説明

コジェネレーションシステム、同システムの発電制御方法および同システムの発電制御装置

【課題】 発電量を随時補正して突発的な熱負荷または/および電力負荷に対応した発電を行うことにより、効率よく電力と熱とを供給する。
【解決手段】 コジェネレーションシステムの発電制御装置40は、所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出し(単位時間あたり熱量算出部51)、その熱量を発生させるのに必要な発電量を発電補正量として算出するとともに(発電補正量算出部52)負荷装置における消費電力を検出し、それら算出した発電補正量と検出した消費電力とに基づいて出力電力を所定時間毎に算出し(発電量指示値算出部53)その出力電力となるように発電装置を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コジェネレーションシステム、同システムの発電制御方法および同システムの発電制御装置に関する。
【背景技術】
【0002】
コジェネレーションシステムとしては、負荷装置に電力を供給する発電装置と、発電の際に生じる熱エネルギーによって加熱された温水を溜めておくとともにその溜めておいた温水を供給する貯湯槽とを備えたものが知られている。このシステムによれば、都市ガスなどを燃料として発電するとともにそのときに生ずる排熱(熱エネルギー)を利用して冷暖房や給湯を行うことにより、電力と熱を併給して高いエネルギー利用効率を達成している。コジェネレーションシステムの発電装置としては、ディーゼルエンジン、ガスエンジン、ガスタービン、マイクロガスタービンなどの原動機とこの原動機によって駆動される発電機から構成されたもの、燃料電池から構成されたものなどが知られている。
【0003】
このコジェネレーションシステムの発電制御方法の一例としては、特許文献1に示されているコージェネレーション設備の運用方法がある。特許文献1に示されているように、複数の住戸を含む集合住宅、たとえばマンションなどに、商用電力と系統連系して電力供給を行い、廃熱を温水として利用するコージェネレーション設備を導入する。導入するコージェネレーション設備には、温水を貯留可能な貯湯槽を設置しておき、予め定める運転周期毎に設定するスケジュールに従って運転する。スケジュールは、運転周期の電力負荷と熱負荷とを予測し、熱負荷のピーク時に必要な熱量を、コージェネレーション設備の運転を開始しておいて、温水を貯留しておくことによって供給可能なように設定する。コージェネレーション設備の運転は、予め定める電力量以上を常に受電する電主運転で予測された電力負荷を供給するとして、熱負荷のピーク時に先行して運転を開始すべきON時間を設定し、熱負荷として予測される全熱量の発生を完了する時点を、コージェネレーション設備の運転を停止すべきOFF時間として設定する。熱負荷のピーク時を挟むON時間からOFF時間までコージェネレーション設備を運転するので、効率よく電力と熱とを供給することができる。運転周期毎に電力負荷と熱負荷とを予測してスケジュールを設定し、設定されたスケジュールに従ってコージェネレーション設備を運転するので、適切な運用を行うことができる。
【特許文献1】特開2003−087970号公報(第1−7頁、図1−7)
【発明の開示】
【発明が解決しようとする課題】
【0004】
上述した特許文献1に記載のコージェネレーション設備の運用方法においては、熱負荷のピーク時を挟むON時間からOFF時間までコージェネレーション設備を運転するので効率よく電力と熱とを供給することができるが、運転周期毎に電力負荷と熱負荷とを予測してスケジュールを設定し設定されたスケジュールに従ってコージェネレーション設備を運転するため、急な給湯消費などによる突発的な熱負荷の増加、または急な電力消費などによる突発的な電力負荷の増加があった場合、運転周期毎に設定されたスケジュールどおりに運転すると、ピーク時の貯湯量が所望量より少なかったり、ピーク時に到達する前に貯湯量が所望量に到達したりして逆に電力と熱の供給効率が悪化するおそれがあった。
【0005】
本発明は、上述した問題を解消するためになされたもので、発電量を随時補正して突発的な熱負荷または/および電力負荷に対応した発電を行うことにより、効率よく電力と熱とを供給することができるコジェネレーションシステムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、負荷装置に電力を供給する発電装置と、発電の際に生じる熱エネルギーによって加熱された温水を溜めておくとともにその溜めておいた温水を供給する貯湯槽とを備えたコジェネレーションシステムの発電制御方法において、所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出しその熱量を発生させるのに必要な発電量を発電補正量として算出するとともに負荷装置における消費電力を検出し、それら算出した発電補正量と検出した消費電力とに基づいて出力電力を所定時間毎に算出しその出力電力となるように発電装置を制御するようにしたことである。
【0007】
また請求項2に係る発明の構成上の特徴は、請求項1において、温水需要ピーク時刻までの時間は、発電補正量を算出するとともに消費電力を検出するその時刻と温水需要パターンとに基づいて算出することである。
【0008】
また請求項3に係る発明の構成上の特徴は、請求項1において、温水需要ピーク時刻における温水の過不足量は、温水供給予測量、温水消費予測量および貯湯槽の残湯量に基づいて算出することである。
【0009】
また請求項4に係る発明の構成上の特徴は、請求項3において、温水供給予測量は、電力需要パターンと温水需要ピーク時刻までの時間とに基づいて算出することである。
【0010】
また請求項5に係る発明の構成上の特徴は、請求項3において、温水消費予測量は、温水需要パターンと温水需要ピーク時刻までの時間とに基づいて算出することである。
【0011】
また請求項6に係る発明の構成上の特徴は、負荷装置に電力を供給する発電装置と、発電の際に生じる熱エネルギーによって加熱された温水を溜めておくとともにその溜めておいた温水を供給する貯湯槽とを備えたコジェネレーションシステムの発電を制御する発電制御装置において、所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出する単位時間あたり熱量算出手段と、この単位時間あたり熱量算出手段によって算出された単位時間あたり熱量を発生させるのに必要な発電量を発電補正量として算出する発電補正量算出手段と、所定時間毎に負荷装置における消費電力を検出する消費電力検出手段と、発電補正量算出手段によって算出された発電補正量と消費電力検出手段によって検出された消費電力とに基づいて発電量指示値を算出して発電装置に出力する発電量指示値算出手段とを備えたことである。
【0012】
また請求項7に係る発明の構成上の特徴は、請求項6において、単位時間あたり熱量算出手段は、発電補正量を算出するとともに消費電力を検出するその時刻と温水需要パターンとに基づいて温水需要ピーク時刻までの時間を算出するピーク時刻までの時間算出手段と、温水供給予測量、温水消費予測量および貯湯槽の残湯量に基づいて温水需要ピーク時刻における温水の過不足量を算出する温水の過不足量算出手段とから構成されていることである。
【0013】
また請求項8に係る発明の構成上の特徴は、請求項7において、温水の過不足量算出手段は、電力需要パターンと温水需要ピーク時刻までの時間とに基づいて温水供給予測量を算出する温水供給予測量算出手段と、温水需要パターンと温水需要ピーク時刻までの時間とに基づいて温水消費予測量を算出する温水消費予測量算出手段とから構成されていることである。
【0014】
また請求項9に係る発明の構成上の特徴は、負荷装置に電力を供給する発電装置と、発電の際に生じる熱エネルギーによって加熱された温水を溜めておくとともにその溜めておいた温水を供給する貯湯槽と、発電装置の発電を制御する発電制御装置とを備えたコジェネレーションシステムにおいて、発電制御装置は、所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出する単位時間あたり熱量算出手段と、この単位時間あたり熱量算出手段によって算出された単位時間あたり熱量を発生させるのに必要な発電量を発電補正量として算出する発電補正量算出手段と、所定時間毎に負荷装置における消費電力を検出する消費電力検出手段と、発電補正量算出手段によって算出された発電補正量と消費電力検出手段によって検出された消費電力とに基づいて発電量指示値を算出して発電装置に出力する発電量指示値算出手段とを備えたことである。
【発明の効果】
【0015】
上記のように構成した請求項1に係る発明においては、所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出しその熱量を発生させるのに必要な発電量を発電補正量として算出するとともに負荷装置における消費電力を検出し、それら算出した発電補正量と検出した消費電力とに基づいて出力電力を所定時間毎に算出しその出力電力となるように発電装置を制御するようにしたので、発電量を随時補正して突発的な熱負荷または/および電力負荷に対応した発電を行うことにより、効率よく電力と熱とを供給することができる。
【0016】
上記のように構成した請求項2に係る発明においては、請求項1に係る発明において、温水需要ピーク時刻までの時間を、発電補正量を算出するとともに消費電力を検出するその時刻と温水需要パターンとに基づいて算出するので、温水需要ピーク時刻までの時間を確実に算出することができる。
【0017】
上記のように構成した請求項3に係る発明においては、請求項1に係る発明において、温水需要ピーク時刻における温水の過不足量を、温水供給予測量、温水消費予測量および貯湯槽の残湯量に基づいて算出するので、温水需要ピーク時刻における温水の過不足量を確実に算出することができる。
【0018】
上記のように構成した請求項4に係る発明においては、請求項3に係る発明において、温水供給予測量を、電力需要パターンと温水需要ピーク時刻までの時間とに基づいて算出するので、温水需要ピーク時刻までに発電によって供給される温水量を確実に予測することができる。
【0019】
上記のように構成した請求項5に係る発明においては、請求項3に係る発明において、温水消費予測量を、温水需要パターンと温水需要ピーク時刻までの時間とに基づいて算出するので、温水需要ピーク時刻までに消費される温水量を確実に予測することができる。
【0020】
上記のように構成した請求項6に係る発明においては、単位時間あたり熱量算出手段が、所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出し、発電補正量算出手段が、単位時間あたり熱量算出手段によって算出された単位時間あたり熱量を発生させるのに必要な発電量を発電補正量として算出し、消費電力検出手段が所定時間毎に負荷装置における消費電力を検出し、発電量指示値算出手段が、発電補正量算出手段によって算出された発電補正量と消費電力検出手段によって検出された消費電力とに基づいて発電量指示値を算出して発電装置に出力する。これにより、それら算出した発電補正量と検出した消費電力とに基づいて出力電力を所定時間毎に算出しその出力電力となるように発電装置を制御するようにしたので、発電量を随時補正して突発的な熱負荷または/および電力負荷に対応した発電を行うことにより、効率よく電力と熱とを供給することができる。
【0021】
上記のように構成した請求項7に係る発明においては、請求項6に係る発明において、ピーク時刻までの時間算出手段が、発電補正量を算出するとともに消費電力を検出するその時刻と温水需要パターンとに基づいて温水需要ピーク時刻までの時間を算出し、温水の過不足量算出手段が、温水供給予測量、温水消費予測量および貯湯槽の残湯量に基づいて温水需要ピーク時刻における温水の過不足量を算出するので、温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を確実に算出することができる。
【0022】
上記のように構成した請求項8に係る発明においては、請求項7に係る発明において、温水供給予測量算出手段が、電力需要パターンと温水需要ピーク時刻までの時間とに基づいて温水供給予測量を算出し、温水消費予測量算出手段が、温水需要パターンと温水需要ピーク時刻までの時間とに基づいて温水消費予測量を算出するので、温水需要ピーク時刻における温水の過不足量を確実に算出することができる。
【0023】
上記のように構成した請求項9に係る発明においては、単位時間あたり熱量算出手段が、所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出し、発電補正量算出手段が、単位時間あたり熱量算出手段によって算出された単位時間あたり熱量を発生させるのに必要な発電量を発電補正量として算出し、消費電力検出手段が所定時間毎に負荷装置における消費電力を検出し、発電量指示値算出手段が、発電補正量算出手段によって算出された発電補正量と消費電力検出手段によって検出された消費電力とに基づいて発電量指示値を算出して発電装置に出力することにより、発電制御装置がそれら算出した発電補正量と検出した消費電力とに基づいて出力電力を所定時間毎に算出しその出力電力となるように発電装置を制御する。これにより、発電量を随時補正して突発的な熱負荷または/および電力負荷に対応した発電を行うことにより、効率よく電力と熱とを供給することができる。
【発明を実施するための最良の形態】
【0024】
以下、本発明によるコジェネレーションシステムの一実施の形態について説明する。図1はこのコジェネレーションシステムの概要を示す概要図である。このコジェネレーションシステムは、負荷装置21に電力を供給する発電装置10と、発電の際に生じる熱エネルギーによって加熱された温水を溜めておくとともにその溜めておいた温水を供給する貯湯槽30と、発電装置10の発電を制御する発電制御装置40とを備えている。
【0025】
発電装置10は、燃料電池発電装置であり、直流電力を発生する発電器11と、発電器11から供給された直流電力を交流電力に変換して出力する変換器(例えばインバータ)12とを備えている。発電装置10としては、燃料電池発電装置の他に、ディーゼルエンジン、ガスエンジン、ガスタービン、マイクロガスタービンなどの原動機とこの原動機によって駆動される発電機から構成されたものがある。
【0026】
発電器11は、改質装置11a、一酸化炭素低減装置(以下CO低減装置という)11bおよび燃料電池11cから構成されている。改質装置11aは、燃料供給装置13から供給される燃料(例えば都市ガス)を水供給装置14から供給される水(改質水)で水蒸気改質して水素リッチな改質ガスを生成してCO低減装置11bに導出するものである。CO低減装置11bは、一酸化炭素と水蒸気を触媒によって水素ガスと二酸化炭素とに変成するいわゆる一酸化炭素シフト反応、または/および一酸化炭素と外部からさらに供給された一酸化炭素酸化用の空気を触媒により反応させて二酸化炭素を生成する反応などにより、改質ガスに含まれる一酸化炭素を低減して燃料電池11cに導出するものである。燃料電池11cは、燃料極11c1に供給された改質ガス中の水素および空気極11c2に供給された酸化剤ガスである空気(カソードエア)を用いて発電するものである。
【0027】
変換器12は、ユーザ先である電力使用場所20に設置されている複数の負荷装置21に送電線15を介してそれぞれ接続されており、変換器12から出力される交流電力は必要に応じて各負荷装置21に供給されている。負荷装置21は、電灯、アイロン、テレビ、洗濯機、電気コタツ、電気カーペット、エアコン、冷蔵庫などの電気器具である。なお、変換器12と電力使用場所20とを接続する送電線15には電力会社の系統電源16も接続されており(系統連系)、発電装置10の発電量より負荷装置21の総消費電力が上回った場合、その不足電力を系統電源16から受電して補うようになっている。電力計22は、電力使用場所20で使用される全ての負荷装置21の合計消費電力を検出して、発電制御装置40に送信するようになっている。発電制御装置40は、受信した電力消費量を記憶して後述する電力需要パターンを作成・更新している。
【0028】
燃料電池11cは、水素と酸素の反応発熱、電池内部の抵抗発熱などによって高温となる場合があり、高温となった燃料電池11cを冷却して所定温度(所定温度域)とするために冷却水流路11c3を備えている。なお、所定温度(所定温度域)は、燃料電池の触媒の活性温度域となるように設定されている。
【0029】
冷却水流路11c3の導入端は、一端が貯湯槽30の下端部に連結された導入管31の他端に接続されており、冷却水流路11c3の導出端は、一端が貯湯槽30の上端部に連結された導出管32に接続されている。導入管31には冷却水送出手段であるポンプ33が設けられており、このポンプ33は貯湯槽30内下部から温度の低い水または温水を吸い込んで燃料電池11cの冷却水流路11c3に向けて圧送するものである。導入管31および導出管32には第1および第2温度センサ36,37がそれぞれ設けられており、第1および第2温度センサ36,37は、燃料電池11cへ導入される冷却水入口温度T1および燃料電池11cから導出される冷却水出口温度T2をそれぞれ検出して発電制御装置40に送信するようになっている。ポンプ33は発電制御装置40に接続されており、発電制御装置40は第1および第2温度センサ36,37、貯湯槽30内の残湯量センサからそれぞれ検出した冷却水入口温度、冷却水出口温度および残湯量に基づいてポンプ33の駆動・停止および吐出量を決定しその決定結果となるようにポンプ33を制御する。ポンプ33が駆動されると、貯湯槽30内下部から吸い込まれた温度の低い水または温水は燃料電池11cにて所定温度(例えば約70℃)まで昇温されて貯湯槽30内上部に戻される。
【0030】
貯湯槽30は、1つの柱状容器を備えており、その内部に温水が層状に、すなわち上部の温水が最も高温であり下部にいくにしたがって低温となり下部の温水が最も低温であるように貯留されるようになっている。貯湯槽30に貯留されている高温の温水が貯湯槽74の柱状容器の上部から導出され、その導出された分を補給するように貯湯槽30の柱状容器の下部から水道水などの水(低温の水)が導入されるようになっている。このような貯湯槽30は、発電装置10の近くに設置されている。
【0031】
また、貯湯槽30の内部には残湯量検出センサである温度センサ群34が設けられている。温度センサ群34は複数(本実施の形態においては11個)の温度センサ34−1,34−2,34−3,・・・,34−11から構成されており、上下方向(鉛直方向)に沿って等間隔(貯湯槽30内の上下方向高さの十分の一の距離)にて配設されている。温度センサ34−1は貯湯槽30の内部上面位置に配置されている。各温度センサ34−1,34−2,34−3,・・・,34−11はその位置の貯湯槽30内の液体(温水または水)の温度をそれぞれ検出するものである。この温度センサ群による各位置での湯温の検出結果に基づいて貯湯槽30内の残湯量が検出されるようになっている。残湯量は、貯湯槽30内に残っている所定温度(例えば60℃)以上である温水の残量を表している。したがって、例えば、各温度センサ34−1〜34−3が60℃以上を検出し、各温度センサ34−4〜34−11が60℃未満を検出している場合には、残湯量検出センサ34は貯湯槽30天井内壁面から温度センサ34−3までの水量(湯量)を残湯量として検出する。このときの残湯量は貯湯槽30の容量の2/10である。また、各温度センサ34−1〜34−10が60℃以上を検出し、各温度センサ34−11が60℃未満を検出している場合には、残湯量検出センサ34は貯湯槽30の容量の9/10を残湯量として検出する。
【0032】
なお、60℃以上を検出した温度センサと60℃未満を検出した温度センサとの間の残湯量は、これら両温度センサを含む上下複数の温度センサによって算出される温度勾配とセンサ間距離に基づいて算出することができるので、この算出したセンサ間の残湯量を合算することにより、貯湯槽30内の残湯量をより正確に算出することができる。
【0033】
また、導出管31には過熱された冷却水を冷却する冷却水冷却手段であるラジエータ35が設けられている。ラジエータ35は自身を空冷するための付設装置として送風機などを備えている。
【0034】
貯湯槽30は温水供給管38を介して例えば台所、浴室などの温水使用場所17に接続されており、この温水使用場所17にて温水が使用されると、貯湯槽30の温水が温水使用場所17に供給されるようになっている。温水供給管38には温水供給管38の流量を検出する流量検出手段である流量計39が設けられており、流量計39は検出した温水供給管38の温水の流量すなわち温水消費量を発電制御装置40に送信するようになっている。発電制御装置40は、受信した温水消費量を記憶して後述する温水需要パターンを作成・更新している。
【0035】
なお、貯湯槽30の温水を使い切って給湯器18からの温水供給を受ける場合、給湯器18の燃料消費量を発電制御装置40が受信するようになっている。すなわち、給湯器18には燃料供給装置13からの燃料が燃料供給管19を介して供給されており、この燃料供給管19には燃料の流量を検出する流量検出手段である流量計19aが設けられている。流量計19aは検出した燃料供給管19の燃料の流量すなわち燃料消費量を発電制御装置40に送信するようになっている。そして、発電制御装置40は、受信した燃料消費量に基づいて給湯器18が生成した温水の量(燃料消費量から算出可能である)すなわち温水使用場所17での温水消費量を算出し、その温水消費量を記憶して後述する温水需要パターンを作成・更新している。
【0036】
図3に示すように、発電制御装置40は、所定時間毎(例えば1分毎)に、記憶部41aに記憶されている温水需要パターンと、タイマ42が示す現時点の時刻(現在時刻)とを入力して温水需要ピーク時刻までの時間Taを算出する温水需要ピーク時刻までの時間算出部43を備えている。この温水需要ピーク時刻までの時間算出部43は、発電補正量を算出するとともに消費電力を検出するその時刻すなわち現時点の時刻と温水需要パターンとに基づいて温水需要ピーク時刻までの時間Taを算出する。
【0037】
温水需要パターンは、図4に示すように、温水使用場所17における温水の需要パターンを示すものであり、時刻別温水変動パターンを示している。温水需要パターンは記憶部41aに予め記憶されるものである。本実施の形態においては、図4に示すように、7:00から7:30まで朝食の仕度のために温水が消費され、8:10から8:30まで朝食の後片付けのために温水が消費されている。12:00から12:20まで昼食の仕度のために温水が消費され、12:50から13:00まで昼食の後片付けのために温水が消費されている。17:50から18:20まで夕食のために温水が消費され、19:00から19:20まで夕食の後片付けのために温水が消費されている。そして、20:00から20:30まで入浴(お湯はり、シャワー)のために温水が消費されている。このように、温水をまとめて連続的に使用する時間帯すなわち温水需要ピークが複数存在する。そのなかでも温水量が最大のものを温水需要最大ピークとして選択し、その時間帯の開始時刻を温水需要ピーク時刻とする。本実施の形態においては、温水需要最大ピークは20:00から20:30までのピークであり、温水需要ピーク時刻は20:00となる。
【0038】
この温水需要パターンは、温水使用場所17で消費される温水量を実際に計測したデータに基づいて予め作成されたものである。このデータは、例えば1ヶ月分でもよいし、1年分でもよいし、また季節毎でもよい。また、家族構成毎に作成するようにしてもよい。この場合、男性および女性の人数、年齢を考慮するのが好ましい。このように計測して収集したデータを10分毎、5分毎、もしくは1分毎に平均を取るなどして計算しその計算結果に基づいて温水需要パターンを作成する。また、前述のようにして予め作成された温水需要パターンを発電制御装置40に予め記憶させておけば、発電装置10の使用当初からその温水需要パターンを使用することができるので、発電装置10の発電を的確に制御することができる。
【0039】
さらに、温水需要パターンは、発電装置10の使用中において所定時間毎(例えば1分)に検出して記憶されている温水消費量を使用して日々更新されるようにするのが好ましい。具体的には、最新1ヶ月分のデータを使用してそれらの平均を取るようにすればよい。これによれば、最新のデータを使用することにより温水使用の最新状況を温水需要パターンに反映させることができる。なお、温水消費量は、貯湯槽30内の温水と給湯器18からの温水の合計消費量である。
【0040】
さらに、温水需要パターンを発電制御装置40に予め記憶させておかない場合もあり、この場合には、発電装置10の使用当初から、検出された温水消費量を記憶しそれらデータに基づいて温水需要パターンを作成すればよい。
【0041】
タイマ(タイマカウンタ)42は、時間を計数するもの(時刻を示すもの)であり、時計機能を有するものであり、所定時間毎にその時刻を温水需要ピーク時刻までの時間算出部43に送信している。温水需要ピーク時刻までの時間算出部43は、タイマ42から入力した現在時刻から、温水需要パターンから導出された温水需要ピーク時刻(本実施の形態では「20:00」)までの時間である温水需要ピーク時刻までの時間Taを算出する。例えば、現在時刻が20:30である場合には、温水需要ピーク時刻までの時間Taは23時間30分となる。なお、温水需要ピーク時刻までの時間Taの単位は秒[s]である。
【0042】
発電制御装置40は、図3に示すように、所定時間毎に、記憶部41aに記憶されている温水需要パターン(図4参照)と、温水需要ピーク時刻までの時間Taとをそれぞれ入力して温水需要ピーク時刻までに消費される温水の消費予測量を算出する温水消費予測量算出部44を備えている。すなわち、この温水消費予測量算出部44は、温水需要パターンと、温水需要ピーク時刻までの時間算出部43から導出された温水需要ピーク時刻までの時間Taとに基づいて温水需要ピーク時刻までに消費される温水の消費予測量を算出する。具体的には、温水需要パターンにおいて現在時刻から温水需要ピーク時刻までの時間Ta分の温水消費量を加算することにより、温水需要ピーク時刻までに消費される温水の消費予測量を算出する。
【0043】
発電制御装置40は、所定時間毎に、記憶部41bに記憶されている電力需要パターン(図5参照)と、温水需要ピーク時刻までの時間Taとをそれぞれ入力して温水需要ピーク時刻までに供給される温水の供給予測量を算出する温水供給予測量算出部45を備えている。すなわち、温水供給予測量算出部45は、電力需要パターンと、温水需要ピーク時刻までの時間算出部43から導出された温水需要ピーク時刻までの時間Taとに基づいて温水需要ピーク時刻までに供給される温水の供給予測量を算出する。具体的には、電力需要パターンに基づいて発電によって生成される温水量を示す時刻別温水変動パターンを導出し、その時刻別温水変動パターンにおいて現在時刻から温水需要ピーク時刻までの時間Ta分の温水供給量を加算することにより、温水需要ピーク時刻までに供給される温水の供給予測量を算出する。なお、系統電源16から受電している場合には、その分を減算する必要がある。
【0044】
電力需要パターンは、図5に示すように、電力使用場所20における電力の需要パターンを示すものであり、時刻別電力変動パターンを示している。電力需要パターンは記憶部41bに予め記憶されるものである。本実施の形態においては、図5に示すように電力が消費されている。この電力需要パターンは、電力使用場所20で消費される電力を実際に計測したデータに基づいて予め作成されたものである。このデータは、例えば1ヶ月分でもよいし、1年分でもよいし、また季節毎でもよい。また、備えられている電化製品種、生活パターン、家族構成などを考慮して作成するようにしてもよい。このように計測して収集したデータを10分毎、5分毎、もしくは1分毎に平均を取るなどして計算しその計算結果に基づいて電力需要パターンを作成する。また、前述のようにして予め作成された電力需要パターンを発電制御装置40に予め記憶させておけば、発電装置10の使用当初からその電力需要パターンを使用することができるので、発電装置10の発電を的確に制御することができる。
【0045】
さらに、電力需要パターンは、発電装置10の使用中において所定時間毎(例えば1分)に検出して記憶されている電力消費量を使用して日々更新されるようにするのが好ましい。具体的には、最新1ヶ月分のデータを使用してそれらの平均を取るようにすればよい。これによれば、最新のデータを使用することにより電力使用の最新状況を電力需要パターンに反映させることができる。さらに、電力需要パターンを発電制御装置40に予め記憶させておかない場合もあり、この場合には、発電装置10の使用当初から、検出された電力消費量を記憶しそれらデータに基づいて電力需要パターンを作成すればよい。
【0046】
発電制御装置40は、所定時間毎に、温水消費予測量算出部44からの温水消費予測量、温水供給予測量45からの温水供給予測量、および貯湯槽残湯量算出部46からの貯湯槽30の現時点での残湯量をそれぞれ入力して温水需要ピーク時刻における温水の残存予想量を算出する加算部47aを備えている。具体的には、加算部47aは下記数1から温水の残存予想量を算出する。
(数1)
温水の残存予想量=貯湯槽の現時点の残湯量+温水供給予測量−温水消費予測量
【0047】
貯湯槽残湯量算出部46は、温度センサ群34から各温度センサが配置されている場所の温水の温度を入力し、それら温度に基づいて貯湯槽30内の残湯量すなわち所定温度(例えば60℃)以上である温水の残量を算出している。例えば、各温度センサ34−1〜34−3が60℃以上を検出し、各温度センサ34−4〜34−11が60℃未満を検出している場合には、残湯量検出センサ34は貯湯槽30天井内壁面から温度センサ34−3までの水量(湯量)を残湯量として算出する。このときの残湯量は貯湯槽30の容量の2/10である。なお、60℃以上を検出した温度センサと60℃未満を検出した温度センサとの間の残湯量は、これら両温度センサを含む上下複数の温度センサによって検出された検出結果に基づいて算出される温度勾配とセンサ間距離に基づいて算出することができるので、この算出したセンサ間の残湯量を合算することにより、貯湯槽30内の残湯量をより正確に算出することができる。
【0048】
発電制御装置40は、所定時間毎に、記憶部41cに記憶されている貯湯槽30の容量(例えば本実施の形態においては150リットル)と、加算部47aからの温水の残存予想量をそれぞれ入力して温水需要ピーク時刻における貯湯槽30の容量に対しての温水の過不足量Wを算出する加算部47bを備えている。具体的には、加算部47bは下記数2から温水の過不足量Wを算出する。
(数2)
温水の過不足量W=貯湯槽の容量−温水の残存予測量
なお、貯湯槽30の容量は予め記憶部41cに入力され記憶されているものである。
【0049】
このように、加算部47bにおいては、温水需要ピーク時刻に必要な温水需要量が貯湯槽30の容量より大きい場合には、そのピーク時刻に貯湯槽30を所定温度以上の温水で満タンにするように制御しているが、温水需要ピーク時刻に必要な温水需要量が貯湯槽30の容量より小さい場合には、貯湯槽30内の残湯量が温水需要ピーク時刻に必要な温水需要量となるように制御すればよい。具体的には、温水需要ピーク時刻に必要な温水需要量と加算部47aからの温水の残存予想量をそれぞれ入力して温水需要ピーク時刻における必要な温水需要量に対しての温水の過不足量Wを算出するようにすればよい。
【0050】
発電制御装置40は、所定時間毎に、温水需要ピーク時刻までの時間Taと、加算部47bからの温水需要ピーク時刻における温水の過不足量Wをそれぞれ入力して現時点から温水需要ピーク時刻までに必要な熱量Qの単位時間あたり熱量を算出する単位時間あたり熱量算出部51を備えている。すなわち、この熱量算出部51は先に算出した温水の過不足量Wを所定温度Δtだけ昇温させるのに必要な熱量Qの単位時間あたり熱量(仕事率すなわち電力P)を算出する。最初に単位時間あたり熱量算出部51は現時点から温水需要ピーク時刻までに必要な熱量Qを算出する。具体的には、温水の過不足量Wに加えて燃料電池11cから回収される温水の温度(すなわち、燃料電池11cから導出される燃料電池冷却水出口温度T2)と燃料電池11cに供給される温水の温度(すなわち、燃料電池11cへ導入される燃料電池冷却水入口温度T1)とをそれぞれ入力して、下記数3から必要な熱量Qを算出する。
(数3)
Q(cal)=c・W・Δt
=1[cal/cc・K]×W[l]×1000[cc/l]×(T2−T1)[K]
ここで、cは水の比熱でありその単位はcal/cc・Kである。温水の過不足量Wの単位はl(リットル)であり、Δtは燃料電池冷却水出口温度T2と燃料電池冷却水入口温度T1の差でありその単位はK(ケルビン)である。
【0051】
なお、燃料電池冷却水入口温度T1および燃料電池冷却水出口温度T2は、燃料電池冷却水入口温度検出部48および燃料電池冷却水出口温度検出部49から前述した熱量算出部51にそれぞれ導出されるようになっている。
【0052】
次に、上記算出した必要な熱量Qを得るための仕事量Wを下記数4から算出する。
(数4)
W(J)=J・Q=4.19[J/cal]×Q[cal]
ここで、Jは熱の仕事当量であり4.19としその単位はJ/calである。なお仕事量Wの単位はジュール(J)であり熱の仕事当量のJとは異なるものである。
【0053】
そして、入力された温水需要ピーク時刻までの時間Taと上記算出した仕事量Wとから仕事率Pを下記数5から算出する。
(数5)
P(W)=W/Ta
ここで、仕事率Pの単位はワット(W)であり、時間Taの単位は秒(s)である。
【0054】
発電制御装置40は、所定時間毎に、単位時間あたり熱量算出部51からの単位時間あたり熱量(仕事率すなわち電力P)を入力して発電補正量を算出する発電補正量算出手段52を備えている。この発電補正量算出手段52は、燃料電池11cの発電効率、貯湯槽30や貯湯槽30と燃料電池11cとの冷却水循環系(導入管31,導出管32)からの熱損失を考慮して、単位時間あたり熱量算出部51から入力した必要電力を補正して算出する。具体的には、下記数6から算出する。
(数6)
発電補正量Ph=c1×(P+c2)
ここで、c1、c2は、燃料電池11cの発電効率、貯湯槽30や貯湯槽30と燃料電池11cとの冷却水循環系(導入管31,導出管32)からの熱損失を考慮して設定される定数である。
【0055】
発電制御装置40は、所定時間毎に、発電補正量算出手段52からの発電補正量Phと電力計22によって検出された負荷装置21における消費電力Psをそれぞれ入力して発電装置10に必要な発電量を算出する加算部47cを備えている。具体的には、この加算部47cは、所定時間毎に電力使用場所20に配設された負荷装置21における消費電力Psを検出する消費電力検出手段である電力計22から消費電力Psを直接入力するか、あるいは現時点の消費電力Psを含めた過去数件のデータに基づいて算出された値(例えば平均値)を入力する。この入力された消費電力Psと発電補正量算出手段52から入力された発電補正量Phとを加算してその加算値を発電量指示値算出部53に出力する。
【0056】
そして、発電制御装置40は、加算部47cから入力された加算値に基づいて加算値である電力となるように発電量指示値を算出して発電器11に送信指示する。発電量指示値は、燃料電池11cに供給する改質ガス中の水素ガス量を規定するものであり、すなわち改質装置11aに供給される燃料量および改質水量を規定するものである。したがって、発電器11は、発電量指示値どおりに燃料量、改質水量を改質装置11aに供給して、消費電力Psに上記のように算出した発電補正量Phを上乗せした発電量を出力する。
【0057】
なお、特許請求の範囲に記載の単位時間あたり熱量算出手段は単位時間あたり熱量算出部51であり、発電補正量算出手段は発電補正量算出部であり、消費電力検出手段は電力計22であり、発電量指示値算出手段は加算部47cと発電量指示値算出部53で構成され、ピーク時刻までの時間算出手段はピーク時刻までの時間算出部43であり、温水の過不足量算出手段は温水消費予測量算出部44、温水供給予測量算出部45、および加算部47a,47bで構成され、温水消費予測量算出手段は温水消費予測量算出部44であり、温水供給予測量算出手段は温水供給予測量算出部45である。
【0058】
次に、上述したコジェネレーションシステムの発電制御方法について説明する。発電制御装置40は、基本的には、電力計22を使用して電力使用場所20の消費電力を計測し、計測した消費電力をメモリ31に記憶し、消費電力と同一となるように発電装置10の出力電力を追従させる消費電力追従制御を実行している。発電制御装置40は、この消費電力追従制御に加えて、所定時間毎に、温水需要ピーク時刻までの時間Taと同ピーク時刻における温水の過不足量Wとに基づいて温水需要ピーク時刻までに必要な熱量Qの単位時間あたり熱量Wを算出しその熱量を発生させるのに必要な発電量Phを発電補正量として算出するとともに負荷装置21における消費電力Psを検出し、それら算出した発電補正量Phと検出した消費電力Psとに基づいて出力電力を所定時間毎に算出しその出力電力となるように発電装置10を制御している。
【0059】
具体的には、発電制御装置40は、所定時間毎に、温水需要ピーク時刻までの時間算出部43にて上述したように温水需要ピーク時刻までの時間Taを算出して温水消費予測量算出部44、温水供給予測量算出部45および単位時間あたり熱量算出部51にそれぞれ出力する。温水消費予測量算出部44および温水供給予測量算出部45は温水需要ピーク時刻までの時間Taをそれぞれ入力すると、上述したように温水消費予測量および温水供給予測量を算出して加算部47aに出力する。加算部47aは温水消費予測量および温水供給予測量を入力すると、上述したように温水需要ピーク時刻における温水の残存予想量を算出して加算部47bに出力する。加算部47bは、温水需要ピーク時刻における温水の残存予想量を入力すると、上述したように温水の過不足量Wを算出して単位時間あたり熱量算出部51に出力する。この熱量算出部51は、温水の過不足量Wを入力すると、先に入力した温水需要ピーク時刻までの時間Taなどに基づいて上述したように現時点から温水需要ピーク時刻までに必要な熱量Qの単位時間あたりの熱量すなわち仕事率Pを算出して発電補正量算出部52に出力する。発電補正量算出部52は、単位時間あたりの熱量を入力すると、上述したように発電補正量Phを算出して加算部47cに出力する。加算部47cは、発電補正量Phを入力すると、上述したように発電量指示値を算出して発電装置10すなわち発電器11に出力する。発電器11は、発電量指示値どおりに燃料量、改質水量を改質装置11aに供給して、消費電力Psに発電補正量Phを上乗せした発電量を出力する。
【0060】
上述した説明から明らかなように、本実施の形態においては、所定時間毎に、温水需要ピーク時刻までの時間Taと同ピーク時刻における温水の過不足量Wとに基づいて温水需要ピーク時刻までに必要な熱量Qの単位時間あたり熱量Pを算出しその熱量を発生させるのに必要な発電量Phを発電補正量として算出するとともに負荷装置21における消費電力Psを検出し、それら算出した発電補正量Phと検出した消費電力Psとに基づいて出力電力を所定時間毎に算出しその出力電力となるように発電装置10を制御するようにしたので、発電量を随時補正して突発的な熱負荷または/および電力負荷に対応した発電を行うことにより、効率よく電力と熱とを供給することができる。
【0061】
また、温水需要ピーク時刻までの時間Taを、発電補正量Phを算出するとともに消費電力Psを検出するその時刻と温水需要パターンとに基づいて算出するので、温水需要ピーク時刻までの時間Taを確実に算出することができる。
【0062】
また、温水需要ピーク時刻における温水の過不足量Wを、温水供給予測量、温水消費予測量および貯湯槽の残湯量に基づいて算出するので、温水需要ピーク時刻における温水の過不足量Wを確実に算出することができる。
【0063】
また、温水供給予測量を、電力需要パターンと温水需要ピーク時刻までの時間Taとに基づいて算出するので、温水需要ピーク時刻までに発電によって供給される温水量を確実に予測することができる。
【0064】
また、温水消費予測量を、温水需要パターンと温水需要ピーク時刻までの時間Taとに基づいて算出するので、温水需要ピーク時刻までに消費される温水量を確実に予測することができる。
【0065】
また、単位時間あたり熱量算出部51が、所定時間毎に、温水需要ピーク時刻までの時間Taと同ピーク時刻における温水の過不足量Wとに基づいて温水需要ピーク時刻までに必要な熱量Qの単位時間あたり熱量Pを算出し、発電補正量算出部52が、単位時間あたり熱量算出部51によって算出された単位時間あたり熱量Pを発生させるのに必要な発電量Phを発電補正量として算出し、電力計22が所定時間毎に負荷装置21における消費電力を検出し、加算部47cと発電量指示値算出部53が、発電補正量算出部52によって算出された発電補正量Phと電力計22によって検出された消費電力Psとに基づいて発電量指示値を算出して発電装置10に出力する。これにより、それら算出した発電補正量Phと検出した消費電力Psとに基づいて出力電力を所定時間毎に算出しその出力電力となるように発電装置10を制御するようにしたので、発電量を随時補正して突発的な熱負荷または/および電力負荷に対応した発電を行うことにより、効率よく電力と熱とを供給することができる。
【0066】
また、ピーク時刻までの時間算出部43が、発電補正量Phを算出するとともに消費電力Psを検出するその時刻と温水需要パターンとに基づいて温水需要ピーク時刻までの時間をTa算出し、温水の過不足量を最終的に算出する加算部47bが、温水供給予測量、温水消費予測量および貯湯槽の残湯量に基づいて温水需要ピーク時刻における温水の過不足量Wを算出するので、温水需要ピーク時刻までに必要な熱量Qの単位時間あたり熱量Pを確実に算出することができる。
【0067】
また、温水供給予測量算出部45が、電力需要パターンと温水需要ピーク時刻までの時間Taとに基づいて温水供給予測量を算出し、温水消費予測量算出部44が、温水需要パターンと温水需要ピーク時刻までの時間Taとに基づいて温水消費予測量を算出するので、温水需要ピーク時刻における温水の過不足量Wを確実に算出することができる。
【図面の簡単な説明】
【0068】
【図1】本発明によるコジェネレーションシステムの一実施の形態の概要を示す概要図である。
【図2】図1に示す発電器および貯湯槽を詳細に示す概要図である。
【図3】図1に示す発電制御装置をブロック線図化した概要図である。
【図4】温水使用場所における温水需要パターンを示す図である。
【図5】電力使用場所における電力需要パターンを示す図である。
【符号の説明】
【0069】
10…発電装置、11…発電器、11a…改質装置、11b…CO低減装置、11c…燃料電池、12…変換器、13…燃料供給装置、14…水供給装置、15…送電線、16…系統電源、17…温水使用場所、18…給湯器、19…燃料供給管、19a…流量計、20…電力使用場所、21…負荷装置、22…電力計、30…貯湯槽、31…導入管、32…導出管、33…ポンプ、34…残湯量検出センサ、35…ラジエータ、36,37…第1および第2温度センサ、38…温水供給管、39…流量計、40…発電制御装置、41a,41b,41c…記憶部、42…タイマ、43…温水需要ピーク時刻までの時間算出部、44…温水消費予測量算出部、45…温水供給予測量算出部、46…貯湯槽残湯量算出部、47a,47b,47c…加算部、48…燃料電池冷却水入口温度検出部、49…燃料電池冷却水出口温度検出部、51…単位時間あたり熱量算出部、52…発電補正量算出部、53…発電量指示値算出部。

【特許請求の範囲】
【請求項1】
負荷装置に電力を供給する発電装置と、発電の際に生じる熱エネルギーによって加熱された温水を溜めておくとともにその溜めておいた温水を供給する貯湯槽とを備えたコジェネレーションシステムの発電制御方法において、
所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて前記温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出しその熱量を発生させるのに必要な発電量を発電補正量として算出するとともに前記負荷装置における消費電力を検出し、それら算出した発電補正量と検出した消費電力とに基づいて出力電力を前記所定時間毎に算出しその出力電力となるように前記発電装置を制御するようにしたことを特徴とするコジェネレーションシステムの発電制御方法。
【請求項2】
請求項1において、前記温水需要ピーク時刻までの時間は、前記発電補正量を算出するとともに前記消費電力を検出するその時刻と温水需要パターンとに基づいて算出することを特徴とするコジェネレーションシステムの発電制御方法。
【請求項3】
請求項1において、前記温水需要ピーク時刻における温水の過不足量は、温水供給予測量、温水消費予測量および前記貯湯槽の残湯量に基づいて算出することを特徴とするコジェネレーションシステムの発電制御方法。
【請求項4】
請求項3において、温水供給予測量は、電力需要パターンと前記温水需要ピーク時刻までの時間とに基づいて算出することを特徴とするコジェネレーションシステムの発電制御方法。
【請求項5】
請求項3において、温水消費予測量は、温水需要パターンと前記温水需要ピーク時刻までの時間とに基づいて算出することを特徴とするコジェネレーションシステムの発電制御方法。
【請求項6】
負荷装置に電力を供給する発電装置と、発電の際に生じる熱エネルギーによって加熱された温水を溜めておくとともにその溜めておいた温水を供給する貯湯槽とを備えたコジェネレーションシステムの発電を制御する発電制御装置において、
所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて前記温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出する単位時間あたり熱量算出手段と、
該単位時間あたり熱量算出手段によって算出された単位時間あたり熱量を発生させるのに必要な発電量を発電補正量として算出する発電補正量算出手段と、
前記所定時間毎に前記負荷装置における消費電力を検出する消費電力検出手段と、
前記発電補正量算出手段によって算出された発電補正量と前記消費電力検出手段によって検出された消費電力とに基づいて発電量指示値を算出して前記発電装置に出力する発電量指示値算出手段とを備えたことを特徴とするコジェネレーションシステムの発電制御装置。
【請求項7】
請求項6において、単位時間あたり熱量算出手段は、前記発電補正量を算出するとともに前記消費電力を検出するその時刻と温水需要パターンとに基づいて前記温水需要ピーク時刻までの時間を算出するピーク時刻までの時間算出手段と、温水供給予測量、温水消費予測量および前記貯湯槽の残湯量に基づいて前記温水需要ピーク時刻における温水の過不足量を算出する温水の過不足量算出手段とから構成されていることを特徴とするコジェネレーションシステムの発電制御装置。
【請求項8】
請求項7において、前記温水の過不足量算出手段は、電力需要パターンと前記温水需要ピーク時刻までの時間とに基づいて前記温水供給予測量を算出する温水供給予測量算出手段と、温水需要パターンと前記温水需要ピーク時刻までの時間とに基づいて前記温水消費予測量を算出する温水消費予測量算出手段とから構成されていることを特徴とするコジェネレーションシステムの発電制御装置。
【請求項9】
負荷装置に電力を供給する発電装置と、発電の際に生じる熱エネルギーによって加熱された温水を溜めておくとともにその溜めておいた温水を供給する貯湯槽と、前記発電装置の発電を制御する発電制御装置とを備えたコジェネレーションシステムにおいて、
前記発電制御装置は、
所定時間毎に、温水需要ピーク時刻までの時間と同ピーク時刻における温水の過不足量とに基づいて前記温水需要ピーク時刻までに必要な熱量の単位時間あたり熱量を算出する単位時間あたり熱量算出手段と、
該単位時間あたり熱量算出手段によって算出された単位時間あたり熱量を発生させるのに必要な発電量を発電補正量として算出する発電補正量算出手段と、
前記所定時間毎に前記負荷装置における消費電力を検出する消費電力検出手段と、
前記発電補正量算出手段によって算出された発電補正量と前記消費電力検出手段によって検出された消費電力とに基づいて発電量指示値を算出して前記発電装置に出力する発電量指示値算出手段とを備えたことを特徴とするコジェネレーションシステム。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate