とするガス絶縁母線用導体。
【請求項9】
絶縁性媒体として絶縁ガスを封入した密閉金属容器内に設けられたガス絶縁母線用導体において、
中央部に、内径寸法又は外径寸法が異なる複数の肉厚パイプ又は中実部を設けたことを特徴とするガス絶縁母線用導体。
【請求項10】
外周部に凸部を設けたことを特徴とする請求項1〜9のいずれか1項に記載のガス絶縁母線用導体。
【請求項11】
内周部にリブを設けたことを特徴とする請求項1〜10のいずれか1項に記載のガス絶縁母線用導体。
【請求項12】
前記リブは対向した同士が繋がっていることを特徴とする請求項11に記載のガス絶縁母線用導体。
【請求項13】
内側に芯材を設け、該芯材の外側に該芯材より導電率の高い被覆材を被覆したことを特徴とする請求項1〜12のいずれか1項に記載のガス絶縁母線用導体。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2009−159757(P2009−159757A)
【公開日】平成21年7月16日(2009.7.16)
【国際特許分類】
【出願番号】特願2007−336481(P2007−336481)
【出願日】平成19年12月27日(2007.12.27)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】