説明

バックライトユニットおよび液晶表示装置

【課題】大型かつ薄型な形状である液晶表示装置のバックライトユニットとして用いるに好適な、優れた耐久性と輝度の安定性を有する光源を備えたバックライトユニットを提供すること。
【解決手段】矩形状の光射出面、互いに対向する位置に配置される2つの光入射面、これらの2つの光入射面から前記光射出面の中央に向かうに従って厚さが厚くなる対称な2つの傾斜面、これらの2つの傾斜面を接合する湾曲部を備え、その内部に伝搬する光を散乱する散乱粒子を含む導光板と、前記導光板の2つの前記光入射面に対向してそれぞれ配置された2つの光源と、前記導光板の光出射面上に配置され、前記光源から出射される光を白色光に変換する光学調整部材と、前記光源および前記導光板を収納する筐体とを有することを特徴とするバックライトユニットおよびこれを用いる液晶表示装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、バックライトユニットおよび液晶表示装置に関する。
【背景技術】
【0002】
液晶表示装置には、液晶表示パネルの裏面側から光を照射し、液晶表示パネルを照明するバックライトユニットが用いられている。バックライトユニットは、通常、照明用の光源が発する光を拡散して液晶表示パネルを照射する導光板と、この導光板から出射される光を均一化するプリズムフィルムや拡散フィルムなどの部品を用いて構成される。
【0003】
従来は、大型の液晶テレビのバックライトユニットは、照明用の光源の直上に導光板を配置した、いわゆる直下型と呼ばれる方式が主流であった。この方式では、光源である冷陰極管を液晶表示パネルの背面に複数本配置し、内部を白色の反射面として均一な光量分布と必要な輝度を確保していた。
しかしながら、直下型のバックライトユニットでは、光量分布を均一にするために、液晶表示パネルに対して垂直方向の厚みが30mm程度必要であり、これ以上の薄型化が困難であった。
【0004】
ここで、薄型化が可能なバックライトユニットとしては、照明用の光源から射出され、入射した光を、所定方向に導き、光が入射された面とは異なる面である光射出面から射出させる導光板を用いるバックライトユニットがある。
このような、導光板を用いたバックライトユニットとしては、透明樹脂に光を散乱させるための散乱粒子を混入させた導光板を用いる方式(例えば、特許文献1〜4参照)のバックライトユニットが提案されている。
【0005】
例えば、特許文献1には、少なくとも1つの光入射領域および少なくとも1つの光取出面領域を有する光散乱導光体と前記光入射面領域から光入射を行う為の光源手段とを備え、前記光散乱導光体は前記光入射面から遠ざかるにつれて厚みを減ずる傾向を持った領域を有していることを特徴とする光散乱導光光源装置が記載されている。
また、特許文献2には、光散乱導光体と、光散乱導光体の光取出面側に配置されたプリズムフィルムと、光散乱導光体の裏面側に配置された反射体とを備えた面光源装置が記載されている。また、特許文献3には、プリズム列状の繰り返し起伏を有する光入射面と、光拡散性を与えられた光射出面を備えた板状の光学材料からなる光出射方向修正素子を備えた液晶ディスプレイが記載され、特許文献4には、内部に散乱能を与えられた光散乱導光体と、前記光散乱導光体の端面部から光供給を行う光供給手段を備えた光源装置が記載されている。
【0006】
また、導光板としては、上記以外にも中間部の厚みが入射側の端部および対向側の端部の厚みに比べ大きく形成されている導光板、入光部から離れるに従って厚みが厚くなる方向に傾斜した反射面を有する導光板、表面部と裏面部との間の距離が入射部で最小になり、入射部から最大離距離において厚さが最大になるような形状を有する形状の導光板が提案されている(例えば、引用文献5〜8参照)。
【0007】
【特許文献1】特開平07−36037号公報
【特許文献2】特開平08−248233号公報
【特許文献3】特開平08−271739号公報
【特許文献4】特開平11−153963号公報
【特許文献5】特開2003−90919号公報
【特許文献6】特開2004−171948号公報
【特許文献7】特開2005−108676号公報
【特許文献8】特開2005−302322号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、光源から遠ざかるにつれて厚みが薄くなる導光板を用いるタンデム方式などのバックライトユニットでは、薄型のものを実現することが可能であるが、冷陰極管とリフレクタの相対寸法の関係により光利用効率で直下型より劣っているという問題があった。また、導光板に形成された溝に冷陰極管を収容する形状の導光板を用いる場合、冷陰極管から遠ざかるにつれて厚みを薄くする形状とすることはできるが、導光板の厚みを薄くすると、溝に配置された冷陰極管の直上における輝度が強くなり、光射出面の輝度むらが顕著になるという問題があった。また、これらの方式の導光板は、いずれも、形状が複雑となるため、加工コストがアップし、大型、例えば、画面サイズが37インチ以上、特に、50インチ以上の液晶テレビのバックライト用の導光板とした時には、高コストとなってしまうという問題があった。
【0009】
また、特許文献5〜8には、製造安定化や、多重反射を利用した輝度(光量)むらを抑制するために光入射面から離れるに従って厚みを厚くする導光板が提案されているが、これらの導光板は、透明体であり、光源から入射した光がそのまま反対方向の端部側に光が抜けてしまうため、下面にプリズムやドットパターンを付与する必要がある。
また、光入射面とは反対側の端部に反射部材を配置し、入射した光を多重反射させて光射出面から射出させる方法もあるが、大型化するためには導光板を厚くする必要があり、重くなり、コストも高くなる。また、光源の写りこみが生じ、輝度むらとなるという問題もある。
【0010】
一方、平板型導光板を用いたサイドライト方式では、入射光を光射出面から効率よく射出させるために、内部に微小な散乱粒子を分散させている。このような平板形状の導光板では、散乱微粒子を均一に分散させても大画面化すると、散乱微粒子濃度が0.30wt%であれば、光利用効率83%を確保できるが、図14に実線で示す照度分布のように、中央部が暗くなり、明るさにむら、すなわち輝度むらが生じ、視認されてしまうという問題があった。
この輝度むらを平坦にするためには、散乱微粒子の濃度を下げて先端からの漏れ光を増やす必要があり、結果として利用効率の低下を生じ、また、輝度も低下するという問題があった。例えば、同一条件で、散乱微粒子濃度を0.10wt%とすれば、図14に点線で示すように、輝度むらを大幅に低減できるが、輝度が低下し、光利用効率も43%に低下するという問題があった。
さらに、大型の液晶テレビなどの大型ディスプレイに求められる光射出面上の明るさの分布は、画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高な分布、例えば釣鐘状の分布である。しかしながら、散乱微粒子が分散した平板形状の導光板では、散乱微粒子の濃度を下げて平坦な明るさの分布を得ることはできるが、中高な明るさの分布を実現することはできないという問題があった。
【0011】
さらに、大型の液晶テレビなどの大型ディスプレイに求められる光射出面上の明るさの分布は、画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高な分布、例えば釣鐘状の分布である。しかしながら、散乱微粒子が分散した平板形状の導光板では、散乱微粒子の濃度を下げて平坦な明るさの分布を得ることはできるが、中高な明るさの分布を実現することはできないという問題があった。
【0012】
さらに、薄型バックライト用に、タンデム方式の導光板とは逆に、光源から遠ざかるにつれて厚みが厚くなる導光板を用いることも考えられているが、薄型化が可能で、画面全体に平坦な輝度が得られているものの、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高な明るさの分布を得ることについては全く開示がなく、全く考慮だにされていないという問題があった。
【0013】
また、大型の導光板は、周囲の温度・湿度による伸縮が大きく、50インチ程度のサイズでは、5mm以上の伸縮を繰り返す。そのため、最悪の場合、伸縮した導光板が液晶パネルを押し上げ、液晶表示装置から出射される光にプール状のむらが発生する。これを避けるためには、予め、液晶パネルとバックライトユニットとの距離を大きくとることが考えられるが、これでは、液晶表示装置の薄型化が不可能であるという問題がある。
【0014】
これとは別に、バックライトユニットに用いられる光源に関しても、改良すべき点がある。すなわち、最近のバックライトユニットには光源としてLEDが用いられることが多く、特にコストの点から、1個のLEDと蛍光体とを組み合わせた、擬似白色光源が主に用いられている。この場合、従来の擬似白色光源においては、例えば、青色LEDと黄色蛍光体とを近接させて配置したものが用いられている。
【0015】
ところが、このようにLEDと蛍光体とを近接させて配置した場合には、LEDから放射される熱により蛍光体が経時的に劣化して、発光輝度が変化するという問題がある。
この経時変化の程度は、それほど大きなものではないが、液晶表示装置を長期間、安定した状態で使用する上では、解決すべき重要な問題である。
【0016】
本発明は、従来技術における上記問題点を解消するためになされたものであって、その第1の目的は、大型かつ薄型な形状である液晶表示装置のバックライトユニットとして用いるに好適な、優れた耐久性と輝度の安定性を有する光源を備えたバックライトユニットを提供することにある。
また、第2の目的は、このような優れた耐久性を有する光源を備えたバックライトユニットを組み込んだ、優れた耐久性を有する液晶表示装置を提供することにある。
なお、本発明の他の目的は、光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布を得ることができる導光板およびこのような導光板を組み込んだバックライトユニットを用いる液晶表示装置を提供することにある。
【課題を解決するための手段】
【0017】
上記課題を解決するために、本発明に係るバックライトユニットは、矩形状の光射出面、前記光射出面の対向する2つの長辺をそれぞれ含み互いに対向する位置に配置される2つの光入射面、これらの2つの光入射面から前記光射出面の中央に向かうに従ってそれぞれ前記光射出面からの距離が遠くなる対称な2つの傾斜面、これらの2つの傾斜面を接合する湾曲部を備え、その内部に伝搬する光を散乱する散乱粒子を含む導光板と、前記導光板の2つの前記光入射面に対向してそれぞれ配置された2つの光源と、前記導光板の光出射面上に配置され、前記光源から出射される光を白色光に変換する光学調整部材と、前記光源および前記導光板を収納する筐体とを有することを特徴とする。
【0018】
ここで、前記光源は単一の発光素子であり、前記光学調整部材は、前記発光素子から出射される光により励起され、前記発光素子から出射される光の補色となる光を出射する蛍光体である白色光に変換するものであることが好ましい。
また、前記光学調整部材は、前記蛍光体を含むフィルムとプリズムフィルムとを有するものであることが好ましい。
また、前記光学調整部材は、前記導光板の光出射面上に、前記蛍光体を含むフィルムと上方に凸のプリズムを有するフィルムとをこの順に積層したものであることが好ましい。
またさらに、前記光学調整部材は、前記導光板の光出射面上に、下方に凸のプリズムを有するフィルムと前記蛍光体を含むフィルムとをこの順に積層したものであることが好ましい。
【0019】
また、ここで、前記光源は青色光を発光する発光素子であり、前記蛍光体は前記発光素子が発光する青色光により励起されて、前記発光素子の発光する青色光と補色のかんけいとなる黄色光を出射する蛍光体であることが好ましい。
また、前記光源は青色光を発光する発光素子は、発光ダイオード(LED)またはレーザダイオード(LD)であることが好ましい。
またさらに、本発明に係るバックライトユニットは、前記各構成要素に加えて、前記光源と前記導光板とを、前記光源と前記導光板の前記光入射面との間の距離を一定にして固定して一体化する固定手段と、前記固定手段によって一体化された前記光源および前記導光板を収納する筐体と、前記光源の長手方向における伸縮を吸収するための、前記光源を前記導光板の前記光入射面に直交する方向に沿って摺動させるすべり機構とを有するものであることが好ましい。
【0020】
また、本発明に係る液晶表示装置は、上述の各バックライトユニットと液晶表示パネルとを有することを特徴とする。
【発明の効果】
【0021】
本発明によれば、大型かつ薄型な形状である液晶表示装置のバックライトユニットとして用いるに好適な、優れた耐久性と輝度の安定性を有する光源を備えた、LEDと蛍光体とを組み合わせたバックライトユニットを得ることができる。
また、本発明によれば、上述のような優れた耐久性を有するバックライトユニットを組み込んだ、優れた耐久性を有する液晶表示装置を提供することができる。
さらに、本発明によれば、上述のように用いるに好適な、光の利用効率が高く、輝度むらが少ない光を出射することができ、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布を得ることができる導光板およびこのような導光板を組み込んだ液晶表示装置を提供することができる。
【発明を実施するための最良の形態】
【0022】
本発明に係る液晶表示装置に用いられる面状照明装置を添付の図面に示す好適実施形態に基づいて以下に詳細に説明する。
なお、以下の説明においては、導光板の2辺に光源からの光を入射させる2辺入射方式の面状照明装置を代表例とするが、本発明はこれに限定されないのはいうまでもないことである。
図1は、本発明に係る面状照明装置を備える液晶表示装置の概略を示す斜視図であり、図2は、図1に示した液晶表示装置のII−II線断面図である。図3は、図2に示す面状照明装置(以下「バックライトユニット」ともいう)の光源部近傍の拡大図である。図4(A)は、図2に示す面状照明装置の導光板およびその2辺に配置される光源を示す部分省略平面図であり、図4(B)は、(A)のB−B線断面図である。
【0023】
図1に示すように、液晶表示装置10は、バックライトユニット20と、そのバックライトユニット20の光射出面側に配置される液晶表示パネル12と、液晶表示パネル12を駆動する駆動ユニット14とを有する。なお、図1においては、面状照明装置の構成を示すため、液晶表示パネル12の一部の図示を省略している。
【0024】
液晶表示パネル12は、予め特定の方向に配列してある液晶分子に、部分的に電界を印加してこの分子の配列を変え、液晶セル内に生じた屈折率の変化を利用して、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
駆動ユニット14は、液晶表示パネル12内の透明電極に電圧をかけ、液晶分子の向きを変えて液晶表示パネル12を透過する光の透過率を制御する。
【0025】
バックライトユニット20は、液晶表示パネル12の背面から、液晶表示パネル12の全面に光を照射する照明装置であり、液晶表示パネル12の画像表示面と略同一形状の光射出面24aを有する。
【0026】
本発明に係るバックライトユニット20は、図1,図2,図3,図4(A)及び(B)に示すように、2つの光源28、導光板30、固定手段31、光学部材ユニット32および反射板34とを有する照明装置本体24と、下部筐体42、上部筐体44、補強部材46およびすべり機構48を有する筐体40とで構成されている。なお、図示例においては、さらに、反射板34と下部筐体42の間には、ヒートシンク64とヒートパイプ66が設けられている。
また、図1に示すように、筐体40の下部筐体42(図2参照)の裏側には、光源28に電力を供給する複数の電源を収納する電源収納部49が取り付けられている。
以下、バックライトユニット20を構成する各構成部品について説明する。
【0027】
照明装置本体24は、光を射出する光源28と、光源28から射出された光を面状の光として射出する導光板30と、導光板30と光源28との光軸距離および光軸垂直距離を一定に保って固定する固定手段31と、導光板30から射出された光を、散乱や拡散させてよりむらのない光とする光学部材ユニット32と、導光板30から漏出した光を反射させて導光板に再度入射させる反射板34を有する。
ここで、導光板30と光源28との光軸距離とは、図4(B)に示すように、光源28の光射出面と導光板30の光入射面(30d、30e)との間の距離cをいう。また、導光板30と光源28との光軸垂直距離とは、導光板30と光源28の導光板の厚さ方向に対するそれぞれの光軸間の距離をいう。
【0028】
まず、光源28について説明する。
図5(A)は、図1及び図2に示す面状照明装置20の光源28の概略構成を示す概略斜視図であり、図5(B)は、図5(A)に示す光源28の断面図であり、図5(C)は、図5(A)に示す光源28を構成する1つのLED(発光ダイオード)チップ50のみを拡大して示す概略斜視図である。
図5(A)に示すように、光源28は、複数のLEDチップ50と、光源支持部52とを有する。
【0029】
LEDチップ50は、ここでは、例えば青色光を射出する発光ダイオードであり、所定面積の発光面58を有し、この発光面58から青色光を射出する。
後述するように、本発明に係る導光板においては、光源としてのLEDチップ50の発光ダイオードの表面から射出された青色光が導光板30内を散乱・反射を繰り返しつつ伝播して、導光板30の光出射面30aから射出され、プリズムフィルムにより角度分布を調整された後、蛍光体フィルム上の蛍光体に入射・透過して蛍光体が蛍光を出力する。
ここで、LEDチップ50としては、GaN系発光ダイオード、InGaN系発光ダイオード等が好適に用いられ、また、上記蛍光体フィルム上の蛍光体としては、YAG(イットリウム・アルミニウム・ガーネット)系蛍光体が例示される。
【0030】
光源支持部52は、図5(B)に示すように、アレイ基板54と複数のフィン56とを有する。上述した複数のLEDチップ50は、所定間隔離間して一列でアレイ基板54上に配置されている。具体的には、光源28を構成する複数のLEDチップ50は、後述する導光板30の第1光入射面30dまたは第2光入射面30eの長手方向に沿って、言い換えれば、光射出面30aと第1光入射面30dとが交わる線と平行に、または、光射出面30aと第2光入射面30eとが交わる線と平行に、アレイ状に配列されアレイ基板54上に固定されている。
【0031】
アレイ基板54は、一面が導光板30の最薄側端面である光入射面(30d、30e)に対向して配置される板状の部材である。アレイ基板54の導光板30の光入射面(30d、30e)に対向する面となる側面には、LEDチップ50が支持されている。
ここで、上述のアレイ基板54は、銅やアルミニウム等の熱伝導性の良い金属で形成されており、LEDチップ50から発生する熱を吸収し、外部に放散させるヒートシンクとしての機能も有する。
【0032】
複数のフィン56は、それぞれ銅やアルミニウム等の熱伝導性の良い金属で形成された板状部材であり、アレイ基板54のLEDチップ50が配置されている面とは反対側の面に、隣接するフィン56と所定間隔離間して連結されている。
光源支持部52に、複数のフィン56を設けることで表面積を広くすることができ、かつ、放熱効果を高くすることができる。これにより、LEDチップ50の冷却効率を高めることができる。
なお、本実施形態では、光源支持部52のアレイ基板54をヒートシンクとして用いたが、LEDチップの冷却が必要ない場合は、ヒートシンクに代えて放熱機能を備えない板状部材をアレイ基板として用いてもよい。
【0033】
また、図5(A)に示すように、光源支持部52の上面52a(具体的には上面側のフィン56)の両端部には2箇所にネジ穴52cが設けられている。また、光源支持部52の下面52b(具体的には下面側のフィン56)には上面52aのネジ穴52cに対応した位置にネジ穴52dが設けられている。後述するように、ネジ穴52cおよび52dは、それぞれネジ31bおよび31cによって、図3に示すように、光源28を固定手段31に固定するのに用いられる。
【0034】
ここで、図5(C)に示すように、本実施形態のLEDチップ50は、LEDチップ50の配列方向の長さよりも、配列方向に直交する方向の長さが短い長方形形状、つまり、後述する導光板30の厚み方向(光射出面30aに垂直な方向)が短辺となる長方形形状を有する。言い換えれば、LEDチップ50は、導光板30の光射出面30aに垂直な方向の長さをa、配列方向の長さをbとしたときに、b>aとなる形状である。また、LEDチップ50の配置間隔をqとするとq>bである。このように、LEDチップ50の導光板30の光射出面30aに垂直な方向の長さa、配列方向の長さb、LEDチップ50の配置間隔qの関係が、q>b>aを満たすことが好ましい。
【0035】
また、本実施形態では、LEDチップ50を1列に並べ、単層構造としたが、本発明はこれに限定されず、アレイ支持体に複数のLEDチップ50を配置した構成のLEDアレイを複数個、積層させた構成の多層LEDアレイを光源として用いることもできる。このようにLEDアレイを積層させる場合でもLEDチップ50を長方形形状とし、LEDアレイを薄型にすることで、より多くのLEDアレイを積層させることができる。このように、多層のLEDアレイを積層させる、つまり、LEDアレイ(LEDチップ)の充填率を高くすることで、より大光量を出力することができる。
【0036】
次に、本発明に係る特徴的構成を有する導光板30について説明する。
図6は、導光板30本体の形状を示す概略斜視図である。図7(A)は、導光板30本体の形状を表す断面図であり、図7(B)は、図7(A)に示す導光板30本体の部分拡大断面図である。
導光板30は、図6および図7に示すように、略矩形形状の平坦な光射出面30aと、この光射出面30aの両端に、光射出面30aに対してほぼ垂直に形成された2つの光入射面(第1光入射面30dと第2光入射面30e)と、光射出面30aの反対側、つまり、導光板の背面側に位置し、第1光入射面30dおよび第2光入射面30eに並行で、光射出面30aを2等分する2等分線α(図1,図4参照)を中心軸として互いに対称で、光射出面30aに対して所定の角度で傾斜する2つの傾斜面(第1傾斜面30bと第2傾斜面30c)と、光射出面30aの光入射面が形成されていない側の両端(光射出面30aと光入射面との交線に直交する2つの辺)に、光出射面30aに対して略垂直に形成された2つの側面(第1側面30fと第2側面30g)とを有している。2つの傾斜面(第1傾斜面30bと第2傾斜面30c)との接合部分には、曲率半径Rの湾曲部30hが形成され(図7(B)参照)、輝線等の輝度むらの発生を防止している。
【0037】
図6に示すように、光射出面30aの第1光入射面30dと第1側面30fとが交わる角隅30i、および第2光入射面30eと第1側面30fとが交わる角隅30kのそれぞれの内側近傍には、それぞれ、導光板30を固定部材31aに固定するための第1丸穴60a、および第2丸穴60cが設けられている。また、導光板30の背面側における第1丸穴60a、および第2丸穴60cにそれぞれ対応する位置には、第1丸穴60b、および第2丸穴60dが設けられている。
また、光射出面30aの第1光入射面30dと第2側面30gとが交わる角隅30j、および第2光入射面30eと第2側面30fとが交わる角隅30lのそれぞれの内側近傍には、それぞれ、導光板30を固定部材31aに連結するための、光入射面30d、30eに平行な方向に長い第1長穴62a、および第2長穴62cが設けられている。また、導光板30の背面側における第1長穴62a、および第2長穴62cに対応する位置にそれぞれ第1長穴62b、および第2長穴62dが設けられている。
【0038】
また、第1丸穴60aが設けられている角隅30iの内側近傍には、第1丸穴60aに近接して、導光板30を筐体40の上部筐体42および下部筐体44に連結するための第3丸穴61aが設けられている。
また、第1長穴62aおよび第2丸穴60cが設けられている各角隅30jおよび30kの内側近傍には、第1長穴62aおよび第2丸穴60cにそれぞれ近接して、導光板30を筐体40の上部筐体42および下部筐体44に連結するための、光入射面30dに平行な方向に長い第3長穴63aおよび光入射面30eに垂直な方向に長い第4長穴63bが設けられている。
【0039】
なお、2つの光入射面30dおよび30eは、略矩形形状の光射出面30aの対向する長辺側に対向して位置しており、対向して配置された光源28から2つの光入射面30dおよび30eに入射した光は、略矩形形状の光射出面30aの対向する短辺に平行に導光板30内を伝播する。
第1傾斜面30bおよび第2傾斜面30cは、2等分線αに対して線対称であり、光射出面30aに対し対称に傾斜している。湾曲部30hも、2等分線αに対して線対称に湾曲している。導光板30は、第1光入射面30dおよび第2光入射面30eから中央に向かうに従って厚さが厚くなっており、中央部の2等分線αに対応する部分、すなわち湾曲部30hの中央部分で最も厚く(tmax)、両端部の2つの光入射面(第1光入射面30dと第2光入射面30e)で最も薄く(tmin)なっている。
すなわち、導光板30の断面形状は、2等分線αを通る中心軸に対して線対称である。
【0040】
ここで、本発明においては、第1光入射面30dと第2光入射面30eとの間の光が伝播する導光長Lは、22インチ(22”)の画面サイズ以上の液晶パネル12を対象としているので、300mm以上であり、最大65インチ(65”)の画面サイズ以上の液晶パネル12を対象とするので、830mm以下である必要がある。より詳細には、22インチ(22”)の画面サイズに対しては、導光長Lは、300mm以上、320mm以下であり、37インチ(37”)の画面サイズに対しては、導光長Lは、480mm以上、500mm以下であり、42インチ(42”)および46インチ(46”)の画面サイズに対しては、導光長Lは、515mm以上、620mm以下であり、52インチ(52”)および57インチ(57”)の画面サイズに対しては、導光長L(図7(A)参照)は、625mm以上、770mm以下であり、65インチ(65”)の画面サイズに対しては、導光長Lは、785mm以上、830mm以下であるのが良い。
【0041】
また、導光板30の厚みが最も薄い光入射面30dおよび30eの最小厚さtminは、0.5mm以上、3.0mm以下であるのが好ましい。
その理由は、最小厚さが小さ過ぎると、光入射面30dおよび30eが小さくなり過ぎて、光源28からの光入射が少なくなり、光射出面30aから十分な輝度の光を射出することができないし、最小厚さが大き過ぎると、最大厚さが厚くなり過ぎ、重量が重すぎて液晶表示装置などの光学部材として適さないし、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからである。
また、導光板30の厚みが最も厚い湾曲部30hの中央の最大厚みtmaxは、1.0mm以上、6.0mm以下であるのが好ましい。
その理由は、最大厚さが厚くなり過ぎる場合、重量が重すぎて液晶表示装置などの光学部材として適さないし、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからであり、最大厚さが薄くなり過ぎる場合、中央部の湾曲部30hの曲率半径Rが大きすぎて成形に適さないし、平板の場合と同様に、中高な輝度分布を達成する粒子濃度では、光利用効率が55%以上を満たさないし、逆に、光利用効率が55%以上を達成する粒子濃度では 中高分布を実現できないからである。
【0042】
従って、傾斜背面30bおよび30cのテーパ、すなわちテーパ角(傾斜角)は、0.1°以上、2.2°以下であるのが好ましい。
その理由は、テーパが大き過ぎる場合、最大厚さが必要以上に大きくなりすぎてしまうし、必要以上に中高な分布になりすぎてしまうからであり、テーパが小さ過ぎる場合、最小厚さが小さすぎる場合と同様に、湾曲部30hの曲率半径R(以下「中央部半径R」ともいう。)が大きすぎて成形に適さないし、光利用効率が55%以上を達成する粒子濃度では中高分布を実現できないし、逆に、平板と同様に、中高な輝度分布を達成する粒子濃度では光利用効率が55%以上を満たさないからである。
その結果、湾曲部30hの曲率半径Rは、1,500mm以上、45,000mm以下であるのが好ましい。
なお、図7(A)及び(B)に示すように、傾斜背面30bおよび30cのテーパ角をθとするとき、L=2Rsinθで表され、最大厚みtmax=tmin−[(L/2)tanθ+Rcosθ−R]で表され、テーパ角θ=tan−1[(tmax−tmin)/(L/2)]で表される。
【0043】
本発明においては、導光板30の形状を、第1光入射面30dおよび第2光入射面30eから中央に向かうに従って厚さが厚くなるような形状(以下、逆楔形状という)にすることにより、入射した光をより奥に伝播しやすくして、光利用効率を維持しながら面内均一性を向上させ、さらに、中高な、いわゆる釣鐘状の輝度分布を得るものである。すなわち、このような形状とすることにより、上述した従来の平板形状の導光板では中央が暗くなる分布を、均一あるいは中高な、いわゆる釣鐘状の分布とすることができる。
また、傾斜背面30bおよび30cの中央の接合部分を湾曲部30hとして滑らかに接合することにより、中央の接合部分にできる帯むらを、均一あるいは中高な、いわゆる釣鐘状の分布とすることができる。
【0044】
ここで、逆楔形状の導光板のテーパ角を変化させた際における、光利用効率および面内均一性の変化の一例を示す。
図7に示す導光板において、最小厚みtminおよび導光長Lは一定で、最大厚みtmaxを変えて傾斜背面のテーパ角θを種々変更したときの、光利用効率および面内均一性を、シミュレーションにより求めた結果を表1に示す。ここで、面内均一性[%]は、導光板の光射出面から射出される光の最小輝度と最大輝度との比であり、最小輝度/最大輝度で表される。
【0045】
【表1】

【0046】
さらに、表1に示す導光板において、導光板の輝度分布と、テーパ角との関係をシミュレーションによって求めた結果を図8に示す。図8では、縦軸を規格化輝度とし、横軸を導光板の端部からの距離[mm]とした。ここで、規格化輝度とは、計算例の一つであるTP2の平均輝度を1として規格化した値である。
表1および、図8に示すように、導光板を逆楔形状にすることによって、光の利用効率を維持しながら面内均一性を改善できることがわかる。さらに、テーパ角θを0.1°以上、2.2°以下とすることで、光利用効率は同等以上としながら面内均一性をより高くすることができることがわかる。
【0047】
図4(A)および(B)に示す導光板30では、第1光入射面30dおよび第2光入射面30eから入射した光は、導光板30の内部に含まれる散乱微粒子(詳細は後述する)によって散乱されつつ、導光板30内部を通過し、直接、もしくは、第1傾斜面30bおよび第2傾斜面30cで反射した後、光射出面30aから出射する。このとき、第1傾斜面30bおよび第2傾斜面30cから一部の光が漏出する場合もあるが、漏出した光は、導光板30の第1傾斜面30bおよび第2傾斜面30cを覆うようにして配置される反射シート(図示せず)によって反射され再び導光板30の内部に入射する。
【0048】
導光板30は、透明樹脂に、光を散乱させるための微小な散乱粒子が混錬分散されて形成されている。導光板30に用いられる透明樹脂の材料としては、例えば、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PC(ポリカーボネート)、PMMA(ポリメチルメタクリレート)、ベンジルメタクリレート、MS樹脂、あるいはCOP(シクロオレフィンポリマー)のような光学的に透明な樹脂が挙げられる。導光板30に混錬分散させる散乱粒子としては、トスパール、シリコーン、シリカ、ジルコニア、誘電体ポリマ等を用いることができる。このような散乱粒子を導光板30の内部に含有させることによって、均一で輝度むらが少ない照明光を光射出面から出射することができる。
【0049】
ここで、本発明の導光板30に分散させる散乱微粒子の粒径が、4.0μm以上、かつ12.0μm以下である必要がある。その理由は、高い散乱効率を得ることができ、前方散乱性が大きくかつ波長依存性が少なく、色むらがないように選択できるからである。
なお、本発明の導光板30に分散させる散乱微粒子の最適な粒径選択については、波長依存性の観点に加え、以下の点をも考慮するのが好ましい。
まず、単一の粒子による散乱光強度分布(角度分布)においては、前方0〜5°に散乱する光が90%以上となる条件を満たすようにする必要がある。なぜならば、逆楔形状の本発明の導光板30は、導光板30の側面の第1光入射面30dおよび第2光入射面30eから最低でも240mm以上の距離、片面入射の場合は、光入射面から最低480mm以上の距離を導光する必要があるからであり、前方0〜5°に散乱する光が90%未満では、導光板30の奥まで光が導光できないからである。
【0050】
このため、散乱微粒子の粒径が、4.0μmより小さいと、すなわち、4.0μm未満では、散乱が等方性となるため、上記条件を満たすことができない。なお、母材としてアクリル樹脂、粒子としてシリコーン樹脂を選択した場合は、シリコーン樹脂散乱微粒子の粒径は、4.5μm以上とするのがより好ましい。
一方、散乱微粒子の粒径が、12.0μmより大きいと、すなわち、12.0μm超では、粒子の前方散乱性が強くなりすぎるため、系内の平均自由行程が大きくなり、散乱回数が減少することから、入射端付近で光源(LED)間の輝度むら(ホタルムラ)が現れてしまうため、上限値は、12.0μmに制限される。
その理由は、粒子濃度が高すぎる場合、平板と同様の現象となるため、中高な輝度分布を実現できないからであり、粒子濃度が低すぎる場合、光が突き抜けて透過してしまうために、光利用効率が55%以上を満たさないからである。
【0051】
このように、本発明の散乱微粒子の粒子径の限定範囲に含まれる最適な粒径(粒子屈折率と母材屈折率との組み合わせ)を選択することにより、波長むらのない出射光を得ることができる。
なお、上述した例では、単一粒径の散乱微粒子を用いているが、本発明はこれに限定されず、複数粒径の散乱微粒子を混合して用いても良い。
【0052】
また、散乱粒子の濃度は、本発明の導光板30の導光長が280mm〜830mmであるので、0.008wt%以上、0.76wt%以下である必要がある。
具体的には、導光長Lが280mm≦L≦320mmである場合には、散乱粒子の濃度を0.1wt%以上0.76wt%以下とする必要がある。
また、導光板の導光長を画面サイズ22インチ対応のL=280mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.1wt%以上、0.32wt%以下とすることがより好ましく、0.14wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.14wt%以上、0.5wt%以下とすることがより好ましく、0.21wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.25wt%以上、0.76wt%以下とすることがより好ましく、0.35wt%とすることが最も好ましい。
【0053】
また、導光板30の導光長Lが480mm≦L≦500mmである場合には、散乱粒子の濃度を0.02wt%以上0.22wt%以下とする必要がある。
また、導光板の導光長を画面サイズ37インチ対応のL=480mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.085wt%以下とすることがより好ましく、0.047wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.03wt%以上、0.12wt%以下とすることがより好ましく、0.065wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.06wt%以上、0.22wt%以下とすることがより好ましく、0.122wt%とすることが最も好ましい。
【0054】
また、導光長Lが515mm≦L≦620mmである場合には、散乱粒子の濃度を0.015wt%以上、0.16wt%以下とするのが良い。
また、導光板の導光長を画面サイズ42インチ対応のL=560mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.015wt%以上、0.065wt%以下とすることがより好ましく、0.035wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.09wt%以下とすることがより好ましく、0.048wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.04wt%以上、0.16wt%以下とすることがより好ましく、0.09wt%とすることが最も好ましい。
【0055】
また、導光板の導光長を画面サイズ46インチ対応のL=590mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.015wt%以上、0.060wt%以下とすることがより好ましく、0.031wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.02wt%以上、0.08wt%以下とすることがより好ましく、0.043wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.035wt%以上、0.15wt%以下とすることがより好ましく、0.081wt%とすることが最も好ましい。
【0056】
また、導光長Lを625mm≦L≦770mmとする場合には、散乱粒子の濃度を0.01wt%以上、0.12wt%以下とするのが良い。
また、導光板の導光長を画面サイズ52インチ対応のL=660mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を、0.010wt%以上0.050wt%以下とすることがより好ましく、0.025wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.015wt%以上0.060wt%以下とすることがより好ましく、0.034wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を0.030wt%以上0.120wt%以下とすることがより好ましく、0.064wt%とすることが最も好ましい。
【0057】
さらに、導光板の導光長を画面サイズ57インチ対応のL=730mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を0.010wt%以上、0.040wt%以下とすることがより好ましく、0.021wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.010wt%以上、0.050wt%以下とすることがより好ましく、0.028wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.020wt%以上0.100wt%以下とすることが好ましく、0.053wt%とすることが最も好ましい。
【0058】
また、導光長Lを785mm≦L≦830mmとする場合には、散乱粒子の濃度を0.006wt%以上、0.08wt%以下とすること好ましい。
さらに、導光板の導光長を画面サイズ65インチ対応のL=830mmとし、散乱粒子の粒子径を4.5μmとする場合は、散乱粒子の濃度を0.008wt%以上、0.030wt%以下とすることがより好ましく、0.016wt%とすることが最も好ましい。また、散乱粒子の粒子径を7.0μmとする場合は、散乱粒子の濃度を、0.009wt%以上、0.040wt%以下とすることがより好ましく、0.022wt%とすることが最も好ましい。さらに、散乱粒子の粒子径を12.0μmとする場合は、散乱粒子の濃度を、0.020wt%以上、0.080wt%以下とすることがより好ましく、0.041wt%とすることが最も好ましい。
【0059】
以上から、本発明においては、導光板30の2つの光入射面30d、30e間の導光長に応じて、導光板30に分散させる散乱粒子の粒径および濃度が、所定の関係を満たす必要があることが分かる。
そこで、本発明においては、導光板30の導光長が、280mm以上、320mm以下である時、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.1wt%以上、0.76wt%以下である必要があり、かつ、図9に示すグラフのように、散乱粒子の粒径(μm)を横軸とし、散乱粒子の粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.1)、(4.0,0.32)、(7.0,0.14)、(7.0,0.5)、(12.0,0.25)および(12.0,0.76)で囲まれる領域内にある必要がある。
【0060】
また、導光板30の導光長が、480mm以上、500mm以下である時、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.02wt%以上、0.22wt%以下である必要があり、かつ、図10(A)に示すグラフのように、散乱粒子の粒径(μm)を横軸とし、散乱粒子の粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.02)、(4.0,0.085)、(7.0,0.03)、(7.0,0.12)、(12.0,0.06)および(12.0,0.22)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、515mm以上、620mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.015wt%以上、0.16wt%以下であり、かつ、図10(B)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.015)、(4.0,0.065)、(7.0,0.02)、(7.0,0.09)、(12.0,0.035)および(12.0,0.16)で囲まれる領域内にある必要がある。
【0061】
また、導光板30の導光長が、625mm以上、770mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.01wt%以上、0.12wt%以下であり、かつ図11(A)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.01)、(4.0,0.05)、(7.0,0.01)、(7.0,0.06)、(12.0,0.02)および(12.0,0.12)で囲まれる領域内にある必要がある。
また、導光板30の導光長が、785mm以上、830mm以下であるとき、上述のように、散乱粒子の粒径が、4.0μm以上、12.0μm以下、散乱粒子の濃度が、0.008wt%以上、0.08wt%以下であり、かつ、図11(B)に示すグラフのように、粒径(μm)を横軸とし、粒子濃度(wt%)を縦軸とするとき、散乱粒子の粒径および濃度が、6点(4.0,0.008)、(4.0,0.03)、(7.0,0.009)、(7.0,0.04)、(12.0,0.02)および(12.0,0.08)で囲まれる領域内にある必要がある。
【0062】
散乱粒子の粒径および濃度が、図9、図10(A),(B)及び図11(A),(B)に示すグラフの6点で囲まれた領域内にある必要がある理由は、この領域を外れると、粒子濃度が高すぎる場合には、平板と同じとなり、中高な輝度分布を実現できないし、粒子濃度が低すぎる場合には、光が突き抜けて透過してしまうために光利用効率55%以上を満たさなくなるからであり、粒径が小さすぎる場合には、光利用効率はよくなるが、中高な輝度分布を実現できないし、粒径が大きすぎる場合には、中高な輝度分布を実現できるが、光利用効率が低いからである。
【0063】
このように本発明の散乱微粒子の粒子濃度の限定範囲に含まれる最適な粒子濃度を選択することにより、平板形状の導光板に分散させた場合に比べて光利用効率を高めて出射させることができる。本発明においては、少なくとも55%以上、すなわち70%を超える光利用効率を達成することができる。
以上から、最適な粒子径および粒子濃度の組み合わせを選択できるので、これらの組み合わせを選択することで、10mm程度の混合長でLED光源からの出射光をむらなく出射させることができる。
【0064】
このような内部に散乱微粒子を分散させた本発明の導光板30は、2つの光入射面から入射した光が光射出面から射出された割合を示す光の利用効率が55%以上である必要がある。この理由は、光の利用効率が55%未満では、必要な輝度を得るためには、より出力の大きな光源が必要となるが、より出力の大きな光源を用いると、光源が高温となり、消費電力が大きくなるばかりか、導光板30の反りや伸びが大きくなり、所要の明るさの分布、いわゆる中高なあるいは釣鐘状の明るさの分布が得られなくなるからである。
また、光射出面の光入射面近傍から射出する光の輝度に対する光射出面の中央部から射出する光の輝度の割合を示す前記光射出面の輝度分布の中高度合が、0%より大きく25%以下であるである必要がある。その理由は、大画面の薄型液晶テレビに要求される画面の中央部付近が周辺部に比べて明るい分布、いわゆる中高なあるいは釣鐘状の明るさの分布だからである。
このような導光板30は、押出成形法や射出成形法を用いて製造することができる。
【0065】
ここで、導光板30は、光入射面となる第1光入射面30d、第2光入射面30eと、光射出面30aと、光反射面となる第1傾斜面30b、第2傾斜面30cの少なくとも1面の表面粗さRaを380nmより小さくすること、つまりRa<380nmとすることが好ましい。
光入射面となる第1光入射面30d、第2光入射面30eの表面粗さRaを380nmよりも小さくすることで、導光板表面の拡散反射を無視することができ、つまり、導光板表面での拡散反射を防止することができ、入射効率を向上させることができる。
また、光射出面30aの表面粗さRaを380nmよりも小さくすることで、導光板表面の拡散反射透過を無視することができ、つまり導光板表面での拡散反射透過を防止することができ、全反射により奥まで光を伝えることができる。
さらに、光反射面となる第1傾斜面30b、第2傾斜面30cの表面粗さRaを380nmよりも小さくすることで、拡散反射を無視することができ、つまり光反射面での拡散反射を防止でき、全反射成分をより奥まで伝えることができる。
本発明の導光板は、基本的に以上のように構成される。
【0066】
次に、光学部材ユニット32について説明する。
本発明の導光板に用いられる光学部材ユニット32は、導光板30の光射出面30aから射出された照明光をより輝度むらのない光にして、照明装置本体24の光射出面24aからより輝度むらのない照明光を射出するとともに、光源28のLEDチップ50から出射した光(ここでは、これを一次光ということにする)を、目的とする色の二次光に変換するためのもので、図2に示すように、光入射面と光射出面との接線と平行なマイクロプリズム列が形成された下凸プリズムフィルム32aと、導光板30の光射出面30aから射出する照明光を上述の一次光から二次光に変換する蛍光体フィルム32bとを有する。
また、光学部材ユニット32には、光源28と導光板30とを固定するための固定部材31aに固定するために、導光板30の光射出面30aに設けた第1丸穴60a、第2丸穴60c、第1長穴62a、第2長穴62cに対応した位置に、同様な丸穴および長穴が設けられているのが好ましい。なお、図示されていないが、光学部材ユニット32には、導光板30を筐体40の上部筐体42および下部筐体44に連結するために、導光板30の光射出面30aに設けられた第3丸穴61a、第3長穴63aおよび第4長穴63bに対応した位置に、同様な丸穴および長穴が設けられているのが好ましい。
【0067】
なお、本実施形態では、光学部材ユニットを下凸プリズムフィルム32aと、蛍光体フィルム32bとで構成したが、蛍光体フィルムおよびプリズムフィルムに加えて、各種の光学特性調整用のフィルムやシート等を用いることができる。
【0068】
次に、照明装置本体の反射板34について説明する。
反射板34は、導光板30の第1傾斜面30bおよび第2傾斜面30cから漏洩する光を反射して、再び導光板30に入射させるために設けられており、光の利用効率を向上させることができる。反射板34は、導光板30の第1傾斜面30bおよび第2傾斜面30cに対応した形状で、第1傾斜面30bおよび第2傾斜面30cを覆うように形成される。本実施形態では、図2に示すように導光板30の第1傾斜面30bおよび第2傾斜面30cが断面三角形状に形成されているので、反射板34もこれに補形する形状に形成されている。
【0069】
反射板34は、導光板30の傾斜面から漏洩する光を反射することができれば、どのような材料で形成されてもよく、例えば、PETやPP(ポリプロピレン)等にフィラーを混練後延伸することによりボイドを形成して反射率を高めた樹脂シート、透明もしくは白色の樹脂シート表面にアルミ蒸着などで鏡面を形成したシート、アルミ等の金属箔もしくは金属箔を担持した樹脂シート、あるいは表面に十分な反射性を有する金属薄板により形成することができる。
【0070】
上部誘導反射板36は、導光板30と下凸プリズムフィルム32aとの間、つまり、導光板30の光射出面30a側に、光源28および導光板30の光射出面30aの端部(第1光入射面30d側の端部および第2光入射面30e側の端部)を覆うように固定部材31aの内側にそれぞれ配置されている。言い換えれば、上部誘導反射板36は、光軸方向に平行な方向において、導光板30の光射出面30aの一部から光源28のアレイ基板54の一部までを覆うように配置されている。つまり、2つの上部誘導反射板36が、導光板30の両端部にそれぞれ配置されている。
このように、上部誘導反射板36を配置することで、光源28から射出された光が導光板30に入射することなく、光射出面30側に漏れ出すことを防止できる。
これにより、光源28のLEDチップ50から射出された光を効率よく導光板30の第1光入射面30dおよび第2光入射面30eに入射させることができ、光利用効率を向上させることができる。
【0071】
下部誘導反射板38は、導光板30の光射出面30a側とは反対側、つまり、第1傾斜面30bおよび第2傾斜面30c側に、光源28の一部を覆うように固定部材31aの内側に配置されている。また、下部誘導反射板38の導光板中心側の端部は、反射板34と連結されている。
下部誘導反射板38を設けることで、光源28から射出された光が導光板30に入射することなく、導光板30の第1傾斜面30bおよび第2傾斜面30c側に漏れ出すことを防止できる。
これにより、光源28のLEDチップ50から射出された光を効率よく導光板30の第1光入射面30dおよび第2光入射面30eに入射させることができ、光利用効率を向上させることができる。
ここで、上部誘導反射板36および下部誘導反射板38としては、上述した反射板34に用いる各種材料を用いることができる。
なお、本実施形態では、反射板34と下部誘導反射板38と連結させたが、これに限定されず、それぞれを別々の部材としてもよい。
【0072】
なお、上部誘導反射板36および下部誘導反射板38には、それぞれ、光源28と導光板30とを一体化するための固定部材31aに固定するために、導光板30の光射出面30aに設けられた第1丸穴60a、60b、第2丸穴60c、60d、第1長穴62a、62b、第2長穴62c、62dに対応した位置に、同様な丸穴および長穴が設けられている。また、図示されていないが、上部誘導反射板36および下部誘導反射板38には、導光板30を筐体40の上部筐体42および下部筐体44に連結するために、導光板30の光射出面30aに設けられた第3丸穴61a、第3長穴63aおよび第4長穴63bに対応した位置に、同様な丸穴および長穴が設けられている。
【0073】
ここで、上部誘導反射板36および下部誘導反射板38は、光源28から射出された光を第1光入射面30dまたは第2光入射面30e側に反射させ、光源28から射出された光を第1光入射面30dまた第2光入射面30eに入射させることができ、導光板30に入射した光を導光板30中心側に導くことができれば、その形状および幅は特に限定されない。
また、本実施形態では、上部誘導反射板36を導光板30と下凸プリズムフィルム32aとの間に配置したが、上部誘導反射板36の配置位置はこれに限定されず、光学部材ユニット32を構成する他のシート(フィルム)状部材の間に配置してもよく、光学部材ユニット32と固定部材31aとの間に配置してもよい。
【0074】
次に、固定手段31について説明する。
固定手段31は、光源28と導光板30とを固定して一体化する固定部材31aと、光源28を固定部材31aに固定する複数のネジ31b、31cと、導光板30を固定部材31aに固定する複数の固定ピン31d、31eとを有する。
固定部材31aは、光源28と導光板30との光軸距離および光軸垂直距離を一定に保って光源28と導光板30とを固定して一体化し、導光板30の伸縮に対応して、すべり機構48によって、摺動部材固定部材48aによって筐体40に固定された上部摺動部材48bおよび下部摺動部材48c上を摺動させるためのものである。固定部材31aは、断面形状がU字型をした柱状部材である。
【0075】
固定部材31aは、上部摺動部材48bおよび下部摺動部材48cに摺接することで、導光板30が導光板30の光入射面30d、30eに垂直な方向に伸縮しても、導光板30に反りが生じることを防止する。
ここで、固定部材31aと上部摺動部材48bおよび下部摺動部材48cとの接触面積が大きければ、摺動する部分の摩擦力は大きくなり、両者の接触面積が小さければ、摺動する部分の摩擦力は小さくなる。従って、固定部材31aの形状は、導光板30が伸張する場合には、固定部材31aと、上部摺動部材48bおよび下部摺動部材48cとの接触面積が大きくなり、摺動する部分の摩擦力が大きくなって固定部材31aの摺動を抑制し、導光板30が縮む場合には、固定部材31aと、上部摺動部材48bおよび下部摺動部材48cとの接触面積が小さくなり、摺動する部分の摩擦力が小さくなって固定部材31aの摺動を容易にする形状とするのが望ましい。
【0076】
図2に示すように、光源28は、複数のネジ31b、31cによって、導光板30、光学部材ユニット32および反射板34は、固定ピン31d、31eによって固定手段31に一体的に固定される。
すなわち、光源28は、そのネジ穴52c、52dおよび固定部材31aのネジ穴にそれぞれネジ31b、31cを螺合させることによって固定部材31aに位置決めされて固定される。
【0077】
導光板30の第1側面30f側の両側において、導光板30の光射出面30aおよび背面にそれぞれ設けられた第1丸穴60aおよび60bと、第2丸穴60cおよび60dとには、固定部材31aに設けられた嵌合穴に嵌めこまれた固定ピン31d、31eが嵌め込まれることにより、導光板30は固定部材31aに位置決めされて固定される。なお、第1丸穴60a、60bおよび第2丸穴60c、60dの穴径は、固定ピン31d、31eの外径と略同一である。そのため、導光板30は、その第1側面30f側において、その第1および第2光入射面30dおよび30eに垂直な方向に対しても、平行な方向に対しても、固定部材31aによって位置決めされる。その結果、固定部材31aによって、光源28と導光板30は一体化されて固定され、光源28の光射出面と導光板30の第1および第2光入射面30dおよび30eとの間の距離が一定に保たれる。
【0078】
一方、導光板30の第2側面30g側の両側において、導光板30の光射出面30aおよび背面にそれぞれ設けられた第1長穴62aおよび62bと、第2長穴62cおよび62dとには、固定部材31aに設けられた嵌合穴に嵌めこまれた固定ピン31dおよび31eが挿入される。なお、第1長穴62aおよび62b、ならびに第2長穴62cおよび62dは、導光板30の第1および第2光入射面30dおよび30eに平行な方向に長い長穴であり、その垂直な方向の穴径は、固定ピン31d、31eの外径と略同一である。そのため、固定ピン31dおよび31eは、それぞれ第1長穴62aおよび62b、ならびに第2長穴62cおよび62dに対し、導光板30の第1および第2光入射面30dおよび30eに垂直な方向に対しては移動せず固定され(嵌り)、平行な方向に対しては移動移動可能に挿入される。
【0079】
従って、導光板30は、その第2側面30g側の両側において、その第1および第2光入射面30dおよび30eに垂直な方向に対しては固定部材31aに位置決めされて固定されるが、平行な方向に対しては、固定部材31aに対して位置決めされず、移動可能である。
その結果、導光板30の第1および第2光入射面30dおよび30eに垂直な方向に対しては、固定部材31aによって光源28と導光板30は一体化されて固定され、光源28の光射出面と導光板30の第1および第2光入射面30dおよび30eとの間の距離が一定に保たれる。
一方、導光板30の第1および第2光入射面30dおよび30eに平行な方向に対しては、導光板30の伸縮に応じて、固定ピン31dおよび31eが、それぞれ第1長穴62aおよび62b、ならびに第2長穴62cおよび62d内を移動(摺動)して、導光板30の伸縮による反りを防ぐことができる。
【0080】
以上から、導光板30の第1側面30f側においても、その第2側面30g側においても、固定部材31aによって、光源28と導光板30は一体化されて固定され、光源28の光射出面と導光板30の第1および第2光入射面30dおよび30eとの間の距離が一定に保たれる。このようにすることにより、第1および第2光入射面30dおよび30eの側に配置された光源28が、導光板30の伸縮によって破壊されることはない。また、光源28から導光板30の第1および第2光入射面30dおよび30eにそれぞれ入射する光の光入射効率の低下を引き起こすことがない。
【0081】
このように光源28と導光板30とが固定され一体化されていたとしても、導光板30の光入射面(30d、30e)に平行な方向に対して導光板30の伸縮が生じると、導光板30の伸縮に応じて固定ピン31dおよび31eの位置が長穴内で、その長軸方向に移動するので、導光板30は自由に伸縮することができ、導光板30に反りが生じることを抑えることができ、導光板30から出射される光の輝度むらを抑えることができる。
また、導光板30を大型化しても導光板30が導光板の光入射面(30d、30e)に平行な方向に自由に伸縮することにより、導光板30に反りが生じることを抑えることができる。
【0082】
導光板30に設けられた丸穴60a〜60dおよび長穴62a〜62dに対応して、光学部材ユニット32および反射板34(上部誘導反射板38および下部誘導反射板36)に設けられた丸穴および長穴は、固定部材31aと導光板30、光学部材ユニット32および反射板34とをそれぞれ固定するためのピン31dおよび31eを通すために設けられたものである。
【0083】
丸穴60a、60bおよび60c、60dは、導光板30の角隅30iおよび角隅30kの内側近傍に設ける。このようにすることにより、液晶表示装置10、従って、バックライトユニット20を光入射面30d、30eに平行な方向を上下方向にして設置したときにも、導光板30の位置が上下方向にずれて導光板30が損傷することを防止することができる。
丸穴の配置構成はこれに限定されず、液晶表示装置10、従って、バックライトユニット20の配置やその方向に応じて、導光板30の位置がずれない位置に丸穴を配置することにより、導光板30が損傷することを防止することができる。
【0084】
なお、本実施形態では、光源28の光源支持部52の上面52aおよび下面52bのそれぞれ2箇所にネジ穴52c、52dを設けて光源28と固定部材31aとを固定しているが、光源28と固定部材31aとを固定できればネジ穴の配置および個数はこれに限定されない。
また、本実施形態では、光源28と固定部材31aとを固定するためにネジを利用しているが、光源28と固定部材31aとを固定具はこれに限定されず、公知の種々の固定具を用いることができる。例えば、光源28と固定部材31aとを接着剤を用いて固定しても良い。このようにすることで、光源支持部52にネジ穴を設ける必要がないので、より簡略な構造とすることができる。
また、導光板30と固定部材31aを固定する方法も丸穴およびピンに限定されない。例えば、丸穴およびピンの代わりに、導光板30の光射出面30aおよび導光板30の背面側の角の内側に接着剤を付け、導光板30と固定部材31aとを固定しても良い。
【0085】
次に、筐体40について説明する。
図2に示すように、筐体40は、照明装置本体24を収納して支持し、かつその光射出面30a側と導光板30の第1傾斜面30bおよび第2傾斜面30c側とから挟み込み、固定するものであり、下部筐体42、上部筐体44、補強部材46およびすべり機構48とを有する。
【0086】
下部筐体42は、上面が開放されており、底面部と、底面部の4辺に設けられ、底面部に垂直な側面部とで構成された形状である。つまり、1面が開放された略直方体の箱型形状である。下部筐体42は、図2に示すように、上方から収納された照明装置本体24を底面部および側面部で支持すると共に、照明装置本体24の光射出面24a以外の面、つまり、照明装置本体24の光射出面24aとは反対側の面(背面)および側面を覆っている。
【0087】
上部筐体44は、上面に、照明装置本体24の矩形状の光射出面24aとなる、導光板30の矩形状の光射出面30aより小さい矩形状の開口が形成され、かつ下面が開放された直方体の箱型形状である。
上部筐体44は、図2に示すように、面状照明装置本体24および下部筐体42の上方(光射出面側)から、照明装置本体24およびこれが収納された下部筐体42をその4方の側面部も覆うように被せられて配置されている。
【0088】
補強部材46は上部筐体44と下部筐体42の間に設けられている断面形状がロの字型の棒状部材である。
補強部材は、図2に示すように、上部筐体44および下部筐体42に対してネジ46aおよび46bによって連結されている。
【0089】
このように、下部筐体42と上部筐体44との間に補強部材46を配置することで、筐体40の剛性を高くすることができ、導光板30が反ることを防止できる。これにより、例えば、輝度むらがないまたは少なく光を効率よく射出させることができる反面、反りが生じ易い導光板を用いる場合であっても、反りをより確実に矯正でき、または、導光板に反りが生じることをより確実に防止でき、輝度むら等のない、または低減された光を光射出面から射出させることができる。
また、下部筐体42および上部筐体44と補強部材46をネジ46a、46bによって締め付けて固定することで、すべり機構48に固定手段31、特に、固定部材31aを締め付ける応力を生じさせることができる。
【0090】
なお、筐体40の下部筐体42、上部筐体44および補強部材46には、金属、樹脂等の種々の材料を用いることができる。なお、材料としては、軽量で高強度の材料を用いることが好ましい。
【0091】
すべり機構48は、固定手段31の固定部材31aを導光板30の光入射面30d,30eに垂直な方向の伸縮に応じて摺動可能にするためのものであり、バネ材47、摺動部材固定部材48a、48d、上部摺動部材48bおよび下部摺動部材48cで構成されている。
【0092】
バネ材47は、摺動部材固定部材48aと固定部材31aの間に設けられ、第1および第2光入射面30dおよび30e側にそれぞれ設けられた固定部材31aを、それぞれ第1および第2光入射面30dおよび30e側からそれぞれ導光板30の中心方向に付勢するものであり、導光板30の光入射面30dおよび30eに垂直な方向における筐体40に対する固定部材31aの位置決めをするものである。
また、バネ材47は、導光板30の第1側面30gおよび第2側面30fと筐体40との間にも同様に設けられ、導光板30の光入射面30dおよび30eに平行な方向における筐体40に対する位置決めを行う。
【0093】
摺動部材固定部材48a、48dは、固定手段31(固定部材31a)を摺動させる上部摺動部材48bおよび下部摺動部材48cを保持するためのものである。摺動部材固定部材48a、48dは、下部筐体42と上部筐体44との間に設けられ、摺動部材固定部材48dの裏側に上部摺動部材48bが配置され、摺動部材固定部材48aの上面に下部摺動部材48cが配置される。
上部摺動部材48bおよび下部摺動部材48cは、固定手段31(固定部材31a)を挟み込み、固定手段31(固定部材31a)を、導光板30の光入射面に垂直な方向の伸縮に対応して摺動させるものである。上部摺動部材48bおよび下部摺動部材48cは、それぞれ図2に示したように板状の部材である。
【0094】
ところで、図2および図3には示されていないが、本発明の好ましい態様として、上述した図4(A)および図6に示すように、導光板30の3つの角隅30i、30jおよび30kには、導光板30を筐体40の上部筐体42および下部筐体44に連結するための第3丸穴61a、第3長穴63aおよび第4長穴63bが設けられており、また、上述したように、導光板30の第3丸穴61a、第3長穴63aおよび第4長穴63bに対応して、下凸プリズムフィルム32aおよび蛍光体フィルム32bからなる光学部材ユニット32、ならびに上部誘導反射板36および下部誘導反射板38にも、同様の丸穴および長穴(図示せず)が設けられている。一方、筐体40の上部筐体42および下部筐体44には、これに収納される導光板30の第3丸穴61a、第3長穴63aおよび第4長穴63bに対応する位置に、ピンを固定するための丸穴(図示せず)が穿孔されている。これらの導光板30の第3丸穴61a、第3長穴63aおよび第4長穴63b、ならびに光学部材ユニット32および上部誘導反射板36および下部誘導反射板38の対応する丸穴および長穴には、穴径(長穴の場合は短径)に略等しいピン(図示せず)が嵌め込まれ、これらのピンが筐体40の上部筐体42および下部筐体44に穿孔された丸穴にも嵌め込まれて固定される。
【0095】
このとき、図4(A)および図6に示すように、導光板30の角隅30iには、丸穴61aが設けられているので、導光板30は、角隅30iにおいては、筐体40に固定された図示しないピンによって筐体40に対し移動不能に固定される。
しかし、導光板30の角隅30jには光入射面30d、30eに平行な方向に長い長穴63aが設けられ、角隅30lには筐体40と連結する穴が設けられていないので、筐体40に固定された、図示しないピンは、長穴63aに嵌め込まれていても、長穴63a内を光入射面30d、30eに平行な方向に移動可能であるので、導光板30は、筐体40に対し光入射面30d、30eに平行な方向には移動でき、伸縮可能である。その結果、導光板30の伸縮による反りを防ぐことができる。
【0096】
こうして、導光板30を筐体40に伸縮自在に保持することができる。
また、上述したように、導光板30の第3丸穴61a、第3長穴63aおよび第4長穴63bに対応して、下凸プリズムフィルム32a、蛍光体フィルム32bからなる光学部材ユニット32、ならびに上部誘導反射板36および下部誘導反射板38にも、同様の丸穴および長穴(図示せず)が設けられているので、導光板30や光学部材ユニット32の伸縮率が異なっていても、これらにたわみや反りが発生しない保持機構を実現することができる。
【0097】
上述したように、導光板30は筐体40に伸縮自在に保持されており、筐体40と、導光板30および光源28を一体化した固定部材31aとの間にすべり機構48が設けられているので、導光板30に導光板30の光入射面30dおよび30eに垂直な方向に伸縮が生じた場合、固定部材31aは、導光板30の伸縮に応じてすべり機構48によって摺動することができる。このようにすることにより、導光板30がその光入射面に垂直な方向に伸縮したことによる導光板30の反りを抑えることができ、導光板30の光射出面30aから出射される光の輝度むらを抑えることができる。さらに、大型の導光板においても導光板30は導光板30の光入射面に垂直な方向に自由に伸縮できるため、導光板30の光射出面30aから出射される光の輝度むらを抑えることができる。
また、固定部材31aには導光板30と光源28が光軸距離および光軸垂直距離を一定に保つように固定されているため、固定部材31aが摺動しても導光板30と光源28の光軸距離は一定に保たれる。このようにすることにより、導光板30がその光入射面に垂直な方向に伸縮して、導光板30の光入射面30dおよび30eが光源28を圧迫して破壊することや、光源28から導光板30に入射する光の光入射効率が低下することを防ぐことができる。
【0098】
本実施形態の面状照明装置10は、さらに、摺動部材固定部材48aの下部に連結して光源28の熱を吸収するヒートシンク64と、反射板34と下部筐体42との間にヒートシンク64と連結して設けられた放熱を行うヒートパイプ66が配置されている。
ヒートシンク64は、光源28から放熱された熱を、摺動部材固定部材48aを通して吸収し、放熱またはヒートパイプ66へと熱を伝える。
ヒートパイプ66は、ヒートパイプ66の一端に連結されたヒートシンク64から伝えられた熱をヒートパイプ66の他端から放熱する。
このようなヒートシンク64とヒートパイプ66を設けることによって光源28から生じる熱を効率よくヒートパイプ66に移動させ、ヒートパイプ66から放熱することができる。そのため、光源の発光効率が低い場合でも光源を冷却するため、光源の発光光量を大きく出来、大型のバックライトユニットを実現できる。また、逆に光源を冷却することにより、更に光源の発光光量を増大し、大型のバックライトユニットを実現できる。
また、ヒートシンクは、空冷方式に限定されず、水冷方式も用いることができる。
また、下部筐体42の裏側には、光源の電源(図示せず)を収納する電源収納部49(図1参照)が取り付けられている。
【0099】
面状照明装置20は、基本的に以上のような構成を有する。
図12に、上記実施形態に係るバックライトユニット20に用いられている導光板ユニットの要部構成を示す。
ここで、上記実施形態に係る導光板ユニットに用いられている下凸プリズムフィルム32aの作用について説明しておく。
【0100】
例えば、下凸プリズムフィルム32aとして、前半者用の頂角60°のプリズムを使うとすると、下凸プリズムフィルム32aから出射する光は指向性よく略60°の範囲に出射する。そこで、この指向性の少ない出射光を下凸プリズムフィルム32aの上層に配置されている蛍光体フィルム32bに入射させることにより、蛍光体層から出射する光を白色に変換しながら、均一な拡散光として出射させることができる。
【0101】
具体的には、面状照明装置20は、導光板30の両端にそれぞれ配置された光源28から射出された光(一次光)が導光板30の光入射面(第1光入射面30dおよび第2光入射面30e)に入射する。それぞれの面から入射した光は、導光板30の内部に含まれる散乱体によって散乱されつつ、導光板30内部を通過し、直接、または第1傾斜面30bおよび第2傾斜面30cで反射した後、光射出面30aから射出する。このとき、第1傾斜面30bおよび第2傾斜面30cから漏出した一部の光は、反射板34によって反射され再び導光板30の内部に入射する。
このようにして、導光板30の光射出面30aから射出された光は、光学部材ユニット32中を透過する間に、上述のような作用により均一な白色の拡散光となって、照明装置本体24の光出面24aから射出され、液晶表示パネル12を照明する。
液晶表示パネル12は、駆動ユニット14により、位置に応じて光の透過率を制御することで、液晶表示パネル12の表面上に文字、図形、画像などを表示する。
【0102】
本実施形態においては、光射出面からより輝度の高い光を効率よく射出することができるため、導光板30の光入射面30aを光入射面と交わる辺が長辺となり、側面と交わる辺が短辺となる形状としたが、本発明はこれに限定されず、光射出面を正方形形状としてもよく、光入射面側を短辺とし側面側を長辺としてもよい。
【0103】
図13に、本発明の他の実施形態に係るバックライトユニット20に用いられている導光板ユニットの要部構成を示す。
図12に示した実施形態に係るバックライトユニット20との相違点は、導光板30の光射出面30a上に配置される光学部材ユニット32の構成にある。
すなわち、図12に示した実施形態に係るバックライトユニット20においては、導光板30の光射出面30a上に、下凸プリズムフィルム32a、蛍光体フィルム32bが、この順に積層されて配置されているが、本実施形態に係るバックライトユニット20においては、導光板30の光射出面30a上に、蛍光体フィルム32b、上凸プリズムフィルム32cが、この順に積層されて配置されている。
【0104】
本実施形態に係るバックライトユニット20においては、上凸プリズムフィルム32cが屈折性の強い工学部材であることから、導光板30の光射出面30a殻出射した光を、まず、導光板30の光射出面30aに入射させて広範な方向への白色光を得、この白色光を上凸プリズムフィルム32cにより、さらに均一な白色光を出射するように構成したものである。
導光板30の光射出面30aから射出された光は、光学部材ユニット32中を透過する間に、上述のような作用により均一な白色の拡散光となって、照明装置本体24の光出面24aから射出され、液晶表示パネル12を照明する点は、上と同様である。
【0105】
表2に、光源と光学部材として種々のものを用いた場合における、バックライトユニットからの出射光の輝度の均一性等の光学特性の評価を行った結果を示す。
表2によれば、比較例として示したLEDと光変換用の蛍光体とを近接配置した従来の方式によるバックライトユニットに比較して、LEDと光変換用の蛍光体とを分離配置した本発明に係る方式のバックライトユニットの優秀性は明らかである。
【0106】
【表2】

【0107】
バックライトの光学評価は、正面方向の輝度(トプコン製SR-3 あるいは BM-7 Fast)および角度方向の強度分布より判定した。本発明では、蛍光体部分を分離しているため、光源部での(導光板へ入射できない光など)光損失をなくすることが可能で、結果として全体の光利用効率が向上する(光利用効率とは、バックライトからの出射した光量(光束[lm])の入射した光量に対する比であり、積分球により全光束を測定して計測する)。
【0108】
部材構成により、光利用効率は異なる。これは蛍光体フィルムへ入射する光の角度分布に依存している。蛍光体フィルムは、青色あるいはUV−LEDを白色へ変換する際に光を吸収する。この吸収率は蛍光体へ入射する光の入射角度(配光分布)によっており、より集光した光であれば、光路差なく蛍光体フィルムを通過するため、変換される白色光の色ムラが少なく、均一な光となる。集光していない光は、蛍光体フィルムの光路差により小距離伝播する光がより吸収され、光損失の原因となる。
【0109】
実施例1および2は、導光板からの出射光が下凸プリズムシートにより全反射され、蛍光体フィルムへ下からほぼ垂直に入射されることができる。この場合、吸収損失が少なく、かつ最も色ムラのない射出光を得ることができる(評価◎)。以下、光学部材が増えれば光損失が少しずつ上昇するため、評価が下がっている。比較例2は評価○であるが、これは光利用効率および外観(色ムラ)の観点からのみの判断であり、実際には光源の寿命が本発明の実施例に係るものの方が長いため、性能としては優れているといえる。
【0110】
以上、本発明に係るバックライトユニット20について詳細に説明したが、本発明は、以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよい。
【0111】
また、本実施形態では、光入射面30d、30eのみに光源28を配置したが、本発明はこれに限定されず、光入射面30d、30eに対向して配置された光源28を主光源とし、第1側面30gおよび第2側面30fに対向して副光源29を設けて、第1側面30gおよび第2側面30fをそれぞれ第3光入射面および第4光入射面としもよい。このようにすることで、光射出面から射出される光の輝度をより高くすることができる。
【0112】
また、上記実施形態においては、光源のLEDチップとして青色LEDを用い、この発光光を黄色の蛍光を発光するYAG蛍光体に入射させて白色光を得る構成としたが、本発明はこれに限定されものではなく、赤色LEDや緑色LED等の他の単色LEDとこれを吸収してその補色となる色の光を出射する蛍光体とを組み合わせて構成してもよい。
【0113】
さらにLEDの代わりに半導体レーザ(LD)を用いることもできる。
具体的には、青色LDとしては、例えば、波長445nmの青色の半導体レーザ光源を用いることができ、これと組み合わせる蛍光体としては、例えば、YAG(YAG:Ce)(蛍光波長530〜580nm)系の黄色蛍光体、あるいはα−サイアロン(α−SiAlON)と赤色領域で発光するCaAlSiNを用いることができる。
このような半導体レーザ光源からの青光を励起光として、このような蛍光体を励起すると、蛍光体からは、この蛍光体によって変換された黄色から赤色にわたる蛍光あるいは赤から緑にわたる蛍光と蛍光部を透過した青色の励起光とが出射される。この2種類の光が合わさることで、光照射面30aからは、白色の発光を得ることができる。
【0114】
より詳細には、本発明においては、蛍光体として、青色光励起緑−黄色蛍光体:YAG(YAG:Ce2+)(蛍光波長530〜580nm),(Ca,Sr,Ba)SiO:Eu2+(蛍光波長500〜580nm),SrGa:Eu2+,α−SiAlON:Eu2+,CaScSi12:Ce3+、青色光励起赤色蛍光体(Ca,Sr,Ba)Si:Eu2+、CaAlSiN:Eu2+等を好適に用いることができる。
この蛍光体が青色励起光によって励起され、青色励起光を波長変換して蛍光を発光し、白色光または擬似白色光として出射する。この際、波長変換された蛍光と青色励起光とが混合された光が、白色光または擬似白色光であっても良いが、波長変換された蛍光自体が、白色光または擬似白色光であっても良い。
【0115】
また、上述の説明では、蛍光体によって、光源からの入力光(励起光)の一部を波長変換しているが、蛍光体を選択することにより、入力光の全部を波長変換して、観察に適した所望の色の出力光を得るようにしてもよい。すなわち、上記の例では、蛍光体を青色光で励起し、青色光の一部を黄緑色(もしくは、黄色と赤色)の光へ変換し、残りの青色光(透過光)を併せて白色化しているが、さらに演色性を高めるためには、2種以上の蛍光体を用い、例えば紫色光から紫外線(400nm以下、例えば380nmや365nm)で、RGB3色の蛍光体を励起するのが望ましい。また、RGBにさらにオレンジを加えるなど、蛍光体をさらに増やすと、より一層演色性の高い望ましい出力光を得ることができる。
【0116】
ところで、導光板30の光射出面30aを光入射面30d、30eから中央部に向かって下に凸(つまり、傾斜面(反射板34)側に凸)の曲面(より具体的には、光入射面と光射出面との接線に直交する面の形状が円弧になる曲面)としてもよい。
このように、導光板30の光射出面30aを反射板側に凸となる凹面とすることで、導光板30が伸縮し、導光板30に反りが生じたとしても、導光板30の光射出面30aは、反射板34側に凸となる方向に反る。これにより、導光板30が反る方向を、液晶表示パネル側とは逆方向とすることができ、導光板30が液晶表示パネルを押し上げることを防止でき、液晶表示装置10から出射される光にむらが発生することをより好適に防止することができる。
【0117】
以上、種々の実施形態並びに実施例を挙げて説明したように、本発明によれば、薄型な形状であり、かつ光の利用効率が高く、輝度むらが少ない光を出射することができ、中高なあるいは釣鐘状の明るさの分布を得ることができる面状照明装置を提供することが可能になる。
なお、上記実施形態並びに実施例はすべて本発明の一例を示すものであって、本発明はこれらに限定されるものではなく、本発明の趣旨を変更しない範囲内において、種々の変更並びに改良を行ってもよいことはいうまでもない。
【図面の簡単な説明】
【0118】
【図1】本発明に係る面状照明装置を用いる液晶表示装置の一実施形態を示す概略斜視図である。
【図2】図1に示す液晶表示装置のII−II線断面図である。
【図3】図2に示す液晶表示装置の面状照明装置の光源および導光板の光入射面付近の部分拡大断面図である。
【図4】(A)は、図2に示した面状照明装置の光源および導光板の部分省略平面図であり、(B)は、(A)のB−B線断面図である。
【図5】(A)は、図2に示す面状照明装置の光源の概略構成を示す斜視図であり、(B)は、(A)に示す光源の断面図であり、(C)は、(A)に示す光源を構成する1つのLEDを拡大して示す概略斜視図である。
【図6】図4に示す導光板の形状を示す概略斜視図である。
【図7】(A)は、図2に示す導光板の断面模式図であり、(B)は、(A)に示す導光板の部分拡大断面図である。
【図8】表1に示す条件下における導光板の輝度分布と、テーパ角との関係をシミュレーションによって求めた結果を示す図である。
【図9】本発明の導光板に分散させる散乱微粒子の粒子径と粒子濃度[wt%]との関係を示すグラフである。
【図10】(A)および(B)は、それぞれ、本発明の導光板に分散させる散乱微粒子の粒子径と粒子濃度[wt%]との関係を示すグラフである。
【図11】(A)および(B)は、それぞれ、本発明の導光板に分散させる散乱微粒子の粒子径と粒子濃度[wt%]との関係を示すグラフである。
【図12】一実施形態に係る面状照明装置に用いられている導光板ユニットの要部構成を示す図である。
【図13】他の実施形態に係るバックライトユニットに用いられている導光板ユニットの要部構成を示す図である。
【図14】従来の平板形状の導光板の正面方向の照度分布を示すグラフである。
【符号の説明】
【0119】
10 液晶表示装置
12 液晶表示パネル
14 駆動ユニット
20 バックライトユニット
24 照明装置本体
24a,30a 光射出面
28 主光源
29 副光源
30 導光板
30a 光射出面
30b 第1傾斜面
30c 第2傾斜面
30d 第1光入射面
30e 第2光入射面
30f 第1側面(第3光入射面)
30g 第2側面(第4光入射面)
30h 湾曲部
31 固定手段
31a 固定部材
31b,31c,46a,46b ネジ
31d,31e 固定ピン
32 光学部材ユニット
32a 下凸プリズムフィルム
32b 蛍光体フィルム
32c 上凸プリズムフィルム
34 反射板
34a 反射フィルム
36 上部誘導反射板
38 下部誘導反射板
40 筐体
42 下部筐体
44 上部筐体
46 補強部材
49 電源収納部
50 LEDチップ
52 光源支持部
52a 光源支持部上面
52b 光源支持部下面
52c,52d ネジ穴
54 アレイ基板
56 フィン
58 発光面
60a,60b,61a 丸穴
62a,62b,62c,62d 長穴
63a 長穴
64 ヒートシンク
66 ヒートパイプ
α 2等分線
c 光源と導光板の光軸距離

【特許請求の範囲】
【請求項1】
矩形状の光射出面、前記光射出面の対向する2つの長辺をそれぞれ含み互いに対向する位置に配置される2つの光入射面、これらの2つの光入射面から前記光射出面の中央に向かうに従ってそれぞれ前記光射出面からの距離が遠くなる対称な2つの傾斜面、これらの2つの傾斜面を接合する湾曲部を備え、その内部に伝搬する光を散乱する散乱粒子を含む導光板と、
前記導光板の2つの前記光入射面に対向してそれぞれ配置された2つの光源と、
前記導光板の光出射面上に配置され、前記光源から出射される光を白色光に変換する光学調整部材と、
前記光源および前記導光板を収納する筐体とを有することを特徴とするバックライトユニット。
【請求項2】
前記光源は単一の発光素子であり、前記光学調整部材は、前記発光素子から出射される光により励起され、前記発光素子から出射される光の補色となる光を出射する蛍光体である白色光に変換するものである請求項1に記載のバックライトユニット。
【請求項3】
前記光学調整部材は、前記蛍光体を含むフィルムとプリズムフィルムとを有するものである請求項2に記載のバックライトユニット。
【請求項4】
前記光学調整部材は、前記導光板の光出射面上に、前記蛍光体を含むフィルムと上方に凸のプリズムを有するフィルムとをこの順に積層したものである請求項3に記載のバックライトユニット。
【請求項5】
前記光学調整部材は、前記導光板の光出射面上に、下方に凸のプリズムを有するフィルムと前記蛍光体を含むフィルムとをこの順に積層したものである請求項3に記載のバックライトユニット。
【請求項6】
前記光源は青色光を発光する発光素子であり、前記蛍光体は前記発光素子が発光する青色光により励起されて、前記発光素子の発光する青色光と補色のかんけいとなる黄色光を出射する蛍光体である請求項2〜5のいずれかに記載のバックライトユニット。
【請求項7】
前記光源は青色光を発光する発光素子は、発光ダイオード(LED)またはレーザダイオード(LD)である請求項6に記載のバックライトユニット。
【請求項8】
前記各構成要素に加えて、
前記光源と前記導光板とを、前記光源と前記導光板の前記光入射面との間の距離を一定にして固定して一体化する固定手段と、
前記固定手段によって一体化された前記光源および前記導光板を収納する筐体と、
前記光源の長手方向における伸縮を吸収するための、前記光源を前記導光板の前記光入射面に直交する方向に沿って摺動させるすべり機構とを有する請求項1〜7のいずれかに記載のバックライトユニット。
【請求項9】
請求項1〜8のいずれかに記載のバックライトユニットと、液晶表示パネルとを有することを特徴とする液晶表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2010−97908(P2010−97908A)
【公開日】平成22年4月30日(2010.4.30)
【国際特許分類】
【出願番号】特願2008−269973(P2008−269973)
【出願日】平成20年10月20日(2008.10.20)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】