説明

トナー

【課題】耐光性に特に優れ、且つ、耐久使用時の画像の濃度変動が小さいトナーを提供すること。
【解決手段】結着樹脂、イエロー着色剤及びワックスを少なくとも含有するトナー粒子を有するトナーであって、イエロー着色剤は着色剤A及び着色剤Bを少なくとも含有し、着色剤AはC.I.Solvent Yellow 98であり、着色剤Bは、C.I.Pigment Yellow 74、C.I.Pigment Yellow 180、C.I.Pigment Yellow 185からなる群から選ばれる1種類以上の顔料であり、結着樹脂100質量部に対する着色剤Aの含有量をYA(質量部)とし、結着樹脂100質量部に対する着色剤Bの含有量をYB(質量部)としたときに、YA/(YA+YB)が0.05以上、0.30以下であることを特徴とするトナー。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子写真方式、静電記録方式、静電印刷方式、トナージェット方式に用いられるトナーに関する。
【背景技術】
【0002】
近年、電子写真方式のカラー画像形成装置が広く普及するに従い、その用途も多種多様に広がり、その画像品質への要求も厳しくなってきている。一般の写真、カタログ、地図の如き画像の複写では、微細な部分に至るまで、極めて微細且つ忠実に再現することが求められており、それに伴い、色の鮮やかさに対する要求も高まっており、色再現範囲を拡張することが望まれている。特に、印刷分野への進出が著しい昨今、電子写真方式においても印刷の品質と同等以上の高精彩、高精細、粒状性等が要求されるようになっている。
特に、フルカラー画像の場合は、色材の3原色であるイエロートナー、マゼンタトナー、シアントナーの3色の有彩色トナー又はそれに黒色トナーを加えた4色のトナーで色再現するものである。そのため、目的とする色調の画像を得るためには、他色とのバランスが重要である。そこで、トナーの色調を若干変えることを目的として、同色顔料・染料との併用、他色顔料・染料との併用なども提案されている。
イエロートナー用着色剤として、特許文献1、2には、イエロー染料を用いることにより高画質、高耐久性、耐光性のあるトナーが提案されている。
しかしながら、従来知られているイエロートナー用の着色剤は種々の問題も多くかかえていた。例えば、一般に染料系の着色剤は着色力には優れるものの、耐光性に劣り、画像の保存安定性に問題があり、また、顔料系の着色剤は耐光性には向上するが、着色力が劣るものが多い。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平4−243267号公報
【特許文献2】特開平6−250440号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、上記の課題を解決したトナーを提供するものである。具体的には、耐光性に特に優れ、且つ、耐久使用時の画像の濃度変動が小さいトナーを提供するものである。
【課題を解決するための手段】
【0005】
本発明者らは、鋭意検討を重ねた結果、特定の染料と顔料を特定の割合で配合することで、着色剤の耐光性が顕著に高められること、及び、耐久使用時におけるトナーの摩擦帯電量変化が小さく、画像の濃度変動を極力低下させられることを見出し、本発明に至った。
すなわち、本発明は以下のとおりである。
結着樹脂、イエロー着色剤及びワックスを含有するトナー粒子を有するトナーであって、
該イエロー着色剤は着色剤A及び着色剤Bを含有し、
該着色剤AはC.I.Solvent Yellow 98であり、
該着色剤Bは、C.I.Pigment Yellow 74、C.I.Pigment Yellow 180、C.I.Pigment Yellow 185からなる群から選ばれる1種類以上の顔料であり、
結着樹脂100質量部に対する該着色剤Aの含有量をYA(質量部)とし、結着樹脂1
00質量部に対する該着色剤Bの含有量をYB(質量部)としたときに、YA/(YA+YB)が0.05以上、0.30以下であることを特徴とするトナーに関する。
【発明の効果】
【0006】
本発明によれば、耐光性に特に優れ、且つ、耐久使用時の画像の濃度変動が小さいトナーを提供することができる。
【発明を実施するための形態】
【0007】
以下、本発明を実施するための形態を詳細に説明する。
本発明のトナーは、結着樹脂、イエロー着色剤及びワックスを含有するトナー粒子を有するトナーであって、
該イエロー着色剤は着色剤A及び着色剤Bを含有し、
該着色剤AはC.I.Solvent Yellow 98であり、
該着色剤Bは、C.I.Pigment Yellow 74、C.I.Pigment Yellow 180、C.I.Pigment Yellow 185からなる群から選ばれる1種類以上の顔料であり、
結着樹脂100質量部に対する該着色剤Aの含有量をYA(質量部)とし、結着樹脂100質量部に対する該着色剤Bの含有量をYB(質量部)としたときに、YA/(YA+YB)が0.05以上、0.30以下であることを特徴とする。
本発明のトナーは、C.I.Solvent Yellow 98(染料)、及び、C.I.Pigment Yellow 74、C.I.Pigment Yellow 180、C.I.Pigment Yellow 185からなる群より選ばれる1種類以上の顔料を特定の割合で含有することで、着色剤の耐光性が顕著に高められること、及び、耐久使用時におけるトナーの摩擦帯電量変化が小さく、画像の濃度変動を極力低下させられることが可能となった。
従来の染料は、着色力には優れるものの、耐光性に劣ることから画像の色味変動が大きく、保存安定性に問題があった。一方、顔料系の着色剤を用いた場合、耐光性はある程度向上するが、充分では無く、さらに着色力が劣るものが多かった。
本発明者らは、着色剤として上記染料と顔料の組み合わせ、かつ、特定の比率で用いることにより、着色剤の耐光性が顕著に高められること、及び、耐久使用時におけるトナーの摩擦帯電量変化が小さく、画像の濃度変動を極力低下させられることを見出した。
まず、C.I.Solvent Yellow 98(以下、SY98ともいう)は、トナーを構成する材料であるワックスと親和性が高く、ワックスの分散性を助長しているためと推測している。ワックスの分散性が向上し、結果、耐久使用時におけるトナーの摩擦帯電量変化が小さくなっていると考えている。
これは、C.I.Solvent Yellow 98の分子構造に存在する炭化水素鎖に起因すると考えている。
ワックスの分散性が悪いと、トナー表面において、ワックスがドメインで存在する場合がある。耐久使用時に発生するトナーの劣化は、トナー表面の構造変化で起きる場合が多く、硬度の低いワックスの部分で起きやすい。従って、ワックスが均一に分散されている場合、トナー表面での硬度の分布が均一になるため、耐久使用時におけるトナーの摩擦帯電量変化が小さくなると考えている。
【0008】
本発明のトナーにおいて、結着樹脂100質量部に対する着色剤Aの含有量をYA(質量部)とし、結着樹脂100質量部に対する着色剤Bの含有量をYB(質量部)としたときに、YA/(YA+YB)が0.05以上、0.30以下である。好ましくは、0.07以上、0.25以下であり、更に好ましくは0.08以上、0.20以下である。
[YA/(YA+YB)]が、上記範囲の場合に、着色剤の耐光性が顕著に高められ、かつ、耐久使用時におけるトナーの摩擦帯電量変化が小さく、画像の濃度変動が極力抑制される。
[YA/(YA+YB)]が0.05未満の場合、C.I.Solvent Yellow 98の効果が発現されにくくなり、耐久使用時におけるトナーの摩擦帯電量変化が極めて大きくなり、また、着色剤の耐光性を改善する効果が低下し、画像の色味変動が大きくなる。
[YA/(YA+YB)]が0.30を超える場合には、着色剤の耐光性を改善する効果が顕著に悪化する。
[YA/(YA+YB)]を調節することで、着色剤の耐光性が顕著に高められる理由は、以下のように考えている。上述のように、C.I.Solvent Yellow 98(以下、SY98ともいう)は、トナーを構成する材料であるワックスと親和性が高く、ワックスの分散性を助長していると考えている。そして、SY98、及び着色剤B(顔料)の周りにワックスが存在している状態を作り出していると思われる。結果、ワックスの存在により紫外線によるSY98、及び着色剤B(顔料)の損傷を軽減しているものと考えている。
【0009】
また、本発明において、(YA+YB)が、3質量部以上、20質量部以下であることが好ましい。更に好ましくは、4質量部以上、15質量部以下であり、特に好ましくは5質量部以上、10質量部以下である。
これは、(YA+YB)が、3質量部未満の場合、トナーとしての着色力は低いので、画像濃度はトナーの乗り量を増やすことにより対応する。しかしながら、この場合、必要以上にトナー消費量が増加することになる。
一方、20質量部を超える場合、トナー中の着色剤の分散性が低下する傾向にあり、同一の彩度(C)での明度(L)が低くなり、くすんだ色になる場合がある。
【0010】
本発明のトナーに用いられるワックスとしては、特に限定されないが、以下のものが挙げられる。低分子量ポリエチレン、低分子量ポリプロピレン、アルキレン共重合体、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックスの如き炭化水素系ワックス;酸化ポリエチレンワックスの如き炭化水素系ワックスの酸化物又はそれらのブロック共重合物;カルナバワックスの如き脂肪酸エステルを主成分とするワックス類;脱酸カルナバワックスの如き脂肪酸エステル類を一部又は全部を脱酸化したもの。さらに、以下のものが挙げられる。パルミチン酸、ステアリン酸、モンタン酸の如き飽和直鎖脂肪酸類;ブラシジン酸、エレオステアリン酸、バリナリン酸の如き不飽和脂肪酸類;ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコールの如き飽和アルコール類;ソルビトールの如き多価アルコール類;パルミチン酸、ステアリン酸、ベヘン酸、モンタン酸の如き脂肪酸類と、ステアリルアルコール、アラルキルアルコール、ベヘニルアルコール、カルナウビルアルコール、セリルアルコール、メリシルアルコールの如きアルコール類とのエステル類;リノール酸アミド、オレイン酸アミド、ラウリン酸アミドの如き脂肪酸アミド類;メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミドの如き飽和脂肪酸ビスアミド類;エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’ジオレイルアジピン酸アミド、N,N’ジオレイルセバシン酸アミドの如き不飽和脂肪酸アミド類;m−キシレンビスステアリン酸アミド、N,N’ジステアリルイソフタル酸アミドの如き芳香族系ビスアミド類;ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムの如き脂肪族金属塩(一般に金属石けんといわれているもの);脂肪族炭化水素系ワックスにスチレンやアクリル酸の如きビニル系モノマーを用いてグラフト化させたワックス類;ベヘニン酸モノグリセリドの如き脂肪酸と多価アルコールの部分エステル化物;植物性油脂の水素添加によって得られるヒドロキシル基を有するメチルエステル化合物。
これらのワックスの中でも、C.I.Solvent Yellow 98との親和性が高いという観点で、パラフィンワックス、フィッシャートロプシュワックスの如き炭化
水素系ワックスが好ましい。
該ワックスの含有量は、結着樹脂100質量部に対して、0.5質量部以上、20質量部以下であることが好ましい。また、トナーの保存性と高温オフセット性の両立の観点から、示差走査熱量分析装置(DSC)で測定される昇温時の吸熱曲線において、温度30℃以上200℃以下の範囲に存在する最大吸熱ピークのピーク温度が50℃以上、110℃以下であることが好ましい。
【0011】
本発明のトナーは、ビニル系樹脂成分と炭化水素化合物が反応した構造を有する重合体をトナー粒子中に更に含有することが好ましい。
該ビニル系樹脂成分と炭化水素化合物が反応した構造を有する重合体としては、ビニル系樹脂成分にポリオレフィンがグラフト重合したグラフト重合体又はポリオレフィンにビニル系モノマーがグラフト重合したグラフト重合体が特に好ましい。
該ビニル系樹脂成分と炭化水素化合物が反応した構造を有する重合体は、トナー製造時の混練工程において溶融した結着樹脂とワックスに対し界面活性剤のような働きをする。従って、該重合体によって、トナー粒子中のワックスの平均一次分散粒径を制御することが可能なため好ましい。
該ビニル系樹脂成分と炭化水素化合物が反応した構造を有する重合体は、C.I.Solvent Yellow 98との親和性が高く、よりC.I.Solvent Yellow 98のトナー粒子中への分散性を向上させることが可能であるため、好ましい。
該ビニル系樹脂成分にポリオレフィンがグラフト重合したグラフト重合体又はポリオレフィンにビニル系モノマーがグラフト重合したグラフト重合体に関して、ポリオレフィンは二重結合を一つ有する不飽和炭化水素系モノマーの重合体または共重合体であれば特に限定されず、様々なポリオレフィンを用いることができる。特にポリエチレン系、ポリプロピレン系が好ましく用いられる。
一方、ビニル系モノマーとしては、以下のものが挙げられる。
スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレン、p−クロルスチレン、3,4−ジクロルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレンの如きスチレン及びその誘導体などのスチレン系モノマー。
メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルの如きアミノ基含有α−メチレン脂肪族モノカルボン酸エステル類;アクリロニトリル、メタアクリロニトリル、アクリルアミドの如きアクリル酸もしくはメタクリル酸誘導体などの窒素原子を含むビニル系モノマー。
マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸の如き不飽和二塩基酸;マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物の如き不飽和二塩基酸無水物;マレイン酸メチルハーフエステル、マレイン酸エチルハーフエステル、マレイン酸ブチルハーフエステル、シトラコン酸メチルハーフエステル、シトラコン酸エチルハーフエステル、シトラコン酸ブチルハーフエステル、イタコン酸メチルハーフエステル、アルケニルコハク酸メチルハーフエステル、フマル酸メチルハーフエステル、メサコン酸メチルハーフエステルの如き不飽和二塩基酸のハーフエステル;ジメチルマレイン酸、ジメチルフマル酸の如き不飽和二塩基酸エステル;アクリル酸、メタクリル酸、クロトン酸、ケイヒ酸の如きα,β−不飽和酸;クロトン酸無水物、ケイヒ酸無水物の如きα,β−不飽和酸無水物、前記α,β−不飽和酸と低級脂肪酸との無水物;アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物、及びこれらのモノエステルなどのカルボキシル基を含むビニル系モノマー。
2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒド
ロキシプロピルメタクリレート等のアクリル酸又はメタクリル酸エステル類、4−(1−ヒドロキシ−1−メチルブチル)スチレン、4−(1−ヒドロキシ−1−メチルヘキシル)スチレンなどの水酸基を含むビニル系モノマー。
アクリル酸メチル、アクリル酸エチル、アクリル酸−n−ブチル、アクリル酸イソブチル、アクリル酸プロピル、アクリル酸−n−オクチル、アクリル酸ドデシル、アクリル酸−2−エチルヘキシル、アクリル酸ステアリル、アクリル酸−2−クロルエチル、アクリル酸フェニルの如きアクリル酸エステル類などのアクリル酸エステルからなるエステル単位。
メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸−n−ブチル、メタクリル酸イソブチル、メタクリル酸−n−オクチル、メタクリル酸ドデシル、メタクリル酸−2−エチルヘキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルの如きα−メチレン脂肪族モノカルボン酸エステル類などのメタクリル酸エステルからなるエステル単位。
ビニル系樹脂成分と炭化水素化合物が反応した構造を有する重合体は、前述したこれらのモノマー同士の反応や、一方の重合体のモノマーと他方の重合体との反応等、公知の方法によって得ることができる。
ビニル系樹脂成分の構成単位として、スチレン系単位、さらにはアクリロニトリル、またはメタアクリロニトリルを含むことが好ましい。
上記重合体中の炭化水素化合物とビニル系樹脂成分の質量比は1/99〜75/25であることが好ましい。炭化水素化合物とビニル系樹脂成分を上記範囲で用いることが、C.I.Solvent Yellow 98のトナー粒子中への分散性を向上させるために好ましい。
該ビニル系樹脂成分と炭化水素化合物が反応した構造を有する重合体の含有量は、結着樹脂100質量部に対して、0.2質量部以上、20質量部以下であることが好ましい。
上記重合体を上記範囲で用いることが、C.I.Solvent Yellow 98のトナー粒子中への分散性を向上させるために好ましい。
【0012】
本発明のトナーに使用される結着樹脂としては、特に限定されず、下記の重合体又は樹脂を用いることが可能である。
例えば、ポリスチレン、ポリ−p−クロルスチレン、ポリビニルトルエンなどのスチレン及びその置換体の単重合体;スチレン−p−クロルスチレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルエチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−アクリロニトリル−インデン共重合体などのスチレン系共重合体;ポリ塩化ビニル、フェノール樹脂、天然変性フェノール樹脂、天然樹脂変性マレイン酸樹脂、アクリル樹脂、メタクリル樹脂、ポリ酢酸ビニル、シリコーン樹脂、ポリエステル樹脂、ポリウレタン、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、ポリビニルブチラール、テルペン樹脂、クマロン−インデン樹脂、石油系樹脂などが使用できる。
これらの中で、低温定着性、帯電性制御の観点で、ポリエステル樹脂を用いることが好ましい。
本発明で好ましく用いられるポリエステル樹脂としては、「ポリエステルユニット」を結着樹脂鎖中に有している樹脂であり、該ポリエステルユニットを構成する成分としては、具体的には、2価以上のアルコールモノマー成分と、2価以上のカルボン酸、2価以上のカルボン酸無水物及び2価以上のカルボン酸エステル等の酸モノマー成分とが挙げられる。
例えば、該2価以上のアルコールモノマー成分として、ポリオキシプロピレン(2.2
)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3.3)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.0)−ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)−2,2−ビス(4−ヒドロキシフェニル)プロパン等のビスフェノールAのアルキレンオキシド付加物、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,4−ブテンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ソルビット、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセリン、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン等が挙げられる。
これらの中で好ましく用いられるアルコールモノマー成分としては、芳香族ジオールであり、ポリエステル樹脂を構成するアルコールモノマー成分において、芳香族ジオールは、80モル%以上の割合で含有することが好ましい。
一方、該2価以上のカルボン酸、2価以上のカルボン酸無水物及び2価以上のカルボン酸エステル等の酸モノマー成分としては、フタル酸、イソフタル酸及びテレフタル酸の如き芳香族ジカルボン酸類又はその無水物;コハク酸、アジピン酸、セバシン酸及びアゼライン酸の如きアルキルジカルボン酸類又はその無水物;炭素数6〜18のアルキル基又はアルケニル基で置換されたコハク酸もしくはその無水物;フマル酸、マレイン酸及びシトラコン酸の如き不飽和ジカルボン酸類又はその無水物;が挙げられる。
これらの中で好ましく用いられる酸モノマー成分としては、テレフタル酸、コハク酸、アジピン酸、フマル酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸やその無水物等の多価カルボン酸である。
また、該ポリエステル樹脂の酸価は、1mgKOH/g以上、20mgKOH/g以下であることがより摩擦帯電量の安定性の観点で好ましい。
なお、該酸価は、樹脂に用いるモノマーの種類や配合量を調整することにより、上記範囲とすることができる。具体的には、樹脂製造時のアルコールモノマー成分比/酸モノマー成分比、分子量を調整することにより制御できる。また、エステル縮重合後、末端アルコールを多価酸モノマー(例えば、トリメリット酸)で反応させることに制御できる。
【0013】
本発明のトナーには、必要に応じて荷電制御剤を含有させることもできる。トナーに含有される荷電制御剤としては、公知のものが利用できるが、特に、無色でトナーの帯電スピードが速く且つ一定の帯電量を安定して保持できる芳香族カルボン酸の金属化合物が好ましい。
ネガ系荷電制御剤としては、サリチル酸金属化合物、ナフトエ酸金属化合物、ジカルボン酸金属化合物、スルホン酸又はカルボン酸を側鎖に持つ高分子型化合物、スルホン酸塩或いはスルホン酸エステル化物を側鎖に持つ高分子型化合物、カルボン酸塩或いはカルボン酸エステル化物を側鎖に持つ高分子型化合物、ホウ素化合物、尿素化合物、ケイ素化合物、カリックスアレーンが挙げられる。ポジ系荷電制御剤としては、四級アンモニウム塩、該四級アンモニウム塩を側鎖に有する高分子型化合物、グアニジン化合物、イミダゾール化合物が挙げられる。荷電制御剤はトナー粒子に対して内添しても良いし外添しても良い。荷電制御剤の添加量は、結着樹脂100質量部に対して、0.2質量部以上、10質量部以下が好ましい。
【0014】
本発明のトナーは、必要に応じて、流動性向上や摩擦帯電量調整のために、外添剤が添
加されていてもよい。
当該外添剤としては、シリカ、酸化チタン、酸化アルミニウム、チタン酸ストロンチウムの如き無機微粒子が好ましい。該無機微粒子は、シラン化合物、シリコーンオイル又はそれらの混合物の如き疎水化剤で疎水化処理されていることが好ましい。
用いられる外添剤の比表面積としては、10m/g以上、50m/g以下であることが、外添剤の埋め込み抑制の観点で好ましい。
また、該外添剤の添加は、トナー粒子100質量部に対して、0.1質量部以上、5.0質量部以下であることが好ましい。
トナー粒子と外添剤との混合について、特に装置は限定されるものではないが、ヘンシェルミキサーの如き公知の混合機を用いることができる。
【0015】
本発明のトナーは、一成分系現像剤としても使用できるが、ドット再現性をより向上させるため、及び、長期にわたり安定した画像を得るために、磁性キャリアと混合して二成分系現像剤として用いることが好ましい。
磁性キャリアとしては、例えば、表面を酸化した鉄粉若しくは未酸化の鉄粉;鉄、リチウム、カルシウム、マグネシウム、ニッケル、銅、亜鉛、コバルト、マンガン、希土類の如き金属粒子、並びにそれらの合金粒子及び酸化物粒子;フェライト;等の磁性体や、磁性体と、この磁性体を分散した状態で保持するバインダー樹脂とを含有する磁性体分散樹脂キャリア(いわゆる樹脂キャリア)等、一般に公知のものを使用できる。
本発明のトナーを磁性キャリアと混合して二成分系現像剤として使用する場合、磁性キャリアの混合比率は、現像剤中のトナー濃度として、2質量%以上、15質量%以下とすることが好ましく、より好ましくは4質量%以上、13質量%以下にすると通常良好な結果が得られる。トナー濃度が2質量%未満では画像濃度が低下しやすく、15質量%を超えるとカブリや機内飛散が発生しやすい。
【0016】
本発明のトナーの製造方法は、特に限定されることなく、公知の製造方法を用いることができる。ここでは、粉砕法を用いたトナーの製造方法を例に挙げて説明する。
原料混合工程では、トナー粒子を構成する材料として、結着樹脂、イエロー着色剤及びワックス、並びに必要に応じて荷電制御剤等の他の成分を、所定量秤量して配合し、混合する。混合装置の一例としては、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサー、メカノハイブリッド(日本コークス工業株式会社製)などが挙げられる。
次に、混合した材料を溶融混練して、結着樹脂中にイエロー着色剤及びワックス等を分散させる。溶融混練工程では、加圧ニーダー、バンバリィミキサーの如きバッチ式練り機や、連続式の練り機を用いることができる。連続生産できる優位性から、1軸又は2軸押出機が主流となっている。例えば、KTK型2軸押出機(神戸製鋼所社製)、TEM型2軸押出機(東芝機械社製)、PCM混練機(池貝鉄工製)、2軸押出機(ケイ・シー・ケイ社製)、コ・ニーダー(ブス社製)、ニーデックス(日本コークス工業株式会社製)などが挙げられる。更に、溶融混練することによって得られる樹脂組成物は、2本ロール等で圧延され、冷却工程で水などによって冷却してもよい。
ついで、樹脂組成物の冷却物は、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、例えば、クラッシャー、ハンマーミル、フェザーミルの如き粉砕機で粗粉砕した後、更に、例えば、クリプトロンシステム(川崎重工業社製)、スーパーローター(日清エンジニアリング社製)、ターボ・ミル(ターボ工業製)やエアージェット方式による微粉砕機で微粉砕する。
その後、必要に応じて慣性分級方式のエルボージェット(日鉄鉱業社製)、遠心力分級方式のターボプレックス(ホソカワミクロン社製)、TSPセパレータ(ホソカワミクロン社製)、ファカルティ(ホソカワミクロン社製)の如き分級機や篩分機を用いて分級し、トナー粒子を得る。
また、必要に応じて、粉砕後に、ハイブリタイゼーションシステム(奈良機械製作所製
)、メカノフージョンシステム(ホソカワミクロン社製)、ファカルティ(ホソカワミクロン社製)、メテオレインボー MR Type(日本ニューマチック社製)を用いて、球形化処理の如きトナー粒子の表面処理を行うこともできる。
【0017】
本発明におけるトナー及び原材料の各種物性の測定法について以下に説明する。
<樹脂のピーク分子量(Mp)、数平均分子量(Mn)、及び重量平均分子量(Mw)の測定方法>
ピーク分子量(Mp)、数平均分子量(Mn)、及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、以下のようにして測定する。
まず、室温で24時間かけて、試料(樹脂)をテトラヒドロフラン(THF)に溶解する。そして、得られた溶液を、ポア径が0.2μmの耐溶剤性メンブランフィルター「マエショリディスク」(東ソー社製)で濾過してサンプル溶液を得る。尚、サンプル溶液は、THFに可溶な成分の濃度が約0.8質量%となるように調整する。このサンプル溶液を用いて、以下の条件で測定する。
装置 :HLC8120 GPC(検出器:RI)(東ソー社製)
カラム :Shodex KF−801、802、803、804、805、
806、807の7連(昭和電工社製)
溶離液 :テトラヒドロフラン(THF)
流速 :1.0ml/min
オーブン温度 :40.0℃
試料注入量 :0.10ml
試料の分子量の算出にあたっては、標準ポリスチレン樹脂(例えば、商品名「TSKスタンダード ポリスチレン F−850、F−450、F−288、F−128、F−80、F−40、F−20、F−10、F−4、F−2、F−1、A−5000、A−2500、A−1000、A−500」、東ソ−社製)を用いて作成した分子量校正曲線を使用する。
【0018】
<樹脂の軟化点の測定方法>
樹脂の軟化点の測定は、定荷重押し出し方式の細管式レオメータ「流動特性評価装置 フローテスターCFT−500D」(島津製作所社製)を用い、装置付属のマニュアルに従って行う。本装置では、測定試料の上部からピストンによって一定荷重を加えつつ、シリンダに充填した測定試料を昇温させて溶融し、シリンダ底部のダイから溶融された測定試料を押し出し、この際のピストン降下量と温度との関係を示す流動曲線を得ることができる。
本発明においては、「流動特性評価装置 フローテスターCFT−500D」に付属のマニュアルに記載の「1/2法における溶融温度」を軟化点とする。尚、1/2法における溶融温度とは、次のようにして算出されたものである。まず、流出が終了した時点におけるピストンの降下量Smaxと、流出が開始した時点におけるピストンの降下量Sminとの差の1/2を求める(これをXとする。X=(Smax−Smin)/2)。そして、流動曲線においてピストンの降下量がXとなるときの流動曲線の温度が、1/2法における溶融温度である。
測定試料は、約1.0gの樹脂を、25℃の環境下で、錠剤成型圧縮機(例えば、NT−100H、エヌピーエーシステム社製)を用いて約10MPaで、約60秒間圧縮成型し、直径約8mmの円柱状としたものを用いる。
CFT−500Dの測定条件は、以下の通りである。
試験モード:昇温法
開始温度:50℃
到達温度:200℃
測定間隔:1.0℃
昇温速度:4.0℃/min
ピストン断面積:1.000cm
試験荷重(ピストン荷重):10.0kgf(0.9807MPa)
予熱時間:300秒
ダイの穴の直径:1.0mm
ダイの長さ:1.0mm
【0019】
<ワックスの最大吸熱ピークのピーク温度の測定方法>
ワックスの最大吸熱ピークのピーク温度は、示差走査熱量分析装置「Q1000」(TA Instruments社製)を用いてASTM D3418−82に準じて測定する。装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。
具体的には、ワックス約10mgを精秤し、これをアルミニウム製のパンの中に入れ、リファレンスとして空のアルミニウム製のパンを用い、測定温度範囲30〜200℃の間で、昇温速度10℃/minで測定を行う。尚、測定においては、一度200℃まで昇温させ、続いて30℃まで降温し、その後に再度昇温を行う。この2度目の昇温過程での温度30〜200℃の範囲におけるDSC曲線の最大の吸熱ピークを示す温度を、ワックスの最大吸熱ピークのピーク温度とする。
【0020】
<無機微粒子のBET比表面積の測定方法>
無機微粒子のBET比表面積の測定は、JIS Z8830(2001年)に準じて行なう。具体的な測定方法は、以下の通りである。
測定装置としては、定容法によるガス吸着法を測定方式として採用している「自動比表面積・細孔分布測定装置 TriStar3000(島津製作所社製)」を用いる。測定条件の設定および測定データの解析は、本装置に付属の専用ソフト「TriStar3000 Version4.00」を用いて行い、また装置には真空ポンプ、窒素ガス配管、ヘリウムガス配管が接続される。窒素ガスを吸着ガスとして用い、BET多点法により算出した値を本発明における無機微粒子のBET比表面積とする。
尚、BET比表面積は以下のようにして算出する。
まず、無機微粒子に窒素ガスを吸着させ、その時の試料セル内の平衡圧力P(Pa)と無機微粒子の窒素吸着量Va(モル・g−1)を測定する。そして、試料セル内の平衡圧力P(Pa)を窒素の飽和蒸気圧Po(Pa)で除した値である相対圧Prを横軸とし、窒素吸着量Va(モル・g−1)を縦軸とした吸着等温線を得る。次いで、無機微粒子の表面に単分子層を形成するのに必要な吸着量である単分子層吸着量Vm(モル・g−1)を、下記のBET式を適用して求める。
Pr/Va(1−Pr)=1/(Vm×C)+(C−1)×Pr/(Vm×C)
(ここで、CはBETパラメーターであり、測定サンプル種、吸着ガス種、吸着温度により変動する変数である。)
BET式は、X軸をPr、Y軸をPr/Va(1−Pr)とすると、傾きが(C−1)/(Vm×C)、切片が1/(Vm×C)の直線と解釈できる(この直線をBETプロットという)。
直線の傾き=(C−1)/(Vm×C)
直線の切片=1/(Vm×C)
Prの実測値とPr/Va(1−Pr)の実測値をグラフ上にプロットして最小二乗法により直線を引くと、その直線の傾きと切片の値が算出できる。これらの値を用いて該の傾きと切片の連立方程式を解くと、VmとCが算出できる。
さらに、該で算出したVmと窒素分子の分子占有断面積(0.162nm)から、下記の式に基づいて、無機微粒子のBET比表面積S(m/g)を算出する。
S=Vm×N×0.162×10−18
(ここで、Nはアボガドロ数(モル−1)である。)
本装置を用いた測定は、装置に付属の「TriStar3000 取扱説明書V4.0
」に従うが、具体的には、以下の手順で測定する。
充分に洗浄、乾燥した専用のガラス製試料セル(ステム直径3/8インチ、容積約5ml)の風袋を精秤する。そして、ロートを使ってこの試料セルの中に約0.1gの無機微粒子を入れる。
無機微粒子を入れた該試料セルを真空ポンプと窒素ガス配管を接続した「前処理装置 バキュプレップ061(島津製作所社製)」にセットし、23℃にて真空脱気を約10時間継続する。尚、真空脱気の際には、無機微粒子が真空ポンプに吸引されないよう、バルブを調整しながら徐々に脱気する。セル内の圧力は脱気とともに徐々に下がり、最終的には約0.4Pa(約3ミリトール)となる。真空脱気終了後、窒素ガスを徐々に注入して試料セル内を大気圧に戻し、試料セルを前処理装置から取り外す。そして、この試料セルの質量を精秤し、風袋との差から無機微粒子の正確な質量を算出する。尚、この際に、試料セル内の無機微粒子が大気中の水分等で汚染されないように、秤量中はゴム栓で試料セルに蓋をしておく。
次に、無機微粒子が入った該試料セルのステム部に専用の「等温ジャケット」を取り付ける。そして、この試料セル内に専用のフィラーロッドを挿入し、該装置の分析ポートに試料セルをセットする。尚、等温ジャケットとは、毛細管現象により液体窒素を一定レベルまで吸い上げることが可能な、内面が多孔性材料、外面が不浸透性材料で構成された筒状の部材である。
続いて、接続器具を含む試料セルのフリースペースの測定を行なう。フリースペースは、23℃においてヘリウムガスを用いて試料セルの容積を測定し、続いて液体窒素で試料セルを冷却した後の試料セルの容積を、同様にヘリウムガスを用いて測定して、これらの容積の差から換算して算出する。また、窒素の飽和蒸気圧Po(Pa)は、装置に内蔵されたPoチューブを使用して、別途に自動で測定される。
次に、試料セル内の真空脱気を行った後、真空脱気を継続しながら試料セルを液体窒素で冷却する。その後、窒素ガスを試料セル内に段階的に導入して無機微粒子に窒素分子を吸着させる。この際、平衡圧力P(Pa)を随時計測することにより該吸着等温線が得られるので、この吸着等温線をBETプロットに変換する。尚、データを収集する相対圧Prのポイントは、0.05、0.10、0.15、0.20、0.25、0.30の合計6ポイントに設定する。得られた測定データに対して最小二乗法により直線を引き、その直線の傾きと切片からVmを算出する。さらに、このVmの値を用いて、上述したように無機微粒子のBET比表面積を算出する。
【0021】
<トナー粒子の重量平均粒径(D4)の測定方法>
トナー粒子の重量平均粒径(D4)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行い、算出する。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
尚、測定、解析を行う前に、以下のように前記専用ソフトの設定を行う。
前記専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、
粒径ビンを256粒径ビンに、粒径範囲を2μm以上60μm以下に設定する。
具体的な測定法は以下の通りである。
(1)Multisizer 3専用のガラス製250ml丸底ビーカーに前記電解水溶液約200mlを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
(2)ガラス製の100ml平底ビーカーに前記電解水溶液約30mlを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3ml加える。
(3)発振周波数50kHzの発振器2個を、位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispersion System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2ml添加する。
(4)前記(2)のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
(5)前記(4)のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。尚、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
(6)サンプルスタンド内に設置した前記(1)の丸底ビーカーに、ピペットを用いてトナーを分散した前記(5)の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
(7)測定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出する。尚、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
【実施例】
【0022】
以下、本発明の具体的実施例について説明するが、本発明はこれらの実施例に限定されるものではない。尚、以下の配合における「部」、「%」は特に説明が無い場合は質量基準である。
<結着樹脂の製造例1>
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン76.9質量部(0.167モル)、テレフタル酸24.1質量部(0.145モル)、及びチタンテトラブトキシド0.5質量部をガラス製4リットルの4つ口フラスコに入れ、温度計、撹拌棒、コンデンサー及び窒素導入管を取りつけマントルヒーター内においた。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、4時間反応させた(第1反応工程)。その後、無水トリメリット酸2.0質量部(0.010モル)を添加し、180℃で1時間反応させ(第2反応工程)、結着樹脂1を得た。
この結着樹脂1の酸価は10mgKOH/gであり、水酸基価は65mgKOH/gであった。また、GPCによる分子量は、重量平均分子量(Mw)8,000、数平均分子量(Mn)3,500、ピーク分子量(Mp)5,700、軟化点は90℃であった。
【0023】
<結着樹脂の製造例2>
ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン71.3質量部(0.155モル)、テレフタル酸24.1質量部(0.145モル)、及びチタンテトラブトキシド0.6質量部をガラス製4リットルの4つ口フラスコに入れ、温度計、撹拌棒、コンデンサー及び窒素導入管を取りつけマントルヒーター内においた
。次にフラスコ内を窒素ガスで置換した後、撹拌しながら徐々に昇温し、200℃の温度で撹拌しつつ、2時間反応させた(第1反応工程)。その後、無水トリメリット酸5.8質量部(0.030モル%)を添加し、180℃で10時間反応させ(第2反応工程)、結着樹脂2を得た。
この結着樹脂2の酸価は15mgKOH/gであり、水酸基価は7mgKOH/gである。また、GPCによる分子量は、重量平均分子量(Mw)200,000、数平均分子量(Mn)5,000、ピーク分子量(Mp)10,000、軟化点は130℃であった。
【0024】
<ビニル系樹脂成分と炭化水素化合物が反応した構造を有する重合体の製造例1>
・低密度ポリエチレン 20.0質量部
(Mw1400、Mn850、DSCによる最大吸熱ピークが100℃)
・スチレン 64.0質量部
・n−ブチルアクリレート 13.5質量部
・アクリロニトリル 2.5質量部
をオートクレーブに仕込み、系内をN置換後、昇温攪拌しながら180℃に保持した。系内に、2質量%のt−ブチルハイドロパーオキシドのキシレン溶液50質量部を5時間連続的に滴下し、冷却後溶媒を分離除去し、上記低密度ポリエチレンにビニル樹脂成分がグラフト重合した重合体Aを得た。重合体Aの分子量を測定したところ、重量平均分子量(Mw)7000、数平均分子量(Mn)3000であった。
【0025】
<トナー製造例1>
(第一の混練工程)
・結着樹脂1 50質量部
・C.I.Pigment Yellow 180(粉状) 50質量部
・蒸留水 50質量部
上記の原材料をまずニーダー型ミキサーに仕込み、混合しながら非加圧下で昇温させる。最高温度(ペースト中の溶媒の沸点により必然的に決定される。この場合は90〜100℃程度)に達した時点で水相中の顔料が、溶融樹脂相に分配もしくは移行し、これを確認した後、さらに30分間加熱溶融混練させ、ペースト中の顔料を充分に移行させる。その後、一旦、ミキサーを停止させ、熱水を排出した後、さらに110℃まで昇温し、約30分間加熱溶融混練を行ない、顔料を分散させるとともに水分を留去し、該工程を終了した後、冷却し、混練物を取り出し第1の混練物を得た。
(第二の混練工程)
・上記第1の混練物(顔料粒子の含有量50質量%) 14.0質量部
・結着樹脂1 53.0質量部
・結着樹脂2 40.0質量部
・重合体A 5.0質量部
・C.I.Solvent Yellow 98(粉状) 1.0質量部
・パラフィンワックス(最大吸熱ピークの温度:78℃) 5.0質量部
・3,5−ジ−tert−ブチルサリチル酸Al化合物 1.0質量部
上記の処方で十分ヘンシェルミキサーにより予備混合を行い、二軸押出し混練機で温度を150℃に設定し溶融混練し、冷却後ハンマーミルを用いて約1〜2mm程度に粗粉砕する。次いでエアージェット方式による微粉砕機で20μm以下の粒径に微粉砕した。さらに得られた微粉砕物を分級し、粒度分布における重量平均径が6.2μmのイエロー系樹脂粒子(分級品)を得た。
その後、該イエロー系樹脂粒子100質量部に対して、無機微粒子として、イソブチルトリメトキシシランで表面処理(処理量:酸化チタン微粒子100質量部当たり10質量部)した平均一次粒子径50nmの酸化チタン微粒子を0.8質量部、及び、下記疎水性シリカ0.6質量部を加え、外添混合し、イエロートナー1とした。
なお、疎水性シリカは、乾式法で製造されたシリカ微粒子(BET比表面積200m/g)をヘキサメチレンジシラザンで処理(処理量:シリカ微粒子100質量部当たり10質量部)した。その後、さらにジメチルシリーコンオイル処理(処理量:シリカ微粒子100質量部当たり16質量部)を行い、得られたものである。
【0026】
<トナー製造例2乃至24>
トナー製造製1において、下記表1に示すトナー処方に変更する以外は同様にして、トナー2乃至24を得た。
【0027】
【表1】

【0028】
<磁性コア粒子の製造例1>
工程1(秤量・混合工程):
・Fe 60.2質量%
・MnCO 33.9質量%
・Mg(OH) 4.8質量%
・SrCO 1.1質量%
上記構成比となるようにフェライト原材料を秤量した。その後、直径10mmジルコニアのボールを用いた乾式ボールミルで2時間粉砕・混合した。
工程2(仮焼成工程):
粉砕・混合した後、バーナー式焼成炉を用い大気中、温度950℃で2時間焼成し、仮焼フェライトを作製した。フェライトの組成は、下記の通りであった。
(MnO)0.387(MgO)0.108(SrO)0.010(Fe0.495
工程3(粉砕工程):
クラッシャーで0.5mm程度に粉砕した後に、直径10mmステンレスのボールのボールを用い、仮焼フェライト100質量部に対し、水を30質量部加え、湿式ボールミルで6時間粉砕した。
そのスラリーを、直径1.0mmジルコニアのビーズを用いた湿式ビーズミルで3時間粉砕し、フェライトスラリーを得た。
工程4(造粒工程):
フェライトスラリーに、バインダーとして仮焼フェライト100質量部に対してポリビニルアルコール2.0質量部を添加し、スプレードライヤー(製造元:大川原化工機)で、約36μmの球状粒子に造粒した。
工程5(本焼成工程):
焼成雰囲気をコントロールするために、電気炉にて窒素雰囲気下(酸素濃度0.01体積%以下)で、温度1300℃で4時間焼成した。
工程6(選別工程):
凝集した粒子を解砕した後に、目開き250μmの篩で篩分して粗大粒子を除去し、磁性コア粒子1を得た。
【0029】
<磁性キャリアの製造例1>
・ストレートシリコーン樹脂(SR2411 東レダウコーニング) 20.0質量%
(20質量%トルエン溶液における動粘度 1.1×10−4/sec)
・γ−アミノプロピルトリエトキシシラン 0.5質量%
・トルエン 79.0質量%
上記材料を上記組成比になるように混合し、樹脂液1を得た。
100質量部の磁性コア粒子1に対して、樹脂液1を樹脂成分として1.0質量部になるようにナウターミキサーに投入した。減圧下で70℃に加熱し、1.7S−1(100rpm)で混合し、4時間かけて溶媒除去及び塗布操作を行った。その後、得られた試料をジュリアミキサーに移し、窒素雰囲気下、温度200℃で2時間熱処理した後、目開き70μmの篩で分級して磁性キャリア1を得た。得られた磁性キャリア1の体積分布基準の50%粒径(D50)は、36.5μmであった。
【0030】
[実施例1]
<二成分系現像剤の調製>
トナー1と磁性キャリア1で、トナー濃度が8質量%になるようにV型混合機(V−10型:株式会社徳寿製作所)で0.5s−1、回転時間5minで混合し、二成分系現像剤1を得た。該二成分系現像剤1を用いて下記評価を実施した。
【0031】
<現像性評価>
画像形成装置として、キヤノン製フルカラー複写機imageRUNNER ADVANCE C5051改造機を用い、評価を行った。なお、改造機における改造部分は、現像条件、転写条件を外部電源で任意の値に調整できるようにしたことである。
常温常湿環境下(23℃、50%RH)で画出し評価(A4横、10%印字比率、1,000枚連続通紙)を行った。
1000枚連続通紙時間中は、1枚目と同じ現像条件、転写条件(キャリブレーション無し)で通紙を行った。評価紙は、コピー用紙CS−814(A4、坪量81.4g/m)キヤノンマーケティングジャパン株式会社より販売)を用いた。該評価環境において、FFH画像(ベタ部)のトナーの紙上への画像濃度が、1.50になるように調整した。FFH画像とは、256階調を16進数で表示した値であり、00Hを1階調目(白地部)、FFHを256階調目(ベタ部)とする。
初期(1枚目)および1,000枚連続通紙時の画像濃度(FFH画像部;ベタ部)を測定した。画像濃度の測定には、X−Riteカラー反射濃度計(500シリーズ:X−Rite社製)を使用した。
初期(1枚目)および1,000枚目のFFH画像部(ベタ部)の画像濃度の差を以下の基準で評価した。評価結果を表3に示す。
(評価基準)
A:0.05未満 非常に優れている
B:0.05以上0.10未満 良好である
C:0.10以上0.20未満 本発明では問題ないレベルである
D:0.20以上 本発明では許容できない
【0032】
<色度(明度、彩度)及び耐光試験後の色味変動評価>
画像形成装置として、キヤノン製フルカラー複写機imageRUNNER ADVANCE C5051改造機を用い、評価を行った。常温常湿環境下(23℃、50%RH)で、紙上のトナー乗り量(mg/cm)を変化させ、16階調画像を形成した。画像は、SpectroScan Transmission(GretagMacbeth社製)(測定条件:D50 視野角2°)を用い、得られた画像のL、a、bを測定した。測定はL−C座標軸におけるC=90になる乗り量でのL、a、bそれぞれを測定した。また、耐光性試験は、紫外線照射前後(120時間後)のL、a、bを測定し、ΔEを算出した。評価結果を表4に示す。
ΔE={(L−L+(a−a+(b−b1/2(評価基準)
A:2.00未満 非常に優れている
B:2.00以上3.50未満 良好である
C:3.50以上5.00未満 本発明では問題ないレベルである
D:5.00以上 本発明では許容できない
【0033】
<実施例2乃至20、及び比較例1乃至4>
実施例1において、評価に用いる二成分系現像剤を表2に記載の組み合わせに変更する以外は同様にして、評価を行った。評結果を表3及び表4に示す。
【0034】
【表2】

【0035】
【表3】

【0036】
【表4】


【特許請求の範囲】
【請求項1】
結着樹脂、イエロー着色剤及びワックスを含有するトナー粒子を有するトナーであって、
該イエロー着色剤は着色剤A及び着色剤Bを含有し、
該着色剤AはC.I.Solvent Yellow 98であり、
該着色剤Bは、C.I.Pigment Yellow 74、C.I.Pigment Yellow 180、C.I.Pigment Yellow 185からなる群から選ばれる1種類以上の顔料であり、
結着樹脂100質量部に対する該着色剤Aの含有量をYA(質量部)とし、結着樹脂100質量部に対する該着色剤Bの含有量をYB(質量部)としたときに、YA/(YA+YB)が0.05以上、0.30以下であることを特徴とするトナー。
【請求項2】
該(YA+YB)が、3質量部以上、20質量部以下であることを特徴とする請求項1に記載のトナー。
【請求項3】
該トナー粒子が、ビニル系樹脂成分と炭化水素化合物が反応した構造を有する重合体をさらに含有することを特徴とする請求項1または2に記載のトナー。
【請求項4】
該ワックスは、炭化水素系ワックスであることを特徴とする請求項1乃至3のいずれか1項に記載のトナー。

【公開番号】特開2013−72938(P2013−72938A)
【公開日】平成25年4月22日(2013.4.22)
【国際特許分類】
【出願番号】特願2011−210413(P2011−210413)
【出願日】平成23年9月27日(2011.9.27)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】