説明

ゴルフボール

【課題】、いわゆるディスタンス系ゴルフボールにおいて、ミドル、ロングアイアンショットの飛距離が大きく、かつ、ドライスピン量およびウエットスピン量を高めてアプローチショットのコントロール性が改善されたゴルフボールを提供する。
【解決手段】本発明のゴルフボールは、球状コアと前記球状コアを被覆するカバーとを有するゴルフボールであって、前記カバーは、樹脂成分として、ポリウレタンエラストマーを含有し、動的粘弾性装置を用いて、加振周波数10Hz、温度0℃の測定条件で、剪断モードで測定した剪断損失弾性率G”が5.03×10Paより大きく、1.17×10Pa以下であるポリウレタン組成物から形成され、前記ゴルフボールは、球状コアの中心硬度(JIS−C)、コア中心から2.5mm間隔で測定した硬度(JIS−C)、球状コアの表面硬度(JIS−C)、および、カバーのスラブ硬度(JIS−C)を、コア中心からの距離に対してプロットしたときに、最小二乗法によって求めた線形近似曲線のRが0.95以上である硬度分布を有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ゴルフボールに関するものであり、より詳細には、アプローチショットのコントロール性とミドル、ロングアイアンショットの飛距離の改良に関するものである。
【背景技術】
【0002】
ゴルフボールを性能特性で大別すると、ディスタンス系ゴルフボールとスピン系ゴルフボールとに分けられる。ディスタンス系ゴルフボールは、例えば、高硬度のカバーを採用することにより、スピン量が比較的低いゴルフボールである。飛距離や方向性に重点が置かれている。一方、スピン系ゴルフボールは、低硬度のカバーを採用することにより、スピン量が比較的高いゴルフボールである。アプローチショットをスピンでとめたり、ドローやフェードなどのコントロール性に重点が置かれている。
【0003】
ゴルフボールのカバーを構成する樹脂成分としては、アイオノマー樹脂やポリウレタンが使用されている。アイオノマー樹脂は、剛性が高く、ディスタンス系ゴルフボールを設計するのに好適な材料である。ポリウレタンは、アイオノマー樹脂に比べて軟質であり、スピン系ゴルフボールを設計するのに好適な材料である。例えば、特許文献1には、ポリウレタンカバーを有するゴルフボールが開示されている。
【0004】
アプローチショットでゴルフボールを止めるには、例えば、柔らかいカバー材料を採用して、アプローチショットのスピン量を高めることが行われている(特許文献2)。さらに、本願発明者らは、カバーの樹脂成分であるポリウレタンの立体構造を制御して、スピン量を高める技術について特許出願をしている(特許文献3)。新規なポリウレタン材料を開示するものとして、例えば、特許文献4がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−160407号公報
【特許文献2】特開2006−034740号公報
【特許文献3】特開2009−131508号公報
【特許文献4】国際公開WO2009/051114号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0006】
ゴルフボールに対する最も大きな要求の一つは、飛距離を大きくすることである。ドライバーショットの飛距離が大きいゴルフボールついての提案が多くなされているが、ミドル、ロングアイアンに対して飛距離が大きいゴルフボールについてはあまり検討されていない。ドライバーショットの飛距離が大きいゴルフボールは、ミドル、ロングアイアンショットの飛距離も大きくなるという訳ではない。ロングアイアンショットを苦手とするゴルファーは少なくなく、ロングアイアンの代わりに、ユーティリティ、フェアウェイウッドなどの飛距離が出やすいクラブを使用することも多い。
【0007】
2010年から、プロゴルフの世界で、アイアン、ウエッジなどのロフト角が25°以上のクラブの溝について規制が始まった。この溝規制により、ウエッジやショートアイアンなどでのアプローチショットのスピン量が減るため、グリーン上でゴルフボールが止まりにくくなる。特に、ウエット条件のアプローチショットは、クラブフェース上でゴルフボールが滑りやすくなるので、スピンをかけることが難しい。そのため、ウエット条件でのアプローチショットのスピン量を高めることが要望されている。
【0008】
アプローチショットでゴルフボールを止めるために、アプローチショットのスピン量を高めると、ミドル、ロングアイアンショットのスピン量も高くなる。その結果、ミドル、ロングアイアンショットの飛距離が低下するという問題がある。
【0009】
本発明は、上記事情に鑑みてなされたものであり、いわゆるディスタン系ゴルフボールにおいて、ミドル、ロングアイアンショットの飛距離が大きく、かつ、アプローチショットのドライスピン量およびウエットスピン量が高く、コントロール性が改善されたゴルフボールを提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決することができた本発明のゴルフボールは、球状コアと前記球状コアを被覆するカバーとを有するゴルフボールであって、前記カバーは、樹脂成分として、ポリウレタンエラストマーを含有し、動的粘弾性装置を用いて、加振周波数10Hz、温度0℃の測定条件で、剪断モードで測定した剪断損失弾性率G”が5.03×10Paより大きく、1.17×10Pa以下であるポリウレタン組成物から形成され、前記ゴルフボールは、球状コアの中心硬度(JIS−C)、コア中心から2.5mm間隔で測定した硬度(JIS−C)、球状コアの表面硬度(JIS−C)、および、カバーのスラブ硬度(JIS−C)を、コア中心からの距離に対してプロットしたときに、最小二乗法によって求めた線形近似曲線のRが0.95以上である硬度分布を有することを特徴とする。
【0011】
本発明で使用するポリウレタン組成物は、従来のポリウレタン材料に比べて、硬度の割に反発弾性が高い。その結果、カバーを構成する材料として使用すると、飛距離の大きいゴルフボールが得られる。
【0012】
ゴルフボールを打撃したときのカバーの変形は、アプローチショットに対しては、剪断変形が支配的であると考えられる。この仮説に基づいて、ポリウレタン材料特性について鋭意検討した結果、本願発明者らは、アプローチショットのスピン量は、動的粘弾性装置を用いて、加振周波数10Hz、温度0℃の測定条件で、剪断モードで測定した剪断損失弾性率G”に相関していることを見いだしている。そして、本発明では、前記剪断損失弾性率G”が5.03×10Paより大きく、1.17×10Pa以下のポリウレタン組成物を用いることにより、アプローチショットのスピン量を高めることができる。
【0013】
本発明では、前記剪断損失弾性率G”が8.83×10Pa以下であるポリウレタン組成物を用いることがより好ましい。なお、本発明における動的粘弾性の測定条件として、加振周波数:10Hz、温度:0℃の測定条件を採用しているのは、以下の理由に基づく。ゴルフボールをクラブで打撃する際のゴルフボールとクラブとの接触時間は、数100μ秒であり、これを一回の打撃変形と考えると、数1000Hzの周波数の変形に対応する。一般的なポリウレタンエラストマーの時間換算則から、温度:室温、加振周波数:数1000Hzの測定条件で測定する動的粘弾性は、温度:0℃、加振周波数:10Hzの測定条件で測定する動的粘弾性に相当する。
【0014】
また、本発明のゴルフボールは、球状コアと前記球状コアを被覆するカバーとを有するゴルフボールにおいて、球状コアとカバーとを含めたゴルフボール全体の硬度分布を規定する。すなわち、本発明のゴルフボールは、球状コアの中心硬度(JIS−C)、コア中心から2.5mm間隔で測定した硬度(JIS−C)、球状コアの表面硬度(JIS−C)、および、カバーのスラブ硬度(JIS−C)を、コア中心からの距離に対してプロットしたときに、最小二乗法によって求めた線形近似曲線のRが0.95以上である硬度分布を有する。硬度分布が、コア中心からゴルフボール表面に向かってほぼ直線的に増加するゴルフボールは、ミドル、ロングアイアンショットのスピン量が低く、飛距離が大きくなる。
【0015】
本発明で使用するポリウレタン組成物の樹脂成分中における前記ポリウレタンエラストマーの含有率は、50質量%以上であることが好ましい。前記ポリウレタンエラストマーは、ポリイソシアネート成分として、1,4−ビス(イソシアナトメチル)シクロヘキサンを用いたものであることが好ましい。
【0016】
前記1,4−ビス(イソシアナトメチル)シクロヘキサンは、トランス体の比率が80モル%以上であることが好ましい。
【0017】
前記ポリウレタン組成物のスラブ硬度は、ショアD硬度で、50〜65であることが好ましい。
【発明の効果】
【0018】
本発明によれば、いわゆるディスタンス系ゴルフボールにおいて、アプローチショットのドライスピン量およびウエットスピン量が高く、コントロール性が改善されたゴルフボールが得られる。本発明のゴルフボールは、ミドル、ロングアイアンショットのスピン量が低く、ミドル、ロングアイアンショットの飛距離が大きい。
【図面の簡単な説明】
【0019】
【図1】アプローチショットのドライスピン量と剪断損失弾性率G”との相関関係を示すグラフ。
【図2】アプローチショットのドライスピン量と剪断損失弾性率G”との相関関係を示すグラフ。
【図3】アプローチショットのウエットスピン量と剪断損失弾性率G”との相関関係を示すグラフ。
【図4】球状コアの硬度分布を示したグラフ。
【図5】球状コアの硬度分布を示したグラフ。
【図6】球状コアの硬度分布を示したグラフ。
【図7】球状コアの硬度分布を示したグラフ。
【図8】球状コアの硬度分布を示したグラフ。
【図9】球状コアの硬度分布を示したグラフ。
【図10】球状コアの硬度分布を示したグラフ。
【図11】球状コアの硬度分布を示したグラフ。
【図12】ゴルフボールの硬度分布を示したグラフ。
【図13】ゴルフボールの硬度分布を示したグラフ。
【図14】ゴルフボールの硬度分布を示したグラフ。
【図15】ゴルフボールの硬度分布を示したグラフ。
【図16】ゴルフボールの硬度分布を示したグラフ。
【図17】ゴルフボールの硬度分布を示したグラフ。
【図18】ゴルフボールの硬度分布を示したグラフ。
【図19】ゴルフボールの硬度分布を示したグラフ。
【図20】ゴルフボールの硬度分布を示したグラフ。
【図21】ゴルフボールの硬度分布を示したグラフ。
【発明を実施するための形態】
【0020】
本発明のゴルフボールは、球状コアと前記球状コアを被覆するカバーとを有するゴルフボールであって、前記カバーは、樹脂成分として、ポリウレタンエラストマーを含有し、動的粘弾性装置を用いて、加振周波数10Hz、温度0℃の測定条件で、剪断モードで測定した剪断損失弾性率G”が5.03×10Paより大きく、1.17×10Pa以下であるポリウレタン組成物から形成され、前記ゴルフボールは、球状コアの中心硬度(JIS−C)、コア中心から2.5mm間隔で測定した硬度(JIS−C)、球状コアの表面硬度(JIS−C)、および、カバーのスラブ硬度(JIS−C)を、コア中心からの距離に対してプロットしたときに、最小二乗法によって求めた線形近似曲線のRが0.95以上である硬度分布を有することを特徴とする。
【0021】
まず、本発明で使用するポリウレタン組成物について説明する。前記ポリウレタン組成物は、動的粘弾性装置を用いて、加振周波数10Hz、温度0℃の測定条件で、剪断モードで測定した剪断損失弾性率G”が5.03×10Paより大きく、1.17×10Pa以下である。図1は、本発明者らが先に出願した特開2011−125438号で開示したH12MDI−PTMG系ポリウレタンエラストマーをカバーに用いたゴルフボールの剪断損失弾性率とアプローチショットのスピン量との相関関係を示したグラフである。図1から、剪断損失弾性率G”とアプローチショットのスピン量との間には、よい相関が認められ、剪断損失弾性率G”が小さくなるとアプローチショットのスピン量が増大することが分かる。本発明においても、剪断損失弾性率G”が5.03×10Paより大きく、1.17×10Pa以下のポリウレタン組成物を使用する。剪断損失弾性率G”が1.17×10Pa以下であれば、アプローチショットのドライスピン量、および、ウエットスピン量の両方が高くなる。前記剪断損失弾性率G”は、8.83×10Pa以下がより好ましく、6.67×10Pa以下がさらに好ましい。また、前記剪断損失弾性率G”が、5.03×10Paより大きければ、ミドル、ロングアイアンショットのスピン量が高くなり過ぎない。この観点から、前記剪断損失弾性率G”は、7.5×10Pa以上が好ましく、1.0×10Pa以上がさらに好ましい。
【0022】
本発明で使用するポリウレタン組成物の反発弾性は、39%以上が好ましく、40%以上がより好ましく、41%以上がさらに好ましい。反発弾性が39%以上であれば、得られるゴルフボールの反発性が向上し、飛距離の大きいゴルフボールが得られる。一方、反発弾性は、高いほど好ましく、その上限は、特に限定されるものではないが、50%が好ましく、75%がより好ましく、100%がさらに好ましい。
【0023】
本発明で使用するポリウレタン組成物は、樹脂成分として、ポリウレタンエラストマーを含有する。前記ポリウレタンエラストマーは、例えば、ポリイソシアネート成分とポリオール成分とを反応させてなる生成物であり、分子鎖に複数のウレタン結合を有する弾性体(エラストマー)である。必要に応じて、ポリアミン成分を反応させても良い。前記ポリウレタンエラストマーは、1種類のポリウレタンエラストマーであってもよいし、2種以上のポリウレタンエラストマーの混合物であってもよい。
【0024】
前記ポリウレタンエラストマーは、ポリイソシアネート成分として、1,4−ビス(イソシアナトメチル)シクロヘキサンを用いたものであることが好ましい。ポリイソシアネート成分としては、1,4−ビス(イソシアナトメチル)シクロヘキサンのみを使用することが好ましいが、本発明の効果を損なわない範囲で、他のポリイソシアネート成分を併用してもよい。他のポリイソシアネート成分を併用する場合、ポリイソシアネート成分中の1,4−ビス(イソシアナトメチル)シクロヘキサンの含有率は、イソシアネート基の総モル数に対して、1,4−ビス(イソシアナトメチル)シクロヘキサンのイソシアネート基を50モル%以上とすることが好ましく、70モル%以上とすることがより好ましく、80モル%以上とすることがさらに好ましい。
【0025】
前記1,4−ビス(イソシアナトメチル)シクロヘキサンには、トランス体とシス体の幾何異性体が存在する。本発明では、トランス体の比率が80モル%以上である1,4−ビス(イソシアナトメチル)シクロヘキサンを使用することが好ましい。トランス体の比率が80モル%以上である1,4−ビス(イソシアナトメチル)シクロヘキサンを使用することにより、より高いレベルで反発性とスピン量とを両立することができる。この観点から、前記トランス体の比率は、82モル%以上が好ましく、85モル%以上であることがより好ましい。1,4−ビス(イソシアナトメチル)シクロヘキサンのトランス体の比率は、例えば、13C−NMR(日本電子株式会社製JOEL α−400NMR 100MHz)を用いて測定することができる。サンプル調製溶媒としては、クロロホルム、メタノール、ジメチルスルホキシドなどの重水素化溶媒を挙げることができ、重水素化クロロホルムが好適である。測定温度は、20℃〜80℃の範囲を挙げることができ、23℃が好適である。
【0026】
前記1,4−ビス(イソシアナトメチル)シクロヘキサンと併用し得るポリイソシアネート成分としては、イソシアネート基を2以上有するものであれば特に限定されず、例えば、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、2,4−トルエンジイソシアネートと2,6−トルエンジイソシアネートの混合物(TDI)、4,4’−ジフェニルメタンジイソシアネート(MDI)、1,5−ナフチレンジイソシアネート(NDI)、3,3’−ビトリレン−4,4’−ジイソシアネート(TODI)、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、パラフェニレンジイソシアネート(PPDI)などの芳香族ポリイソシアネート;4,4’−ジシクロヘキシルメタンジイソシアネート(H12MDI)、1,3−ジ(イソシアナトメチル)シクロヘキサン、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、ノルボルネンジイソシアネート(NBDI)などの脂環式ポリイソシアネートまたは脂肪族ポリイソシアネートを挙げることができる。
【0027】
本発明で使用するポリウレタンエラストマーを構成し得るポリオール成分としては、数平均分子量が200以上、6000以下のポリオールを使用することが好ましい。数平均分子量が200以上、6000以下のポリオールは、ソフトセグメントを形成し、ポリウレタンに柔軟性を付与する。前記ポリオール成分の数平均分子量は、250以上が好ましく、300以上がより好ましく、1500以上がさらに好ましい。ポリオール成分の数平均分子量が小さすぎると、得られるポリウレタンが硬くなり過ぎる場合があるからである。また、ポリオール成分の数平均分子量が、6000以下であれば、ミドル、ロングアイアンショットに対して低スピンのゴルフボールが得られるからである。この観点から、ポリオール成分の数平均分子量が、4000以下がより好ましく、3000以下がさらに好ましい。
【0028】
ポリオール成分の数平均分子量は、例えば、ゲルパーミエーションクロマトグラフィ(GPC)により、標準物質としてポリスチレン、溶離液としてテトラヒドロフラン、カラムとしてTSK−GEL SUPERH2500(東ソー株式会社製)2本を用いて測定すればよい。
【0029】
数平均分子量が200以上、6000以下のポリオール成分は、重合体ポリオールであることが好ましい。重合体ポリオールとは、低分子化合物を重合して得られる重合体であって、水酸基を複数有するものである。これらの中でも、水酸基を二つ有する重合体ジオールが好ましい。重合体ジオールを使用することにより、直鎖状の熱可塑性ポリウレタンが得られ、ゴルフボールを構成する部材への成形が容易になるからである。
【0030】
数平均分子量が200以上、6000以下の重合体ポリオール成分としては、例えば、ポリオキシエチレングリコール(PEG)、ポリオキシプロピレングリコール(PPG)、ポリテトラメチレンエーテルグリコール(PTMG)などのポリエーテルポリオール;ポリエチレンアジペート(PEA)、ポリブチレンアジペート(PBA)、ポリヘキサメチレンアジペート(PHMA)などの縮合系ポリエステルポリオール;ポリ−ε−カプロラクトン(PCL)などのラクトン系ポリエステルポリオール;ポリヘキサメチレンカーボネートなどのポリカーボネートポリオール;およびアクリルポリオールなどが挙げられ、上述したポリオールの少なくとも2種以上の混合物であってもよい。これらの中でも、重合体ポリオール成分としては、ポリテトラメチレンエーテルグリコールが好ましい。ポリテトラメチレンエーテルグリコールを使用することにより、ミドル、ロングアイアンショットとアプローチショットに対するスピン量を高いレベルで制御することができる。
【0031】
前記ポリウレタンエラストマーを構成する重合体ポリオール成分の水酸基価は、561mgKOH/g以下が好ましく、173mgKOH/g以下がより好ましく、94mgKOH/g以上が好ましく、112mgKOH/g以上がより好ましく、132mgKOH/g以上がさらに好ましい。なお、ポリオール成分の水酸基価は、JIS K 1557−1に準じて、例えば、アセチル化法によって測定することができる。
【0032】
前記ポリウレタンエラストマーは、本発明の効果を損なわない範囲で、鎖延長剤を構成成分として有してもよい。前記鎖延長剤成分としては、低分子量ポリオールや低分子量ポリアミンなどを使用することができる。低分子量ポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロパンジオール(例:1,2−プロパンジオール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオールなど)、ジプロピレングリコール、ブタンジオール(例:1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、2,3−ジメチル−2,3−ブタンジオールなど)、ネオペンチルグリコール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、1,4−シクロへキサンジメチロールなどのジオール;グリセリン、トリメチロールプロパン、ヘキサントリオールなどのトリオール;ペンタエリスリトール、ソルビトールなどのテトラオールまたはヘキサオールなどが挙げられる。
【0033】
また、鎖延長剤成分として使用できる低分子量のポリアミンは、少なくとも2以上のアミノ基を有するものであれば特に限定されない。前記ポリアミンとしては、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミンなどの脂肪族ポリアミン;イソホロンジアミン、ピペラジンなどの脂環式ポリアミン;芳香族ポリアミンなどが挙げられる。
【0034】
前記芳香族ポリアミンは、少なくとも2以上のアミノ基が芳香環に直接または間接的に結合しているものであれば、特に限定されない。ここで、間接的に結合しているとは、アミノ基が、例えば低級アルキレン基を介して芳香環に結合していることをいう。前記芳香族ポリアミンとしては、例えば、1つの芳香環に2以上のアミノ基が結合している単環式芳香族ポリアミンでもよいし、少なくとも1つのアミノ基が1つの芳香環に結合しているアミノフェニル基を2個以上含む多環式芳香族ポリアミンでもよい。
【0035】
前記単環式芳香族ポリアミンとしては、例えば、フェニレンジアミン、トルエンジアミン、ジエチルトルエンジアミン、ジメチルチオトルエンジアミンなどのアミノ基が芳香環に直接結合しているタイプ;キシリレンジアミンのようなアミノ基が低級アルキレン基を介して芳香環に結合しているタイプなどが挙げられる。また、前記多環式芳香族ポリアミンとしては、少なくとも2つのアミノフェニル基が直接結合しているポリ(アミノベンゼン)でもよいし、少なくとも2つのアミノフェニル基が低級アルキレン基やアルキレンオキシド基を介在して結合していてもよい。これらのうち、低級アルキレン基を介して2つのアミノフェニル基が結合しているジアミノジフェニルアルカンが好ましく、4,4’−ジアミノジフェニルメタン及びその誘導体が特に好ましい。
【0036】
前記鎖延長剤の分子量は、400以下が好ましく、350以下がより好ましく、200未満がさらに好ましく、30以上が好ましく、40以上がより好ましく、45以上がさらに好ましい。分子量が大きくなりすぎると、ポリウレタンのソフトセグメントを構成する高分子量ポリオールとの区別が困難になるからである。なお、鎖延長剤として使用する「低分子量ポリオール」および「低分子量ポリアミン」は、分子量分布を有さない低分子化合物である点で、低分子化合物を重合して得られる数平均分子量が200以上6000以下の重合体ポリオールとは区別される。
【0037】
本発明で使用するポリウレタンエラストマーの構成態様としては、特に限定されるものではないが、例えば、ポリイソシアネート成分と数平均分子量が200以上6000以下のポリオール成分とによって構成されている態様;ポリイソシアネート成分と数平均分子量が200以上6000以下のポリオール成分と鎖延長剤成分によって構成されている態様などを挙げることができる。
【0038】
本発明で使用するポリウレタン組成物のスラブ硬度は、ショアD硬度で、50以上が好ましく、52以上がより好ましく、54以上がさらに好ましく、65以下が好ましく、64以下がより好ましく、63以下がさらに好ましい。また、本発明で使用するポリウレタン組成物のスラブ硬度は、JIS−C硬度で、76以上が好ましく、79以上がより好ましく、81以上がさらに好ましく、96以下が好ましく、95以下がより好ましく、94以下がさらに好ましい。ポリウレタン組成物の硬度が低すぎると、ミドル、ロングアイアンショットのスピン量が増加する場合がある。また、ポリウレタン組成物の硬度が高すぎると、アプローチショットのスピン量が低下しすぎる場合がある。
【0039】
本発明で使用するポリウレタンエラストマーは、いわゆる熱可塑性ポリウレタンエラストマーや熱硬化性ポリウレタンエラストマー(二液硬化型ポリウレタンエラストマー)のいずれの態様であってもよい。熱可塑性ポリウレタンエラストマーとは、加熱により可塑性を示すポリウレタンエラストマーであり、一般に、ある程度高分子量化された直鎖構造を有するポリウレタンエラストマーを意味する。一方、熱硬化性ポリウレタンエラストマー(二液硬化型ポリウレタンエラストマー)は、比較的低分子量のプレポリマーと硬化剤とを反応させて高分子量化することにより得られるポリウレタンエラストマーである。熱硬化性ポリウレタンエラストマーには、使用するプレポリマーや硬化剤の官能基の数を制御することによって、直鎖構造のポリウレタンエラストマーや3次元架橋構造を有するポリウレタンエラストマーが含まれる。なお、本発明で使用するポリウレタンエラストマーは、熱可塑性ポリウレタンエラストマーが好ましい。
【0040】
ポリウレタンエラストマーの合成方法としては、ワンショット法、あるいは、プレポリマー法を挙げることができる。ワンショット法とは、ポリイソシアネート成分、ポリオール成分などを一括で反応させる方法である。プレポリマー法とは、多段階でポリイソシアネート成分、ポリオール成分などを反応させる方法であり、例えば、比較的低分子量のウレタンプレポリマーを合成した後、続けてさらに高分子量化する方法である。なお、本発明に用いられるポリウレタンは、プレポリマー法によって作製することが好ましい。
【0041】
以下、ポリウレタンエラストマーをプレポリマー法にて作製する態様の一例として、イソシアネート基末端ウレタンプレポリマーを合成した後、鎖延長剤により高分子量化する態様について詳細に説明する。
【0042】
まず、ポリイソシアネート成分と、重合体ポリオール成分とを反応させてイソシアネート基末端ウレタンプレポリマーを合成する。この際、ポリイソシアネート成分と重合体ポリオール成分との仕込み比は、重合体ポリオール成分の有する水酸基(OH)に対するポリイソシアネート成分の有するイソシアネート基(NCO)のモル比(NCO/OH)を1以上とすることが好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上であり、10以下が好ましく、より好ましくは9以下、さらに好ましくは8以下である。
【0043】
また、プレポリマー化反応を行う際の温度は、10℃以上が好ましく、より好ましくは30℃以上、さらに好ましくは50℃以上であり、200℃以下が好ましく、より好ましくは150℃以下、さらに好ましくは100℃以下である。また、反応時間は10分間以上が好ましく、より好ましくは1時間以上、さらに好ましくは3時間以上であり、32時間以下が好ましく、より好ましくは16時間以下、さらに好ましくは8時間以下である。
【0044】
次に、得られたイソシアネート基末端ウレタンプレポリマーを、鎖延長剤成分により鎖長延長反応させて高分子量ポリウレタンエラストマーを得る。この際、イソシアネート基末端ウレタンプレポリマーと鎖延長剤成分との仕込み比は、鎖延長剤成分の有する水酸基(OH)またはアミノ基(NH)に対するイソシアネート基末端ウレタンプレポリマーの有するイソシアネート基(NCO)のモル比(NCO/OHまたはNH)を0.9以上とすることが好ましく、より好ましくは0.92以上、さらに好ましくは0.95以上であり、1.1以下が好ましく、より好ましくは1.08以下、さらに好ましくは1.05以下である。
【0045】
鎖延長反応を行う際の温度は、10℃以上が好ましく、より好ましくは30℃以上、さらに好ましくは50℃以上であり、220℃以下が好ましく、より好ましくは170℃以下、さらに好ましくは120℃以下である。また、反応時間は10分間以上が好ましく、より好ましくは30分間以上、さらに好ましくは1時間以上であり、20日間以下が好ましく、より好ましくは10日間以下、さらに好ましくは5日間以下である。
【0046】
プレポリマー化反応および鎖延長反応は、いずれも乾燥窒素雰囲気下で行うことが好ましい。
【0047】
ポリウレタンエラストマーの合成には、公知の触媒を使用することができる。前記触媒としては、例えば、トリエチルアミン、N,N−ジメチルシクロヘキシルアミンなどのモノアミン類;N,N,N',N'−テトラメチルエチレンジアミン、N,N,N',N'',N''−ペンタメチルジエチレントリアミンなどのポリアミン類;1,8−ジアザビシクロ[5.4.0]−7−ウンデセン(DBU)、トリエチレンジアミンなどの環状ジアミン類;ジブチルチンジラウリレート、ジブチルチンジアセテートなどの錫系触媒などが挙げられる。これらの触媒は単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ジブチルチンジラウリレート、ジブチルチンジアセテートなどの錫系触媒が好ましく、特に、ジブチルチンジラウリレートが好適に使用される。
【0048】
本発明で使用するポリウレタン組成物は、樹脂成分として、上述したポリウレタンエラストマーのみを含有することが好ましいが、本発明の効果を損なわない範囲で、アイオノマー樹脂や他の熱可塑性エラストマーを含有しても良い。この場合、樹脂成分中のポリウレタンエラストマーの含有率は、50質量%以上であることが好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましい。特に、ポリイソシアネート成分として、1,4−ビス(イソシアナトメチル)シクロヘキサンを用いたポリウレタンエラストマーの樹脂成分中の含有率が50質量%以上であることが好ましく、より好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。
【0049】
前記アイオノマー樹脂としては、例えば、エチレンと炭素数3〜8個のα,β−不飽和カルボン酸の共重合体中のカルボキシル基の少なくとも一部を金属イオンで中和したもの、エチレンと炭素数3〜8個のα,β−不飽和カルボン酸とα,β−不飽和カルボン酸エステルとの三元共重合体中のカルボキシル基の少なくとも一部を金属イオンで中和したもの、または、これらの混合物を挙げることができる。前記α,β−不飽和カルボン酸としては、例えばアクリル酸、メタクリル酸、フマル酸、マレイン酸、クロトン酸等が挙げられ、特にアクリル酸またはメタクリル酸が好ましい。また、α,β−不飽和カルボン酸エステルとしては、例えばアクリル酸、メタクリル酸、フマル酸、マレイン酸等のメチル、エチル、プロピル、n−ブチル、イソブチルエステル等が用いられ、特にアクリル酸エステルまたはメタクリル酸エステルが好ましい。前記中和金属イオンとしては、ナトリウム、カリウム、リチウムなどの1価の金属イオン;マグネシウム、カルシウム、亜鉛、バリウム、カドミウムなどの2価の金属イオン;アルミニウムなどの3価の金属イオン;錫、ジルコニウムなどのその他のイオンが挙げられるが、特にナトリウム、亜鉛、マグネシウムイオンが反発性、耐久性等から好ましく用いられる。
【0050】
前記アイオノマー樹脂の具体例としては、三井デュポンポリケミカル(株)から市販されているハイミラン、さらにデュポン(株)から市販されているサーリン、エクソンモービル化学(株)から市販されているアイオテックなどを挙げることができる。
【0051】
前記熱可塑性エラストマーの具体例としては、例えば、アルケマ(株)から商品名「ペバックス(登録商標)(例えば、「ペバックス2533」)」で市販されている熱可塑性ポリアミドエラストマー、BASFジャパン(株)から商品名「エラストラン(登録商標)(例えば、「エラストランXNY85A」)」で市販されている熱可塑性ポリウレタンエラストマー、東レ・デュポン(株)から商品名「ハイトレル(登録商標)(例えば、「ハイトレル3548」、「ハイトレル4047」)」で市販されている熱可塑性ポリエステルエラストマー、三菱化学(株)から商品名「ラバロン(登録商標)(例えば、「ラバロンT3221C」)」で市販されている熱可塑性スチレンエラストマーなどが挙げられる。前記アイオノマー樹脂および熱可塑性エラストマーは、単独あるいは2種以上を混合して使用することができる。熱可塑性エラストマーを併用する場合には、ポリイソシアネート成分として、1,4−ビス(イソシアナトメチル)シクロヘキサンを用いない熱可塑性ポリウレタンエラストマーを併用することが好ましい。
【0052】
本発明で使用するポリウレタン組成物は、樹脂成分として、上述したポリウレタンエラストマーを含有するものであれば、特に限定されない。前記ポリウレタン組成物は、さらに、白色顔料(例えば、酸化チタン)、青色顔料などの顔料成分、炭酸カルシウムや硫酸バリウムなどの比重調整剤、分散剤、老化防止剤、紫外線吸収剤、光安定剤、蛍光材料または蛍光増白剤などを含有してもよい。ポリウレタン組成物に添加剤を配合する場合は、添加剤を配合したポリウレタン組成物が、反発弾性、剪断損失弾性率およびスラブ硬度などの物性を満足すればよい。
【0053】
前記白色顔料(例えば、酸化チタン)の含有量は、樹脂成分100質量部に対して、0.5質量部以上、より好ましくは1質量部以上であって、10質量部以下、より好ましくは8質量部以下であることが望ましい。白色顔料の含有量を0.5質量部以上とすることによって、ポリウレタン組成物に隠蔽性を付与することができる。また、白色顔料の含有量が10質量部超になると、得られるゴルフボール構成部材の耐久性が低下する場合があるからである。
【0054】
本発明のゴルフボールのカバーは、上述したポリウレタン組成物(以下、単に「カバー用組成物」と称する場合がある)を用いて成形することにより作製される。カバーを成形する方法としては、例えば、カバー用組成物から中空のシェルを成形し、コアを複数のシェルで被覆して圧縮成形する方法(好ましくは、カバー用組成物から中空のハーフシェルを成形し、コアを2枚のハーフシェルで被覆して圧縮成形する方法)、または、カバー用組成物をコア上に直接射出成形する方法を挙げることができる。
【0055】
ハーフシェルの成形は、圧縮成形法または射出成形法のいずれの方法によっても行うことができるが、圧縮成形法が好適である。カバー用組成物を圧縮成形してハーフシェルに成形する条件としては、例えば、1MPa以上、20MPa以下の圧力で、カバー用組成物の流動開始温度に対して、−20℃以上、70℃以下の成形温度を挙げることができる。前記成形条件とすることによって、均一な厚みをもつハーフシェルを成形できる。ハーフシェルを用いてカバーを成形する方法としては、例えば、コアを2枚のハーフシェルで被覆して圧縮成形する方法を挙げることができる。ハーフシェルを圧縮成形してカバーに成形する条件としては、例えば、0.5MPa以上、25MPa以下の成形圧力で、カバー用組成物の流動開始温度に対して、−20℃以上、70℃以下の成形温度を挙げることができる。上記成形条件とすることによって、均一な厚みを有するゴルフボールカバーを成形できる。
【0056】
カバー用組成物を射出成形してカバーを成形する場合、押出して得られたペレット状のカバー用組成物を用いて射出成形しても良いし、あるいは、基材樹脂成分や顔料などのカバー用材料をドライブレンドして直接射出成形してもよい。カバー成形用上下金型としては、半球状キャビティを有し、ピンプル付きで、ピンプルの一部が進退可能なホールドピンを兼ねているものを使用することが好ましい。射出成形によるカバーの成形は、上記ホールドピンを突き出し、コアを投入してホールドさせた後、カバー用組成物を注入して、冷却することによりカバーを成形することができ、例えば、9MPa〜15MPaの圧力で型締めした金型内に、150℃〜250℃に加熱したカバー用組成物を0.5秒〜5秒で注入し、10秒〜60秒間冷却して型開きすることにより行う。
【0057】
前記カバーの厚みは、4.0mm以下が好ましく、より好ましくは3.0mm以下、さらに好ましくは2.0mm以下である。カバーの厚みが4.0mm以下であれば、得られるゴルフボールの反発性や打球感がより良好となる。前記カバーの厚みは、0.3mm以上が好ましく、0.5mm以上がより好ましく、さらに好ましくは0.8mm以上、特に好ましくは1.0mm以上である。カバーの厚みが0.3mm未満では、カバーの耐久性や耐摩耗性が低下する場合がある。複数のカバー層の場合は、複数のカバー層の合計厚みが上記範囲であることが好ましい。
【0058】
カバーが成形されたゴルフボール本体は、金型から取り出し、必要に応じて、バリ取り、洗浄、サンドブラストなどの表面処理を行うことが好ましい。また、所望により、塗膜やマークを形成することもできる。前記塗膜の膜厚は、特に限定されないが、5μm以上が好ましく、7μm以上がより好ましく、50μm以下好ましく、40μm以下より好ましく、30μm以下がさらに好ましい。膜厚が5μm未満になると継続的な使用により塗膜が摩耗消失しやすくなり、膜厚が50μmを超えるとディンプルの効果が低下してゴルフボールの飛行性能が低下するからである。
【0059】
ゴルフボールの表面には、通常、ディンプルと呼ばれるくぼみが形成される。ディンプルの総数は、200個以上500個以下が好ましい。ディンプルの総数が200個未満では、ディンプルの効果が得られにくい。また、ディンプルの総数が500個を超えると、個々のディンプルのサイズが小さくなり、ディンプルの効果が得られにくい。形成されるディンプルの形状(平面視形状)は、特に限定されるものではなく、円形;略三角形、略四角形、略五角形、略六角形などの多角形;その他不定形状;を単独で使用してもよいし、2種以上を組合せて使用してもよい。
【0060】
本発明のゴルフボールのカバーのスラブ硬度は、ショアD硬度で、50以上が好ましく、52以上がより好ましく、54以上がさらに好ましく、65以下が好ましく、64以下がより好ましく、63以下がさらに好ましい。また、本発明のゴルフボールのカバーのスラブ硬度は、JIS−C硬度で、76以上が好ましく、79以上がより好ましく、81以上がさらに好ましく、96以下が好ましく、95以下がより好ましく、94以下がさらに好ましい。カバーのスラブ硬度が低すぎると、ミドル、ロングアイアンショットのスピン量が増加する場合がある。また、カバーのスラブ硬度が高すぎると、アプローチショットのスピン量が低下しすぎる場合がある。前記カバーのスラブ硬度は、カバー用組成物をシート状に成形して測定したスラブ硬度であり、後述する測定方法により測定することができる。
【0061】
本発明のゴルフボールは、球状コアの中心硬度(JIS−C)、コア中心から2.5mm間隔で測定した硬度(JIS−C)、球状コアの表面硬度(JIS−C)、および、カバーのスラブ硬度(JIS−C)を、コア中心からの距離に対してプロットしたときに、最小二乗法によって求めた線形近似曲線のRが0.95以上である硬度分布を有する。
【0062】
球状コアの硬度は、球状コアを二等分して、得られた断面において、コア中心、球状コアの任意の半径についてコア中心から2.5mm間隔でJIS−C硬度を測定する。JIS−C硬度を測定する点数は、球状コアの半径に応じて変化するが、2.5mm間隔で硬度を測ることにより、球状コア全体の硬度分布が得られる。また、球状コアの表面硬度とカバーのスラブ硬度を測定する。次に、上記のように測定されたJIS−C硬度を縦軸とし、コア中心からの距離(mm)を横軸として、測定結果をプロットしてグラフを作成する。カバーのスラブ硬度は、コア中心からゴルフボール表面までの距離(ゴルフボール半径)に対してプロットする。本発明では、このプロットから最小二乗法により求めた線形近似曲線のRが、0.95以上である。最小二乗法によって求めた線形近似曲線のRは、得られたプロットの直線性を指標するものである。Rが0.95以上であれば、ゴルフボール全体の硬度分布が略直線状であることを意味する。硬度分布が略直線状であるゴルフボールは、ミドル、ロングアイアンショットのスピン量が低下する。その結果、ミドル、ロングアイアンショットの飛距離が大きくなる。前記線形近似曲線のRは、0.96以上がより好ましい。直線性が高まることによって、ミドル、ロングアイアンショットの飛距離がより大きくなる。
【0063】
さらに、本発明のゴルフボールに用いられる球状コアは、球状コアの中心、表面、および、中心から2.5mm間隔で測定したJIS−C硬度を、コア中心からの距離に対してプロットしたときに、最小二乗法によって求めた線形近似曲線のRが0.95以上である硬度分布を有することが好ましい。球状コアについて、Rが0.95以上であれば、コアの硬度分布の直線性が高まり、ミドル、ロングアイアンショットのスピン量が低下し、飛距離が大きくなる。球状コアについて、前記線形近似曲線のRは、0.96以上がより好ましい。
【0064】
前記球状コアの表面硬度Hsと中心硬度Hoとの硬度差(Hs−Ho)は、JIS−C硬度で、15以上が好ましく、20以上がより好ましく、25以上がさらに好ましく、50以下が好ましく、45以下がより好ましく、40以下がさらに好ましい。コア表面とコア中心の硬度差が大きいと、高打出角および低スピンの飛距離が大きいゴルフボールが得られる。
【0065】
前記球状コアの中心硬度Hoは、JIS−C硬度で、30以上であることが好ましく、より好ましくは40以上、さらに好ましくは45以上、最も好ましくは50以上である。球状コアの中心硬度HoがJIS−C硬度で30未満であると、軟らかくなりすぎて反発性が低下する場合がある。また、球状コアの中心硬度Hoは、JIS−C硬度で70以下であることが好ましく、より好ましくは65以下である。前記中心硬度HoがJIS−C硬度で70を超えると、硬くなり過ぎて、打球感が低下する傾向があるからである。
【0066】
前記球状コアの表面硬度Hsは、JIS−C硬度で、78以上が好ましく、より好ましくは80以上であり、100以下が好ましく、より好ましくは95以下、さらに好ましくは90以下である。前記球状コアの表面硬度を、JIS−C硬度で78以上とすることにより、球状コアが軟らかくなり過ぎることがなく、良好な反発性が得られる。また、前記球状コアの表面硬度をJIS−C硬度で100以下とすることにより、球状コアが硬くなり過ぎず、良好な打球感が得られる。
【0067】
前記球状コアの直径は、34.8mm以上が好ましく、より好ましくは36.8mm以上、さらに好ましくは38.8mm以上であり、42.2mm以下が好ましく、41.8mm以下がより好ましく、さらに好ましくは41.2mm以下であり、最も好ましくは40.8mm以下である。前記球状コアの直径が34.8mm以上であれば、カバーの厚みが厚くなり過ぎず、反発性がより良好となる。一方、球状コアの直径が42.2mm以下であれば、カバーが薄くなり過ぎず、カバーの機能がより発揮される。
【0068】
前記球状コアは、直径34.8mm〜42.2mmの場合、初期荷重98Nを負荷した状態から終荷重1275Nを負荷したときまでの圧縮変形量(圧縮方向にセンターが縮む量)が、2.0mm以上が好ましく、より好ましくは2.8mm以上、6.0mm以下が好ましく、より好ましくは5.0mm以下、さらに好ましくは4.5mm以下である。前記圧縮変形量が、2.0mm以上であれば打球感がより良好となり、6.0mm以下であれば、反発性がより良好となる。
【0069】
本発明のゴルフボールの球状コアは、(a)基材ゴム、(b)共架橋剤として炭素数が3〜8個のα,β−不飽和カルボン酸および/またはその金属塩、(c)架橋開始剤、(d)カルボン酸および/またはその塩を含有し、(b)共架橋剤として炭素数が3〜8個のα,β−不飽和カルボン酸のみを含有する場合には、さらに(f)金属化合物を含有するゴム組成物から形成されることが好ましい。また、前記ゴム組成物は、さらに(e)有機硫黄化合物を含有することが好ましい。前記ゴム組成物から形成される球状コアは、コア硬度分布が、コア中心から表面に向かってほぼ直線的に増加しやすい。
【0070】
前記ゴム組成物から形成される球状コアの硬度分布が、コア中心から表面に向かってほぼ直線的に増加する理由は、以下のように考えられる。コアを成形する際のコア内部温度は、コア中心部で高く、コア表面に向かって低下する。基材ゴムの架橋反応の反応熱がコア中心部で溜まるからである。(d)前記カルボン酸および/またはその塩は、コア成形時において(b)炭素数が3〜8個のα,β−不飽和カルボン酸の金属塩と反応する。すなわち、炭素数が3〜8個のα,β−不飽和カルボン酸の金属塩とカチオンを交換し、炭素数が3〜8個のα,β−不飽和カルボン酸の金属塩による金属架橋を切断する。このカチオンの交換反応は、温度が高いコア中心部において起こりやすく、表面にむかって起こりにくくなる。言い換えると、金属架橋の切断は、コア中心部において起こりやすく、表面に向かって起こりにくくなる。その結果、コア内部の架橋密度が、コア中心から表面に向かって高くなるので、コア硬度が、コア中心から表面に向かってほぼ直線的に増加するものと考えられる。そして、(d)カルボン酸および/またはその塩とともに(e)有機硫黄化合物を用いることにより、硬度分布の勾配を制御することができ、コアの外剛内柔構造の度合を一層高めることができる。
【0071】
(a)基材ゴムとしては、天然ゴムおよび/または合成ゴムを使用することができ、例えば、ポリブタジエンゴム、天然ゴム、ポリイソプレンゴム、スチレンポリブタジエンゴム、エチレン−プロピレン−ジエンゴム(EPDM)などを使用できる。これらは単独で用いても良いし、2種以上を併用してもよい。これらの中でも、特に、反発に有利なシス−1,4−結合を、40質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上有するハイシスポリブタジエンが好適である。
【0072】
前記ハイシスポリブタジエンは、1,2−ビニル結合の含有量が2質量%以下であることが好ましく、より好ましくは1.7質量%以下、さらに好ましくは1.5質量%以下である。1,2−ビニル結合の含有量が多すぎると反発性が低下する場合がある。
【0073】
前記ハイシスポリブタジエンは、希土類元素系触媒で合成されたものが好適であり、特に、ランタン系列希土類元素化合物であるネオジム化合物を用いたネオジム系触媒の使用が、1,4−シス結合が高含量、1,2−ビニル結合が低含量のポリブタジエンゴムを優れた重合活性で得られるので好ましい。
【0074】
前記ハイシスポリブタジエンは、ムーニー粘度(ML1+4(100℃))が、30以上であることが好ましく、より好ましくは32以上、さらに好ましくは35以上であり、140以下が好ましく、より好ましくは120以下、さらに好ましくは100以下、最も好ましくは80以下である。なお、本発明でいうムーニー粘度(ML1+4(100℃))とは、JIS K6300に準じて、Lローターを使用し、予備加熱時間1分間、ローターの回転時間4分間、100℃の条件下にて測定した値である。
【0075】
前記ハイシスポリブタジエンとしては、分子量分布Mw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が、2.0以上であることが好ましく、より好ましくは2.2以上、さらに好ましくは2.4以上、最も好ましくは2.6以上であり、6.0以下であることが好ましく、より好ましくは5.0以下、さらに好ましくは4.0以下、最も好ましくは3.4以下である。ハイシスポリブタジエンの分子量分布(Mw/Mn)が小さすぎると作業性が低下し、大きすぎると反発性が低下するおそれがある。なお、分子量分布は、ゲルパーミエーションクロマトグラフィ(東ソー社製、「HLC−8120GPC」)により、検知器として示差屈折計を用いて、カラム:GMHHXL(東ソー社製)、カラム温度:40℃、移動相:テトラヒドロフランの条件で測定し、標準ポリスチレン換算値として算出した値である。
【0076】
次に、(b)炭素数が3〜8個のα,β−不飽和カルボン酸および/またはその金属塩について説明する。(b)炭素数が3〜8個のα,β−不飽和カルボン酸および/またはその金属塩は、共架橋剤として、ゴム組成物に配合されるものであり、基材ゴム分子鎖にグラフト重合することによって、ゴム分子を架橋する作用を有する。本発明で使用するゴム組成物が、共架橋剤として炭素数が3〜8個のα,β−不飽和カルボン酸のみを含有する場合、ゴム組成物は、(f)金属化合物をさらに含有することが好ましい。ゴム組成物中で炭素数が3〜8個のα,β−不飽和カルボン酸を金属化合物で中和することにより、共架橋剤として炭素数が3〜8個のα,β−不飽和カルボン酸の金属塩を使用する場合と実質的に同様の効果が得られるからである。また、共架橋剤として、炭素数が3〜8個のα,β−不飽和カルボン酸とその金属塩とを併用する場合においても(f)金属化合物を用いてもよい。
【0077】
炭素数が3〜8個のα,β−不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸、クロトン酸等を挙げることができる。
【0078】
炭素数が3〜8個のα,β−不飽和カルボン酸の金属塩を構成する金属としては、ナトリウム、カリウム、リチウムなどの1価の金属イオン;マグネシウム、カルシウム、亜鉛、バリウム、カドミウムなどの二価の金属イオン;アルミニウムなどの3価の金属イオン;錫、ジルコニウムなどのその他のイオンが挙げられる。前記金属成分は、単独または2種以上の混合物として使用することもできる。これらの中でも、前記金属成分としては、マグネシウム、カルシウム、亜鉛、バリウム、カドミウムなどの二価の金属が好ましい。炭素数が3〜8個のα,β−不飽和カルボン酸の二価の金属塩を用いることにより、ゴム分子間に金属架橋が生じやすくなるからである。特に、二価の金属塩としては、得られるゴルフボールの反発性が高くなるということから、アクリル酸亜鉛が好適である。なお、炭素数が3〜8個のα,β−不飽和カルボン酸および/またはその金属塩は、単独でもしくは2種以上を組み合わせて使用しても良い。
【0079】
(b)炭素数が3〜8個のα,β−不飽和カルボン酸および/またはその金属塩の含有量は、(a)基材ゴム100質量部に対して、15質量部以上が好ましく、20質量部以上がより好ましく、50質量部以下が好ましく、45質量部以下がより好ましく、35質量部以下がさらに好ましい。(b)炭素数が3〜8個のα,β−不飽和カルボン酸および/またはその金属塩の含有量が15質量部未満では、ゴム組成物から形成される部材を適当な硬さとするために、後述する(c)架橋開始剤の量を増加しなければならず、ゴルフボールの反発性が低下する傾向がある。一方、炭素数が3〜8個のα,β−不飽和カルボン酸および/またはその金属塩の含有量が50質量部を超えると、ゴム組成物から形成される部材が硬くなりすぎて、ゴルフボールの打球感が低下するおそれがある。
【0080】
(c)架橋開始剤は、(a)基材ゴム成分を架橋するために配合されるものである。(c)架橋開始剤としては、有機過酸化物が好適である。前記有機過酸化物は、具体的には、ジクミルパーオキサイド、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、2,5−ジメチル−2,5−ジ(t―ブチルパーオキシ)ヘキサン、ジ−t−ブチルパーオキサイドなどの有機過酸化物が挙げられる。これらの有機過酸化物は、単独で使用してもよいし、2種以上を併用してもよい。これらの中でもジクミルパーオキサイドが好ましく用いられる。
【0081】
(c)架橋開始剤の含有量は、(a)基材ゴム100質量部に対して、0.2質量部以上が好ましく、より好ましくは0.5質量部以上であって、5.0質量部以下が好ましく、より好ましくは2.5質量部以下である。0.2質量部未満では、ゴム組成物から形成される部材が柔らかくなりすぎて、ゴルフボールの反発性が低下する傾向があり、5.0質量部を超えると、ゴム組成物から形成される部材を適切な硬さにするために、前述した(b)共架橋剤の使用量を減少する必要があり、ゴルフボールの反発性が不足したり、耐久性が悪くなるおそれがある。
【0082】
本発明で使用し得る(d)カルボン酸および/またはその塩について説明する。本発明で使用する(d)カルボン酸および/またはその塩は、コア成形時にコア中心部において、(b)炭素数が3〜8個のα,β−不飽和カルボン酸の金属塩による金属架橋を切断する作用を有するものと考えられる。(d)前記カルボン酸は、カルボキシル基を有する化合物であれば、特に限定されないが、共架橋剤として使用する(b)炭素数が3〜8個のα,β−不飽和カルボン酸は含まれないものとする。
【0083】
(d)前記カルボン酸は、炭素数が3〜8個のα,β−不飽和カルボン酸の金属塩とカチオン成分を交換できるものであれば、脂肪族カルボン酸(本発明において、単に「脂肪酸」と称する場合がある)または芳香族カルボン酸のいずれであってもよい。前記カルボン酸としては、炭素数が4〜30のカルボン酸が好ましく、炭素数が5〜28のカルボン酸がより好ましく、炭素数が6〜26のカルボン酸がさらに好ましい。
【0084】
前記脂肪酸は、飽和脂肪酸、不飽和脂肪酸のいずれであっても良いが、飽和脂肪酸であることが好ましい。前記脂肪酸の具体例としては、例えば、酪酸(C4)、吉草酸(C5)、カプロン酸(C6)、エナント酸(C7)、カプリル酸(C8)、ペラルゴン酸(C9)、カプリン酸(C10)、ラウリン酸(C12)、ミリスチン酸(C14)、ミリストレイン酸(C14)、ペンタデシル酸(C15)、パルミチン酸(C16)、パルミトレイン酸(C16)、マルガリン酸(C17)、ステアリン酸(C18)、エライジン酸(C18)、バクセン酸(C18)、オレイン酸(C18)、リノール酸(C18)、リノレン酸(C18)、12−ヒドロキシステアリン酸(C18)、アラキジン酸(C20)、ガドレイン酸(C20)、アラキドン酸(C20)、エイコセン酸(C20)、べヘニン酸(C22)、エルカ酸(C22)、リグノセリン酸(C24)、ネルボン酸(C24)、セロチン酸(C26)、モンタン酸(C28)、メリシン酸(C30)などを挙げることができる。前記脂肪酸は、単独または2種以上の混合物として使用することもできる。これらの中でも、前記脂肪酸として好ましいのは、カプリル酸(オクタン酸)、カプリン酸(デカン酸)、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、または、オレイン酸である。
【0085】
芳香族カルボン酸は、芳香環とカルボキシル基とを有する化合物であれば特に限定されない。芳香族カルボン酸の具体例としては、例えば、安息香酸、フタル酸、イソフタル酸、テレフタル酸、ヘメミリット酸(ベンゼン−1,2,3−トリカルボン酸)、トリメリット酸(ベンゼン−1,2,4−トリカルボン酸)、トリメシン酸(ベンゼン−1,3,5−トリカルボン酸)、メロファン酸(ベンゼン−1,2,3,4−テトラカルボン酸)、プレーニト酸(ベンゼン−1,2,3,5−テトラカルボン酸)、ピロメリット酸(ベンゼン−1,2,4,5−テトラカルボン酸)、メリット酸(ベンゼンヘキサカルボン酸)、ジフェン酸(ビフェニル−2,2’−ジカルボン酸)、トルイル酸(メチル安息香酸)、キシリル酸、プレーニチル酸(2,3,4−トリメチル安息香酸)、γ−イソジュリル酸(2,3,5−トリメチル安息香酸)、ジュリル酸(2,4,5−トリメチル安息香酸)、β−イソジュリル酸(2,4,6−トリメチル安息香酸)、α−イソジュリル酸(3,4,5−トリメチル安息香酸)、クミン酸(4−イソプロピル安息香酸)、ウビト酸(5−メチルイソフタル酸)、α−トルイル酸(フェニル酢酸)、ヒドロアトロパ酸(2−フェニルプロパン酸)、ヒドロケイ皮酸(3−フェニルプロパン酸)などを挙げることができる。
【0086】
また、ヒドロキシル基、アルコキシ基、またはオキソ基で置換された芳香族カルボン酸としては、例えば、サリチル酸(2−ヒドロキシ安息香酸)、アニス酸(メトキシ安息香酸)、クレソチン酸(ヒドロキシ(メチル)安息香酸)、o−ホモサリチル酸(2−ヒドロキシ−3−メチル安息香酸)、m−ホモサリチル酸(2−ヒドロキシ−4−メチル安息香酸)、p−ホモサリチル酸(2−ヒドロキシ−5−メチル安息香酸)、o−ピロカテク酸(2,3−ジヒドロキシ安息香酸)、β−レソルシル酸(2,4−ジヒドロキシ安息香酸)、γ−レソルシル酸(2,6−ジヒドロキシ安息香酸)、プロトカテク酸(3,4−ジヒドロキシ安息香酸)、α−レソルシル酸(3,5−ジヒドロキシ安息香酸)、バニリン酸(4−ヒドロキシ−3−メトキシ安息香酸)、イソバニリン酸(3−ヒドロキシ−4−メトキシ安息香酸)、ベラトルム酸(3,4−ジメトキシ安息香酸)、o−ベラトルム酸(2,3−ジメトキシ安息香酸)、オルセリン酸(2,4−ジヒドロキシ−6−メチル安息香酸)、m−ヘミピン酸(4,5−ジメトキシフタル酸)、没食子酸(3,4,5−トリヒドロキシ安息香酸)、シリング酸(4−ヒドロキシ−3,5−ジメトキシ安息香酸)、アサロン酸(2,4,5−トリメトキシ安息香酸)、マンデル酸(ヒドロキシ(フェニル)酢酸)、バニルマンデル酸(ヒドロキシ(4−ヒドロキシ−3−メトキシフェニル)酢酸)、ホモアニス酸((4−メトキシフェニル)酢酸)、ホモゲンチジン酸((2,5−ジヒドロキシフェニル)酢酸)、ホモプロトカテク酸((3,4−ジヒドロキシフェニル)酢酸)、ホモバニリン酸((4−ヒドロキシ−3−メトキシフェニル)酢酸)、ホモイソバニリン酸((3−ヒドロキシ−4−メトキシフェニル)酢酸)、ホモベラトルム酸((3,4−ジメトキシフェニル)酢酸)、o−ホモベラトルム酸((2,3−ジメトキシフェニル)酢酸)、ホモフタル酸(2−(カルボキシメチル)安息香酸)、ホモイソフタル酸(3−(カルボキシメチル)安息香酸)、ホモテレフタル酸(4−(カルボキシメチル)安息香酸)、フタロン酸(2−(カルボキシカルボニル)安息香酸)、イソフタロン酸(3−(カルボキシカルボニル)安息香酸)、テレフタロン酸(4−(カルボキシカルボニル)安息香酸)、ベンジル酸(ヒドロキシジフェニル酢酸)、アトロラクチン酸(2−ヒドロキシ−2−フェニルプロパン酸)、トロパ酸(3−ヒドロキシ−2−フェニルプロパン酸)、メリロット酸(3−(2−ヒドロキシフェニル)プロパン酸)、フロレト酸(3−(4−ヒドロキシフェニル)プロパン酸)、ヒドロカフェー酸(3−(3,4−ジヒドロキシフェニル)プロパン酸)、ヒドロフェルラ酸(3−(4−ヒドロキシ−3−メトキシフェニル)プロパン酸)、ヒドロイソフェルラ酸(3−(3−ヒドロキシ−4−メトキシフェニル)プロパン酸)、p−クマル酸(3−(4−ヒドロキシフェニル)アクリル酸)、ウンベル酸(3−(2,4−ジヒドロキシフェニル)アクリル酸)、カフェー酸(3−(3,4−ジヒドロキシフェニル)アクリル酸)、フェルラ酸(3−(4−ヒドロキシ−3−メトキシフェニル)アクリル酸)、イソフェルラ酸(3−(3−ヒドロキシ−4−メトキシフェニル)アクリル酸)、シナピン酸(3−(4−ヒドロキシ−3,5−ジメトキシフェニル)アクリル酸)などを挙げることができる。
【0087】
(d)前記カルボン酸塩としては、上述したカルボン酸の塩を用いることできる。カルボン酸塩のカチオン成分としては、金属イオン、アンモニウムイオン、および、有機陽イオンのいずれであってもよい。金属イオンとしては、例えば、ナトリウム、カリウム、リチウム、銀などの1価の金属イオン;マグネシウム、カルシウム、亜鉛、バリウム、カドミウム、銅、コバルト、ニッケル、マンガンなどの二価の金属イオン;アルミニウム、鉄などの3価の金属イオン;錫、ジルコニウム、チタンなどのその他のイオンが挙げられる。前記カチオン成分は、単独または2種以上の混合物として使用することもできる。
【0088】
前記有機陽イオンとは、炭素鎖を有する陽イオンである。前記有機陽イオンとしては、特に限定されず、例えば、有機アンモニウムイオンが挙げられる。前記有機アンモニウムイオンとしては、例えば、ステアリルアンモニウムイオン、ヘキシルアンモニウムイオン、オクチルアンモニウムイオン、2−エチルヘキシルアンモニウムイオンなどの1級アンモニウムイオン、ドデシル(ラウリル)アンモニウムイオン、オクタデシル(ステアリル)アンモニウムイオンなどの2級アンモニウムイオン;トリオクチルアンモニウムイオンなどの3級アンモニウムイオン;ジオクチルジメチルアンモニウムイオン、ジステアリルジメチルアンモニウムイオンなどの4級アンモニウムイオンなどが挙げられる。これらの有機陽イオンは単独で用いてもよいし、2種以上を併用してもよい。
【0089】
(d)前記カルボン酸塩としては、カプリル酸(オクタン酸)、カプリン酸(デカン酸)、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、または、オレイン酸のカリウム塩、マグネシウム塩、アルミニウム塩、亜鉛塩、鉄塩、銅塩、ニッケル塩、コバルト塩が特に好ましい。
【0090】
(d)前記カルボン酸および/またはその塩の含有量は、(a)基材ゴム100質量部に対して、0.5質量部以上が好ましく、より好ましくは1.0質量部以上、さらに好ましくは1.5質量部以上で、特に好ましくは2.0質量部以上あって、40質量部または40質量部未満が好ましく、より好ましくは35質量部以下であり、さらに好ましくは30質量部以下である。0.5質量部未満では、(d)カルボン酸および/またはその塩を添加した効果が十分ではなく、コア硬度分布の直線性が低下するおそれがある。また、含有量が40質量部を超えると、得られるコアの硬度が全体的に低下して、反発性が低下するおそれがある。なお、(d)前記カルボン酸および/またはその塩の含有量は、添加するカルボン酸成分の炭素数の影響を受け、炭素数が小さくなるほど、含有量が少なくてもよい傾向がある。
【0091】
なお、共架橋剤として使用されるアクリル酸亜鉛の表面は、ゴムへの分散性を向上するためにステアリン酸またはステアリン酸亜鉛で処理されている場合がある。このようなステアリン酸またはステアリン酸亜鉛で表面処理されたアクリル酸亜鉛を使用する場合、本発明では、表面処理剤であるステアリン酸またはステアリン酸亜鉛の量が(d)カルボン酸および/またはその塩の含有量に含まれるものとする。例えば、ステアリン酸またはステアリン酸亜鉛の表面処理量が10質量%であるアクリル酸亜鉛を25質量部用いた場合には、ステアリン酸またはステアリン酸亜鉛の量が2.5質量部であり、アクリル酸亜鉛の量が22.5質量部とし、(d)カルボン酸および/またはその塩の含有量として、2.5質量部を計上する。
【0092】
次に、(e)有機硫黄化合物について説明する。本発明では、コア用ゴム組成物に(d)カルボン酸に加えて、(e)有機硫黄化合物を併用することにより、コア硬度分布の略直線性を維持しつつ、コアの外剛内柔構造の度合を制御することができる。(e)有機硫黄化合物としては、分子内に硫黄原子を有する有機化合物であれば、特に限定されず、例えば、チオール基(−SH)、または、硫黄数が2〜4のポリスルフィド結合(−S−S−、−S−S−S−、または、−S−S−S−S−)を有する有機化合物、あるいはこれらの金属塩(−SM、−S−M−S−、−S−M−S−S−,−S−S−M−S−S−,−S−M−S−S−S−など、Mは金属原子)を挙げることができる。また、(e)前記有機硫黄化合物は、脂肪族化合物(脂肪族チオール、脂肪族チオカルボン酸、脂肪族ジチオカルボン酸、脂肪族ポリスルフィドなど)、複素環式化合物、脂環式化合物(脂環式チオール、脂環式チオカルボン酸、脂環式ジチオカルボン酸、脂環式ポリスルフィドなど)、および、芳香族化合物のいずれであってもよい。(e)有機硫黄化合物としては、例えば、チオフェノール類、チオナフトール類、ポリスルフィド類、チオカルボン類、ジチオカルボン類、スルフェンアミド類、チウラム類、ジチオカルバミン酸塩類、チアゾール類などを挙げることができる。これらのなかでも、(e)有機硫黄化合物としては、チオフェノール類、硫黄数が2〜4のポリスルフィド類、チオナフトール類、チウラム類、または、これらの金属塩が好ましい。金属塩としては、例えば、ナトリウム、リチウム、カリウム、銅(I)、銀(I)などの1価の金属塩、亜鉛、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン(II)、マンガン(II)、鉄(II)、コバルト(II)、ニッケル(II)、ジルコニウム(II)、スズ(II)等の2価の金属塩が挙げられる。
【0093】
チオフェノール類としては、例えば、チオフェノール;4−フルオロチオフェノール、2,5−ジフルオロチオフェノール、2,4,5−トリフルオロチオフェノール、2,4,5,6−テトラフルオロチオフェノール、ペンタフルオロチオフェノールなどのフルオロ基で置換されたチオフェノール類;2−クロロチオフェノール、4−クロロチオフェノール、2,4−ジクロロチオフェノール、2,5−ジクロロチオフェノール、2,4,5−トリクロロチオフェノール、2,4,5,6−テトラクロロチオフェノール、ペンタクロロチオフェノールなどのクロロ基で置換されたチオフェノール類;4−ブロモチオフェノール、2,5−ジブロモチオフェノール、2,4,5−トリブロモチオフェノール、2,4,5,6−テトラブロモチオフェノール、ペンタブロモチオフェノールなどのブロモ基で置換されたチオフェノール類;4−ヨードチオフェノール、2,5−ジヨードチオフェノール、2,4,5−トリヨードチオフェノール、2,4,5,6−テトラヨードチオフェノール、ペンタヨードチオフェノールなどのヨード基で置換されたチオフェノール類;または、これらの金属塩が挙げられる。金属塩としては、亜鉛塩が好ましい。
【0094】
前記ポリスルフィド類としては、例えば、ジフェニルジスルフィド;ビス(4−クロロフェニル)ジスルフィド、ビス(3−クロロフェニル)ジスルフィド、ビス(4−ブロモフェニル)ジスルフィド、ビス(3−ブロモフェニル)ジスルフィド、ビス(4−フルオロフェニル)ジスルフィド、ビス(4−ヨードフェニル)ジスルフィド,ビス(4−シアノフェニル)ジスルフィドなどのモノ置換体;ビス(2,5−ジクロロフェニル)ジスルフィド、ビス(3,5−ジクロロフェニル)ジスルフィド、ビス(2,6−ジクロロフェニル)ジスルフィド、ビス(2,5−ジブロモフェニル)ジスルフィド、ビス(3,5−ジブロモフェニル)ジスルフィド、ビス(2−クロロ−5−ブロモフェニル)ジスルフィド、ビス(2−シアノ−5−ブロモフェニル)ジスルフィドなどのジ置換体;ビス(2,4,6−トリクロロフェニル)ジスルフィド、ビス(2−シアノ−4−クロロ−6−ブロモフェニル)ジスルフィドなどのトリ置換体;ビス(2,3,5,6−テトラクロロフェニル)ジスルフィドなどのテトラ置換体;ビス(2,3,4,5,6−ペンタクロロフェニル)ジスルフィド、ビス(2,3,4,5,6−ペンタブロモフェニル)ジスルフィドなどのペンタ置換体などが挙げられる。
【0095】
ナフタレンチオール類としては、例えば、2−ナフタレンチオール、1−ナフタレンチオール、2−クロロ−1−ナフタレンチオール、2−ブロモ−1−ナフタレンチオール、2−フルオロ−1−ナフタレンチオール、2−シアノ−1−ナフタレンチオール、2−アセチル−1−ナフタレンチオール、1−クロロ−2−ナフタレンチオール、1−ブロモ−2−ナフタレンチオール、1−フルオロ−2−ナフタレンチオール、1−シアノ−2−ナフタレンチオール、1−アセチル−2−ナフタレンチオール、またはこれらの金属塩を挙げることができ、1−ナフタレンチオール、2−ナフタレンチオール、または、これらの亜鉛塩が好ましい。
【0096】
スルフェンアミド系有機硫黄化合物としては、例えば、N−シクロへキシル−2−ベンゾチアゾールスルフェンアミド、N−オキシジエチレン−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾールスルフェンアミドが挙げられる。チウラム系有機硫黄化合物としては、例えば、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィドが挙げられる。ジチオカルバミン酸塩類としては、例えば、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、エチルフェニルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸ナトリウム、ジエチルジチオカルバミン酸ナトリウム、ジメチルジチオカルバミン酸銅(II)、ジメチルジチオカルバミン酸鉄(III)、ジエチルジチオカルバミン酸セレン、ジエチルジチオカルバミン酸テルルなどを挙げることができる。チアゾール系有機硫黄化合物としては、例えば、2−メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、2−メルカプトベンゾチアゾールのナトリウム塩、亜鉛塩、銅塩、または、シクロヘキシルアミン塩、2−(2,4−ジニトロフェニル)メルカプトベンゾチアゾール、2−(2,6−ジエチル−4−モリホリノチオ)ベンゾチアゾールなどを挙げることができる。
【0097】
(e)有機硫黄化合物は、単独もしくは二種以上を混合して使用することができる。
【0098】
(e)有機硫黄化合物の含有量は、(a)基材ゴム100質量部に対して、0.05質量部以上が好ましく、より好ましくは0.1質量部以上であって、5.0質量部以下が好ましく、より好ましくは2.0質量部以下である。0.05質量部未満では、(e)有機硫黄化合物を添加した効果が得られず、ゴルフボールの反発性が向上しないおそれがある。また、5.0質量部を超えると、得られるゴルフボールの圧縮変形量が大きくなって、反発性が低下するおそれがある。
【0099】
本発明に用いられるゴム組成物は、さらに、顔料、重量調整などのための充填剤、老化防止剤、しゃく解剤、軟化剤などの添加剤を含有してもよい。また上述したように、本発明で使用するゴム組成物が、共架橋剤として炭素数が3〜8個のα,β−不飽和カルボン酸のみを含有する場合、ゴム組成物は、(f)金属化合物をさらに含有することが好ましい。
【0100】
(f)前記金属化合物としては、ゴム組成物中において(b)炭素数が3〜8個のα,β−不飽和カルボン酸を中和することができるものであれば、特に限定されない。(f)前記金属化合物としては、例えば、水酸化マグネシウム、水酸化亜鉛、水酸化カルシウム、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、水酸化銅などの金属水酸化物;酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化銅などの金属酸化物;炭酸マグネシウム、炭酸亜鉛、炭酸カルシウム、炭酸ナトリウム、炭酸リチウム、炭酸カリウムなどの金属炭酸化物が挙げられる。これらの中でも、(f)金属化合物として好ましいのは、二価金属化合物であり、より好ましくは亜鉛化合物である。二価金属化合物は、炭素数が3〜8個のα,β−不飽和カルボン酸と反応して、金属架橋を形成するからである。また、亜鉛化合物を用いることにより、反発性の高いゴルフボールが得られる。これらの(f)金属化合物は単独で使用してもよいし、2種以上を併用してもよい。
【0101】
ゴム組成物に配合される顔料としては、例えば、白色顔料、青色顔料、紫色顔料などを挙げることができる。前記白色顔料としては、酸化チタンを使用することが好ましい。酸化チタンの種類は、特に限定されないが、隠蔽性が良好であるという理由から、ルチル型を用いることが好ましい。また、酸化チタンの含有量は、(a)基材ゴム100質量部に対して、0.5質量部以上が好ましく、より好ましくは2質量部以上であって、8質量部以下が好ましく、より好ましくは5質量部以下である。
【0102】
ゴム組成物が白色顔料と青色顔料とを含有することも好ましい態様である。青色顔料は、白色を鮮やかに見せるために配合され、例えば、群青、コバルト青、フタロシアニンブルーなどを挙げることができる。また、前記紫色顔料としては、例えば、アントラキノンバイオレット、ジオキサジンバイオレット、メチルバイオレットなどを挙げることができる。
【0103】
前記青色顔料の含有量は、(a)基材ゴム100質量部に対して、0.001質量部以上が好ましく、より好ましくは0.05質量部以上であって、0.2質量部以下が好ましく、より好ましくは0.1質量部以下である。0.001質量部未満では、青みが不十分で、黄色味がかった色に見え、0.2質量部を超えると、青くなりすぎて、鮮やかな白色外観ではなくなる。
【0104】
ゴム組成物に用いる充填剤としては、主として最終製品として得られるゴルフボールの重量を調整するための重量調整剤として配合されるものであり、必要に応じて配合すれば良い。前記充填剤としては、酸化亜鉛、硫酸バリウム、炭酸カルシウム、酸化マグネシウム、タングステン粉末、モリブデン粉末などの無機充填剤を挙げることができる。前記充填剤の含有量は、基材ゴム100質量部に対して、0.5質量部以上が好ましく、より好ましくは1質量部以上であって、30質量部以下が好ましく、25質量部以下がより好ましく、20質量部以下がさらに好ましい。充填剤の含有量が0.5質量部未満では、重量調整が難しくなり、30質量部を超えるとゴム成分の重量分率が小さくなり反発性が低下する傾向があるからである。
【0105】
前記老化防止剤の含有量は、(a)基材ゴム100質量部に対して、0.1質量部以上、1質量部以下であることが好ましい。また、しゃく解剤の含有量は、(a)基材ゴム100質量部に対して、0.1質量部以上、5質量部以下であることが好ましい。
【0106】
本発明で使用するゴム組成物は、(a)基材ゴム、(b)炭素数が3〜8個のα,β−不飽和カルボン酸および/またはその金属塩、(c)架橋開始剤、(d)カルボン酸および/またはその塩、および、必要に応じてその他の添加剤などを混合して、混練することにより得られる。混練の方法は、特に限定されず、例えば、混練ロール、バンバリーミキサー、ニーダーなどの公知の混練機を用いて行えばよい。
【0107】
本発明のゴルフボールが有する球状コアは、混練後のゴム組成物を金型内で成形することにより得ることができる。球状コアに成形する温度は、120℃以上が好ましく、150℃以上がより好ましく、160℃以上がさらに好ましく、170℃以下が好ましい。成形温度が170℃を超えると、コア表面硬度が低下する傾向がある。また、成形時の圧力は、2.9MPa〜11.8MPaが好ましい。成形時間は、10分間〜60分間が好ましい。
【0108】
本発明のゴルフボールの構造は、球状コアと、前記球状コアを被覆するカバーとを有するものであれば、特に限定されない。球状コアは、単層構造であることが好ましい。単層構造の球状コアは、多層構造の界面における打撃時のエネルギーロスがなく、反発性が向上するからである。また、カバーは、少なくとも一層の構造であればよく、単層構造、あるいは、二層以上の多層構造を有していてもよい。多層構造のカバーの場合は、最外層のカバーが、上述したポリウレタン組成物から形成されていればよい。すべての層が上述したポリウレタン組成物から形成されていてもよい。内層カバーを構成し得る材料としては、例えば、本発明で使用するポリウレタン組成物が含有し得るアイオノマー樹脂や他の熱可塑性エラストマーとして例示したものを挙げることができる。
【0109】
本発明のゴルフボールの具体例としては、球状コアと前記球状コアを被覆する単層のカバーとからなるツーピースゴルフボール;球状コアと前記球状コアを被覆する二層以上のカバーを有するマルチピースゴルフボール(スリーピースゴルフボールを含む);球状コアと前記球状コアの周囲に設けられた糸ゴム層と、前記糸ゴム層を被覆するカバーとを有する糸巻きゴルフボールなどを挙げることができる。上記いずれの構造のゴルフボールにも本発明を好適に利用できる。
【0110】
本発明のゴルフボールは、直径40mm〜45mmの場合、初期荷重98Nを負荷した状態から終荷重1275Nを負荷したときの圧縮変形量(圧縮方向に縮む量)は、2.0mm以上であることが好ましく、より好ましくは2.4mm以上であり、さらに好ましくは2.5mm以上であり、4.0mm以下であることが好ましく、より好ましくは3.8mm以下であり、さらに好ましくは3.6mm以下である。前記圧縮変形量が2.0mm以上のゴルフボールは、硬くなり過ぎず、打球感が良い。一方、圧縮変形量を4.0mm以下にすることにより、反発性が高くなる。
【実施例】
【0111】
以下、本発明を実施例によって詳細に説明するが、本発明は、下記実施例によって限定されるものではなく、本発明の趣旨を逸脱しない範囲の変更、実施の態様は、いずれも本発明の範囲内に含まれる。
【0112】
[評価方法]
(1)剪断損失弾性率G”
ポリウレタン組成物の剪断損失弾性率G”を以下の条件で測定した。
装置:TAインスツルメント社製レオメータARES
測定サンプル:プレス成形により、厚み2mmのポリウレタンシートを作製し、このポリウレタンシートから、幅10mm、クランプ間距離10mmになるように試料片を切り出した。
測定モード:捻り(剪断)
測定温度:0℃
加振周波数:10Hz
測定ひずみ:0.1%
【0113】
(2)スラブ硬度(ショアD硬度またはJIS−C硬度)
ポリウレタン組成物を用いて、熱プレス成形により、厚み約2mmのシートを作製し、23℃で2週間保存した。このシートを、測定基板などの影響が出ないように、3枚以上重ねた状態で、ASTM−D2240に規定するスプリング式硬度計ショアD型またはJIS−C型硬度計を備えた高分子計器社製自動ゴム硬度計P1型を用いて測定した。
【0114】
(3)反発弾性(%)
ポリウレタン組成物を用いて、熱プレス成形にて厚み約2mmのシートを作製し、当該シートから直径28mmの円形状に打ち抜いたものを6枚重ねることにより、厚さ約12mm、直径28mmの円柱状試験片を作製した。この試験片についてリュプケ式反発弾性試験(試験温度23℃、50RH%)を行った。なお、試験片の作製および試験方法は、JIS K6255に準じて行った。
【0115】
(4)コア硬度分布(JIS−C硬度)
スプリング式硬度計JIS−C型を備えた高分子計器社製自動ゴム硬度計P1型を用いて、コアの表面部において測定したJIS−C硬度をコア表面硬度とした。また、コアを半球状に切断し、切断面の中心、および、中心から所定の距離(2.5mm間隔)において硬度を測定した。なお、コア硬度は、コア断面の中心から所定の距離の4点で硬度を測定して、これらを平均することにより算出した。
【0116】
(5)耐擦過傷性
ゴルフラボラトリー社製のスイングロボットに市販のサンドウエッジ(SRIスポーツ社製、シャフトS)を取り付け、ヘッドスピード36m/秒で、ボールの2箇所を各1回打撃した。耐擦過傷性は、以下の評価基準に基づき、4段階で評価した。
評価基準
◎:傷がついていないか、ほとんど傷が目立たない。
○:やや傷が見られるものの、ほとんど気にならない。
△:傷が目立ち、表面がやや毛羽立っている。
×:表面がかなり削りとられており、毛羽が目立つ。
【0117】
(6)アプローチショットのスピン量(ドライ、ウエット)
ゴルフラボラトリー社製スイングロボットに、サンドウエッジ(クリーブランドゴルフ社製CG15フォージドウエッジ(52°))を取り付け、ヘッドスピード21m/秒でゴルフボールを打撃し、打撃されたゴルフボールを連続写真撮影することによってスピン量(rpm)を測定した。測定は、各ゴルフボールについて10回ずつ行い、その平均値をスピン量とした。ドライスピン量(Sd)は、クラブフェースとゴルフボールが乾いた状態で試験を行ったときのスピン量であり、ウエットスピン量(Sw)は、クラブフェースとゴルフボールを水で濡らした状態で試験を行ったときのスピン量である。各ゴルフボールのスピン量は、ゴルフボールNo.15のスピン量との差で示した。
【0118】
(7)ミドル、ロングアイアンショットの飛距離、および、スピン量(rpm)
ゴルフラボラトリー社製スイングロボットM/Cに、5番アイアン(SRIスポーツ社製ZTXDGS200)を取り付け、ヘッドスピード41m/sでゴルフボールを打撃した。ゴルフボールの飛距離(キャリー)とスピン量とを測定した。打撃直後のゴルフボールのスピン速度は、打撃されたゴルフボールを連続写真撮影することによって測定した。測定は、各ゴルフボールについて12回ずつ行い、その平均値をスピン速度とした。各ゴルフボールのスピン量は、ゴルフボールNo.15のスピン量との差で示した。また、各ゴルフボールの飛距離は、ゴルフボールNo.15の飛距離を100として、指数化した値で示した。
【0119】
[ビス(イソシアナトメチル)シクロヘキサンの調製]
調製例1
13C−NMR測定によるトランス体/シス体のモル比が93/7の1,4−ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学社製)を原料として、冷熱2段ホスゲン化法を常圧下で実施した。すなわち、フラスコに、撹拌機、温度計、ホスゲン導入管、滴下ロートおよび冷却管を取り付けて、そのフラスコにオルトジクロロベンゼン400質量部を仕込んだ。フラスコを冷水で冷却しながら、フラスコ内の温度を10℃以下とし、ホスゲン導入管よりホスゲン280質量部を導入した。滴下ロートに1,4−ビス(アミノメチル)シクロヘキサン100質量部およびオルトジクロロベンゼン500質量部の混合液を仕込み、その混合液を30分かけてフラスコ内に添加した。この間、フラスコ内の温度を30℃以下に維持した。添加終了後、フラスコ内は、白色スラリー状液となった。再び、ホスゲンを導入しながら反応温度を150℃まで上昇させ、150℃で5時間反応を継続させた。フラスコ内の反応液は淡褐色透明な液体となった。反応終了後、100〜150℃で窒素ガスを10L/時で通気し、脱ガスした。減圧下で溶媒のオルトジクロロベンゼンを留去し、さらに減圧蒸留により、沸点138〜140℃/0.7KPaの留分を採取した。これによって、無色透明液体として、1,4−ビス(イソシアナトメチル)シクロヘキサン123質量部(収率90%)を得た。得られた1,4−ビス(イソシアナトメチル)シクロヘキサンのガスクロマトグラフィー測定による純度は、99.9%、APHA測定による色相は5、13C−NMR測定によるトランス体/シス体のモル比は、93/7であった。以下、トランス体/シス体のモル比が93/7の1,4−ビス(イソシアナトメチル)シクロへキサンを「BIC93」と称する。
【0120】
調製例2
13C−NMR測定によるトランス体/シス体のモル比が41/59の1,4−ビス(アミノメチル)シクロヘキサン(東京化成工業社製)を原料として用いた以外は、調製例1と同様の方法により、1,4−ビス(イソシアナトメチル)シクロヘキサンを合成した。得られた1,4−ビス(イソシアナトメチル)シクロヘキサンのガスクロマトグラフィーによる純度は、99.9%、APHA測定による色相は5、13C−NMR測定によるトランス体/シス体のモル比は、41/59であった。以下、トランス体/シス体のモル比が41/59の1,4−ビス(イソシアナトメチル)シクロへキサンを「BIC41」と称する。
【0121】
調製例3
BIC93とBIC41とを86.5:13.5で混合して、トランス体/シス体のモル比が86/14の1,4−ビス(イソシアナトメチル)シクロヘキサンを得た。以下、トランス体/シス体のモル比が86/14の1,4−ビス(イソシアナトメチル)シクロへキサンを「BIC86」と称する。
【0122】
調製例4
BIC93とBIC41とを69.2:30.8で混合して、トランス体/シス体のモル比が77/23の1,4−ビス(イソシアナトメチル)シクロヘキサンを得た。以下、トランス体/シス体のモル比が77/23の1,4−ビス(イソシアナトメチル)シクロへキサンを「BIC77」と称する。
【0123】
調製例5
13C−NMR測定によるトランス体/シス体のモル比が74/26の1,3−ビス(アミノメチル)シクロヘキサン(東京化成工業社製)を原料として用いた以外は、調製例1と同様の方法により、1,3−ビス(イソシアナトメチル)シクロヘキサンを合成した。得られた1,3−ビス(イソシアナトメチル)シクロヘキサンのガスクロマトグラフィーによる純度は、99.9%、APHA測定による色相は5、13C−NMR測定によるトランス体/シス体のモル比は、74/26であった。以下、トランス体/シス体のモル比が74/26の1,3−ビス(イソシアナトメチル)シクロへキサンを「BIC74」と称する。
【0124】
[ポリウレタンエラストマーの合成]
表1に示した組成比を有するポリウレタンエラストマーを、以下のようにして合成した。80℃に加熱したビス(イソシアナトメチル)シクロヘキサン(BIC)に、80℃に加熱したポリテトラメチレンエーテルグリコール(PTMG2000)を投入し、さらに、原料(BIC、PTMG2000およびBD)の総量の0.005質量%のジブチルチンジラウレート(アルドリッチ社製)を投入した後、窒素気流下にて、80℃で2時間撹拌を行った。続いて、窒素気流下にて、80℃に加熱した1,4−ブタンジオール(BD)を投入した後、80℃で1分間撹拌を行った。その後、反応液を冷却して、室温にて1分間減圧することにより系中の脱気を行った。脱気後の反応液を、容器に延展し、窒素雰囲気下、110℃にて6時間保存することにより、ウレタン化反応を行いポリウレタンエラストマーを得た。
【0125】
【表1】

【0126】
BIC86:1,4−ビス(イソシアナトメチル)シクロヘキサン(トランス体:86モル%)
BIC77:1,4−ビス(イソシアナトメチル)シクロヘキサン(トランス体:77モル%)
BIC74:1,3−ビス(イソシアナトメチル)シクロヘキサン(トランス体:74モル%)
PTMG2000:BASFジャパン社製ポリテトラメチレンエーテルグリコール(数平均分子量2000)
BD:東京化成工業社製1,4−ブタンジオール
【0127】
[ゴルフボールの作製]
(1)球状コアの作製
表2、表3に示す配合のゴム組成物を混練ロールにより混練し、半球状キャビティを有する上下金型内で170℃、20分間加熱プレスすることにより球状コアNo.A〜No.Hを得た。球状コアNo.A〜No.Hの硬度分布を図4〜図11に示した。
【0128】
【表2】

【0129】
【表3】

【0130】
ポリブタジエンゴム:JSR社製「BR730」、ハイシスポリブタジエン(シス−1,4−結合含有量=96質量%、1,2−ビニル結合含有量=1.3質量%、ムーニー粘度(ML1+4(100℃))=55、分子量分布(Mw/Mn)=3)
アクリル酸亜鉛:三新化学工業社製サンセラーSR(10質量%ステアリン酸コーティング品)
酸化亜鉛:東邦亜鉛社製「銀嶺R」
硫酸バリウム:堺化学社製「硫酸バリウムBD」、最終的に得られるゴルフボールの質量が45.4gとなるように調整した。
2−チオナフトール:東京化成工業社製
ジフェニルジスルフィド:住友精化社製
ステアリン酸:日油社製
ミリスチン酸:東京化成工業社製
オクタン酸亜鉛:三津和化学薬品製
ジクミルパーオキサイド:日油社製、「パークミル(登録商標)D」
【0131】
(2)ハーフシェルの成形
表4に示したポリウレタンエラストマー100質量部に対して酸化チタン4質量部をドライブレンドし、二軸混練型押出機によりミキシングして、ペレット状のカバー用組成物を得た。押出は、スクリュー径45mm、スクリュー回転数200rpm、スクリューL/D=35で行った。配合物は、押出機のダイの位置で150〜230℃に加熱された。ハーフシェルの圧縮成形は、得られたペレット状のカバー用組成物をハーフシェル成形用金型の下型の凹部ごとに1つずつ投入し、加圧してハーフシェルを成形した。圧縮成形は、成形温度170℃、成形時間5分、成形圧力2.94MPaの条件で行った。
【0132】
【表4】

【0133】
(3)カバーの成形
(1)で得られた球状コアを(2)で得られた2枚のハーフシェルで同心円状に被覆して、圧縮成形によりカバーを成形した。圧縮成形は、成形温度145℃、成形時間2分、成形圧力9.8MPaの条件で行った。なお、アイオノマー樹脂を主成分とするカバー用組成物No.lは、コア上に直接射出成形することにより、カバーを形成した。すなわち、アイオノマー樹脂100質量部に酸化チタン4質量部をドライブレンドし、二軸混練型押出機によりミキシングして、ペレット状のカバー用組成物を得た。このペレット状のカバー用組成物をコアに射出成形することによりカバーを形成した。
【0134】
得られたゴルフボール本体の表面をサンドブラスト処理して、マーキングを施した後、クリアーペイントを塗布し、40℃のオーブンで塗料を乾燥させ、直径42.8mm、質量45.4gのゴルフボールNo.1〜No.21を得た。得られたゴルフボールついて評価した結果を表5〜8に示した。図12〜図21には、ゴルフボールNo.1〜No.21の硬度分布を示した。
【0135】
【表5】

【0136】
【表6】

【0137】
【表7】

【0138】
【表8】

【0139】
エラストラン1154D:BASFジャパン社製、MDI−ポリエーテル系ポリウレタンエラストマー(ショア硬度54)
エラストラン1159D:BASFジャパン社製、MDI−ポリエーテル系ポリウレタンエラストマー(ショア硬度59)
エラストラン1164D:BASFジャパン社製、MDI−ポリエーテル系ポリウレタンエラストマー(ショア硬度64)
エラストランXNY55D:BASFジャパン社製、H12MDI−ポリエーテル系ポリウレタンエラストマー(ショア硬度55)
エラストランXNY59D:BASFジャパン社製、H12MDI−ポリエーテル系ポリウレタンエラストマー(ショア硬度59)
エラストランXNY64D:BASFジャパン社製、H12MDI−ポリエーテル系ポリウレタンエラストマー(ショアD硬度64)
ハイミランAM7329:三井デュポンポリケミカル社製の亜鉛イオン中和エチレン−メタクリル酸共重合体系アイオノマー樹脂
ニュクレルN10150H:三井デュポンポリケミカル社製のエチレン−メタクリル酸共重合体
【0140】
ゴルフボールNo.1〜3、No.6〜No.8、No.17、No.19〜No.21は、球状コアと前記球状コアを被覆するカバーとを有するゴルフボールであって、前記カバーは、樹脂成分として、ポリウレタンエラストマーを含有し、動的粘弾性装置を用いて、加振周波数10Hz、温度0℃の測定条件で、剪断モードで測定した剪断損失弾性率G”が5.03×10Paより大きく、1.17×10Pa以下であるポリウレタン組成物から形成され、前記ゴルフボールは、球状コアの中心硬度(JIS−C)、コア中心から2.5mm間隔で測定した硬度(JIS−C)、球状コアの表面硬度(JIS−C)、および、カバーのスラブ硬度(JIS−C)を、コア中心からの距離に対してプロットしたときに、最小二乗法によって求めた線形近似曲線のRが0.95以上である硬度分布を有する。
【0141】
本発明のゴルフボールは、アプローチショットのドライスピン量およびウエットスピン量が高くなった。また、ミドル、ロングアイアンショットのスピン量が低く、ミドル、ロングアイアンショットの飛距離が大きいことが分かる。
【0142】
図2は、ゴルフボールNo.1〜No.21の剪断損失弾性率とアプローチショットのドライスピン量の相関関係を示したグラフである。図3は、ゴルフボールNo.1〜No.21の剪断損失弾性率とアプローチショットのウエットスピン量の相関関係を示したグラフである。図2、図3からも明らかなように、剪断損失弾性率が小さくなるとアプローチショットのスピン量が高くなる傾向があることが確認できる。
【産業上の利用可能性】
【0143】
本発明は、飛距離特性を重視するいわゆるディスタンス系ゴルフボールとして好適である。

【特許請求の範囲】
【請求項1】
球状コアと前記球状コアを被覆するカバーとを有するゴルフボールであって、前記カバーは、樹脂成分として、ポリウレタンエラストマーを含有し、動的粘弾性装置を用いて、加振周波数10Hz、温度0℃の測定条件で、剪断モードで測定した剪断損失弾性率G”が5.03×10Paより大きく、1.17×10Pa以下であるポリウレタン組成物から形成され、
前記ゴルフボールは、球状コアの中心硬度(JIS−C)、コア中心から2.5mm間隔で測定した硬度(JIS−C)、球状コアの表面硬度(JIS−C)、および、カバーのスラブ硬度(JIS−C)を、コア中心からの距離に対してプロットしたときに、最小二乗法によって求めた線形近似曲線のRが0.95以上である硬度分布を有することを特徴とするゴルフボール。
【請求項2】
ポリウレタン組成物の樹脂成分中における前記ポリウレタンエラストマーの含有率は、50質量%以上である請求項1に記載のゴルフボール。
【請求項3】
前記ポリウレタンエラストマーは、ポリイソシアネート成分として、1,4−ビス(イソシアナトメチル)シクロヘキサンを用いたものである請求項1または2に記載のゴルフボール。
【請求項4】
前記1,4−ビス(イソシアナトメチル)シクロヘキサンは、トランス体の比率が80モル%以上である請求項3に記載のゴルフボール。
【請求項5】
前記ポリウレタン組成物の剪断損失弾性率G”が8.83×10Pa以下である請求項1〜4のいずれか一項に記載のゴルフボール。
【請求項6】
前記ポリウレタン組成物のスラブ硬度は、ショアD硬度で50〜65である請求項1〜5のいずれか一項に記載のゴルフボール。
【請求項7】
前記カバーの厚みは、0.3mm〜4.0mmである請求項1〜6のいずれか一項に記載のゴルフボール。
【請求項8】
前記ゴルフボールに初期荷重98Nを負荷した状態から終荷重1275Nを負荷したときの圧縮変形量(圧縮方向にゴルフボールが縮む量)が、2.0mm〜4.0mmである請求項1〜7のいずれか一項に記載のゴルフボール。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2013−48806(P2013−48806A)
【公開日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2011−189297(P2011−189297)
【出願日】平成23年8月31日(2011.8.31)
【出願人】(504017809)ダンロップスポーツ株式会社 (701)