説明

パッケージ式室外機及び室外機システム

【課題】複数の室外機が接続される場合に、冷却水回路同士を接続可能とする。
【解決手段】パッケージ式室外機2は、空気熱交換器12及び圧縮機11を有し且つ外部の室内熱交換器3に接続される冷媒回路要素5と、クーリングタワー50により冷媒を冷却する冷却水回路要素6と、冷媒回路要素5及び冷却水回路要素6を収納するケース4とを備えており、冷媒回路要素5は、圧縮機11により送り出される冷媒の流れ方向を切り換える四方弁12と、空気熱交換器13の液冷媒接続側に配置され且つ冷却水と冷媒との間で熱交換する水熱交換器16とを備えており、冷却水回路要素6は、冷却水を送り出す冷却水ポンプ21と、クーリングタワー50の出口E50に接続され且つケース4の外部に開口する第1配管31と、クーリングタワー50の入口I50に接続され且つケース4の外部に開口する第2配管32とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はパッケージ式室外機及び室外機システムに関する。
【背景技術】
【0002】
特許文献1及び2は、クーリングタワーを用いて冷媒を冷却する冷却装置を開示している。
【0003】
特許文献1に開示される冷却装置は、クーリングタワーにより冷媒を冷却する冷却水回路(3、4、5及び6)と、ヒートポンプを構成する中間冷媒回路(8、9、10及び11)とを有し、外部機器(25)との間で被冷却流体を循環させる。
【0004】
特許文献2に開示される冷却装置は、クーリングタワー(10)により冷媒を冷却する冷却水回路(12、16、25、26、27及び201)と、ヒートポンプを構成する中間冷媒回路(21、22、23、24及び200)とを有し、外部機器との間で被冷却流体を循環させる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平5−126418号公報
【特許文献2】特開2003−314941号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
空調負荷としての1又は複数の室内機を効率的に冷房又は暖房するために、空調負荷に複数の室外機を接続することが好ましい。複数の室外機を備えた室外機システムは、空調の必要な室内機の数や出力に応じて、駆動させる室外機の数や出力を多段階で変更できる。つまり、この室外機システムは、単独の室外機の集合よりも、エネルギー消費の無駄を防止できる。
【0007】
複数の室外機からの冷媒を空調負荷に供給するには、冷媒回路要素同士を接続することによって冷媒回路を形成する必要がある。一方、各冷却水回路は、各冷媒回路要素の冷媒を冷却する。このため、複数の室外機からの冷媒を空調負荷に供給するために、冷却水回路同士を接続する必要はない。しかし、冷却水回路同士が接続されていない場合、圧縮機が停止している室外機は、冷却水回路による冷媒の冷却を実行できない。それは、圧縮機の停止により冷媒の流れが停止するためである。エネルギー消費量の観点では、クーリングタワーを利用する冷却水回路は、空気熱交換器を利用する冷媒回路要素よりも、効率的に冷媒を冷却できる。したがって、駆動させる室外機の数に関係なく、言い換えると圧縮機が駆動しているか停止しているかに関係なく、全ての冷却水回路を冷媒の冷却に役立てることが好ましい。
【0008】
特許文献1、2は、外部機器に冷媒を供給する単独の冷却装置のみを開示している。このため、これらの冷却装置を室外機として空調機を構成しても、空調負荷としての室内機に複数の室外機が接続される構成は、提示されない。当然ながら、冷却水回路同士を接続する構成も不明である。
【0009】
そこで、本発明は、空調負荷としての室内機に複数の室外機が接続される場合に、冷却水回路同士を接続できる室外機を提供する。
【課題を解決するための手段】
【0010】
本発明の第1観点に係るパッケージ式室外機は、空気熱交換器及び圧縮機を有し且つ外部の室内熱交換器に接続される冷媒回路要素と、クーリングタワーにより冷媒を冷却する冷却水回路要素と、空気熱交換器及びクーリングタワーを流れる空気流を発生させるファンと、冷媒回路要素及び冷却水回路要素を収納するケースとを備えており、冷媒回路要素は、圧縮機により送り出される冷媒の流れ方向を切り換える方向切換機構と、空気熱交換器の液冷媒接続側に配置され且つ冷却水と冷媒との間で熱交換する水熱交換器とを備えており、冷却水回路要素は、冷却水を送り出す冷却水ポンプと、クーリングタワーの出口に接続され且つケースの外部に開口する第1経路と、クーリングタワーの入口に接続され且つケースの外部に開口する第2経路とを備えている。
【0011】
クーリングタワーは、蒸発熱を利用して冷却水を冷却する熱交換器であり、例えば、散水器、充填材、充填材ダクト及び水槽を備えている。方向切換機構は、例えば四方弁である。第1経路及び第2経路は、例えば、配管により構成されている。
【0012】
このため、パッケージ式室外機は、空調負荷としての室内機に複数の室外機が接続される場合に、冷却水回路要素同士を直列に接続することによって、複数の室外機に跨る単一の冷却水回路を構成できる。また、パッケージ式室外機は、空調負荷としての室内機に単独の室外機が接続される場合に、第1経路及び第2経路を接続することによって、単独の冷却水回路を構成できる。
【0013】
本発明に係る室外機システムは、複数の第1観点に係るパッケージ式室外機を備える室外機システムであって、共通の室内熱交換器に対して全ての冷媒回路要素を並列に接続する冷媒接続機構と、一の室外機の第1経路を別の室外機の第2経路に接続することによって、全ての冷却水回路要素を直列に接続する冷却水接続機構とを備えている。
【0014】
複数の冷却水回路要素が直列に接続されているので、室外機システムは、各圧縮機の駆動及び停止に関係なく、接続されている全てのクーリングタワーを冷媒の冷却のために利用できる。このため、室外機システムは、エネルギー消費量の観点において効率的に冷媒を冷却できる。
【0015】
室外機システムは、一部の室外機の圧縮機を駆動し且つ残りの室外機の圧縮機を休止させながら、全ての室外機の冷却水ポンプ及びファンを駆動する運転モードを選択できるように構成されている。
【0016】
このため、室外機システムは、状況に応じて、エネルギー消費量の観点において効率的に冷媒を冷却できる。
【0017】
各冷却水回路要素は、冷却水を蓄える水槽と、水槽内の水量に関する情報を検出する水量センサと、第2経路の流量を調整する流量調整弁と、弁制御機構とを備えている。弁制御機構は、水量センサによって検出される水槽の水量が多くなるに連れて第2経路の開度を絞って水槽への流入量を減らし、水槽の水量が少なくなるに連れて第2経路の開度を大きくして水槽への流入量を増やすように流量調整弁を制御する。
【0018】
このため、室外機システムは、複数の冷却水回路要素間で冷却水の流量に偏りが発生することを防止できる。
【0019】
冷却水接続機構は、第1経路を第2経路に接続する複数の接続経路と、カップリングとを備えており、カップリングは、第1経路及び接続経路の一端に設けられる第1継手要素と、第2経路及び接続経路の他端に設けられる第2継手要素とを備えており、第1継手要素及び第2継手要素は、第1継手要素と第2継手要素との係合を許容し、第1継手要素同士の係合及び第2継手要素同士の係合を禁止するように、構成されている。
【0020】
このため、室外機システムは、接続配管の接続において、接続先又は接続元の間違いを防止できる。
【0021】
本発明の第2観点に係るパッケージ式室外機は、空気熱交換器及び圧縮機を有し且つ外部の室内熱交換器に接続される冷媒回路要素と、クーリングタワーにより冷媒を冷却する冷却水回路要素と、空気熱交換器及びクーリングタワーを流れる空気流を発生させるファンと、冷媒回路要素及び冷却水回路要素を収納するケースとを備えており、冷媒回路要素は、圧縮機により送り出される冷媒の流れ方向を切り換える方向切換機構と、空気熱交換器の液冷媒接続側に配置され且つ冷却水と冷媒との間で熱交換する水熱交換器とを備えており、冷却水回路要素は、冷却水を送り出す冷却水ポンプと、ケースの外部に開口する第1経路と、ケースの外部に開口する第2経路と、第1経路及び第2経路の接続先を切り換える経路切換機構とを備えており、経路切換機構は、接続先の切換によって、クーリングタワーの出口及びクーリングタワーの入口のそれぞれを、第1経路及び第2経路の一方及び他方に接続するように構成されている。
【0022】
このため、パッケージ式室外機は、空調負荷としての室内機に複数の室外機が接続される場合に、冷却水回路要素同士を直列に接続することによって、複数の室外機に跨る単一の冷却水回路を構成できる。特に、パッケージ式室外機は、経路切換機構により第1経路及び第2経路を置換できるので、複数の冷却水回路要素を接続するための配管接続における自由度を向上できる。また、パッケージ式室外機は、空調負荷としての室内機に単独の室外機が接続される場合に、第1経路及び第2経路を接続することによって、単独の冷却水回路を構成できる。
【0023】
本発明に係る室外機システムは、複数の第2観点に係るパッケージ式室外機を備える室外機システム、または少なくとも1台の第1観点に係るパッケージ式室外機および少なくとも1台の第2観点に係るパッケージ式室外機を備える室外機システムであって、共通の室内熱交換器に対して全ての冷媒回路要素を並列に接続する冷媒接続機構と、一の室外機の第1経路又は第2経路を別の室外機の第1経路又は第2経路に接続することによって、全ての冷却水回路要素を直列に接続する冷却水接続機構とを備えている。
【0024】
複数の冷却水回路要素が直列に接続されているので、室外機システムは、各圧縮機の駆動及び停止に関係なく、接続されている全てのクーリングタワーを冷媒の冷却のために利用できる。このため、室外機システムは、エネルギー消費量の観点において効率的に冷媒を冷却できる。
【図面の簡単な説明】
【0025】
【図1】図1は、第1実施形態に係る空調機の概略構成図である。
【図2】図2は、第2実施形態に係る空調機の概略構成図である。
【図3】図3は、第3実施形態に係る室外機システムの制御機構を示す概略図である。
【図4】図4は、第4実施形態に係る空調機の概略構成図である。
【図5】図5は、第5実施形態に係る空調機の概略構成図である。
【図6】図6は、第6実施形態に係る冷却水接続機構の概略図である。
【図7】図7は、第7実施形態に係る空調機の概略構成図である。
【図8】図8は、第8実施形態に係る空調機の概略構成図である。
【図9】図9は、第9実施形態に係る空調機の概略構成図である。
【図10】図10は、第10実施形態に係る空調機の概略構成図である。
【図11】図11は、第11実施形態に係る空調機の概略構成図である。
【図12】図12は、第12実施形態に係る空調機の概略構成図である。
【発明を実施するための形態】
【0026】
図1を参照して、第1実施形態に係るパッケージ式室外機2を説明する。図1は、空調機1の概略構成図である。空調機1は、パッケージ式室外機2及び室内熱交換器3を備えている。室外機2は、ケース4、冷媒回路要素5、冷却水回路要素6、及びファン17を備えている。ケース4は、冷媒回路要素5及び冷却水回路要素6を収納している。ケース4は、上部ケース7及び下部ケース8に区分されている。
【0027】
冷媒回路要素5は、外部の室内熱交換器3及び室内膨張弁9と合わせて、冷媒回路10を構成する。例えば、室外機2はビルの屋上に配置され、室内熱交換器3はビル内の各部屋に配置される。冷媒回路要素5は、圧縮機11、四方弁12、2つの空気熱交換器13、室外膨張弁14、貯留器15、及び水熱交換器16を備えている。なお、冷媒回路要素5は、貯留器15を必須としない。
【0028】
室内熱交換器3は、空気と冷媒との間で熱交換を行う。室内膨張弁9は、その開度を変更できる。圧縮機11は、四方弁12に冷媒を送り出す。四方弁12は、冷媒の流れ方向を切り換える。空気熱交換器13は、空気と冷媒との間で熱交換を行う。室外膨張弁14は、その開度を変更できる。貯留器15は、空気熱交換器13と水熱交換器16との間にあり、冷媒回路10を流れる冷媒を貯留できる。水熱交換器16は、冷却水回路要素6の冷却水と冷媒との間で熱交換を行う。
【0029】
冷媒回路10は、ガス状態の冷媒が流れるガス冷媒配管18、19、27と、液状態の冷媒が流れる液冷媒配管20、28とを有している。冷媒回路10において、これらの配管は、上述の機器群3、9、11、12、13、14、15、及び16を接続している。ガス冷媒配管18は、圧縮機11と空気熱交換器13との間の経路を構成する。ガス冷媒配管19、27は、圧縮機11と室内熱交換器3との間の経路を構成する。特に、ガス冷媒配管19は室外機2内の経路を構成し、ガス冷媒配管27は室外機2と室内熱交換器3との間の経路を構成する。液冷媒配管20、28は、空気熱交換器13と室内熱交換器3との間の経路を構成する。特に、液冷媒配管20は室外機2内の経路を構成し、液冷媒配管28は室外機2と室内熱交換器3との間の経路を構成する。水熱交換器16は、空気熱交換器13と室内熱交換器3との間にあり、つまり空気熱交換器13の液冷媒接続側にある。
【0030】
冷却水回路要素6は、接続配管33と合わせて、冷却水回路60を構成する。冷却水回路60は、冷媒回路要素5内の冷媒を冷却水により冷却する。冷却水回路要素6は、冷却水ポンプ21、充填材22、散水器23、充填材ダクト24、水槽25、第1配管31、及び第2配管32を備えている。充填材22、散水器23、充填材ダクト24、及び水槽25は、クーリングタワー50を構成している。
【0031】
第1配管31は、クーリングタワー50の出口E50に接続されており、且つケース4の外部に開口している。第2配管32は、クーリングタワー50の入口I50に接続されており、且つケース4の外部に開口している。本実施形態において、クーリングタワー50の出口E50は、水槽25の出口であり、クーリングタワー50の入口I50は、散水器23の入口である。また、冷却水ポンプ21は、第1配管31上に配置されている。接続配管33は、第1配管31及び第2配管32を接続する。また、止水用の開閉弁34が、第1配管31及び第2配管32に設けられている。
【0032】
冷却水ポンプ21は、散水器23に冷却水を送り出す。充填材22は、散水器23からの水滴を細かくして水と空気との接触面積を増大させる部材である。散水器23は、上方から充填材22に冷却水を散水する。充填材ダクト24は、充填材22を囲っており、空気熱交換器13を通過した空気を遮断している。また、充填材ダクト24は、図示しない吸気口を有し、空気熱交換13を通過する空気とは別の空気が通過する経路を形成する。水槽25は、充填材22から落下する水を溜める。
【0033】
冷却水回路60において、冷却水は、次のように循環し冷却される。冷却水は、冷却水ポンプ21、散水器23、充填材22、及び水槽25を順に通過する。そして、散水された冷却水の一部が、充填材22を通過するときに蒸発する。蒸発熱を奪われるため、充填材22を通過する冷却水の温度が低下する。温度低下した冷却水は、水槽25に落下する。このようにして、冷却水が冷却される。
【0034】
ファン17は、クーリングタワー50を通過する空気流を発生させる。この空気流が、冷却水の蒸発を促進するので、クーリングタワー50による冷却性能が維持される。
【0035】
水熱交換器16は、水槽25と、水槽25内に配置される冷媒配管26とから構成されている。このため、水槽25内の冷却水と冷媒配管26内の冷媒との間で熱交換が行われる。
【0036】
空調機1は、室内熱交換器3の設置された室内を冷房する冷房運転、又は前記室内を暖房する暖房運転を実行できる。ここで、四方弁12は、切換位置として、暖房位置及び冷房位置のいずれか一方を選択できる。冷房運転において、四方弁12が冷房位置にあり、圧縮機11、ファン17、及び冷却水ポンプ21が駆動している。一方、暖房運転において、四方弁12が暖房位置にあり、圧縮機11及びファン17が駆動しており、冷却水ポンプ21は停止している。
【0037】
ファン17は、空気熱交換器13を通過する空気流を発生させる。この空気流が、空気熱交換器13内の冷媒との間で熱交換を促進するので、空気熱交換器13による熱交換性能が維持される。
【0038】
冷媒回路10において、冷媒は、次のように循環し、冷却又は加熱される。図1において、四方弁12は冷房位置にある。四方弁12が冷房位置にあるとき、冷媒は、圧縮機11、四方弁12、空気熱交換器13、室外膨張弁14、貯留器15、水熱交換器16、室内膨張弁9、室内熱交換器3、及び四方弁12を順に通過し、圧縮機11に戻る。このとき、空気熱交換器13及び水熱交換器16は凝縮器として機能し、室内熱交換器3は蒸発器として機能する。一方、四方弁12が暖房位置にあるとき、冷媒は、圧縮機11、四方弁12、室内熱交換器3、室内膨張弁9、水熱交換器16、貯留器15、室外膨張弁14、空気熱交換器13、及び四方弁12を順に通過し、圧縮機11に戻る。このとき、空気熱交換器13は蒸発器として機能し、室内熱交換器3は凝縮器として機能する。
【0039】
図2を参照して、第2実施形態に係る室外機システム100を説明する。図2は、第2実施形態に係る空調機1の概略構成図である。図2において、空調機1は、室外機システム100と、室内熱交換器3とを備えている。室外機システム100は、2つの室外機2(1)、2(2)と、室内熱交換器3と、冷媒接続機構70と、冷却水接続機構80とを備えている。参照符号に含まれている添字(1)及び(2)は、それぞれ、1台目及び2台目に対応することを指している。
【0040】
冷媒接続機構70は、2つの冷媒回路要素5(1)、5(2)を接続する冷媒配管群を指している。2つの冷媒回路要素5(1)、5(2)及び冷媒接続機構70は、冷媒回路10を構成する。冷媒接続機構70は、ガス冷媒配管27と、液冷媒配管28と、ガス冷媒枝配管29(2)と、液冷媒枝配管30(2)とを備えている。ガス冷媒枝配管29(2)は、ガス状態の冷媒が流れる経路を構成し、2台目のガス冷媒配管19(2)を、ガス冷媒配管27に接続する。液冷媒枝配管30(2)は、液状態の冷媒が流れる経路を構成し、2台目の液冷媒配管20(2)を、液冷媒配管28に接続する。
【0041】
上記構成により、冷媒回路10は、2つの冷媒回路要素5(1)、5(2)を共通の室内熱交換器3に対して並列に接続している。これによって、2つの室外機2(1)、2(2)からの冷媒は、ガス冷媒配管27及び液冷媒配管28において合流し、室内熱交換器3に供給される。室内熱交換器3からの冷媒は、ガス冷媒配管27及び液冷媒配管28において分配され、2つの室外機2(1)、2(2)に戻る。
【0042】
冷却水接続機構80は、2つの冷却水回路要素6(1)、6(2)を接続する冷却水配管群を指している。2つの冷却水回路要素6(1)、6(2)及び冷却水接続機構80は、2つの室外機2(1)、2(2)に跨る単一の冷却水回路60を構成する。冷却水接続機構80は、2つの接続配管35(1)、35(2)を備えている。接続配管35(1)は、1台目の第1配管31(1)を2台目の第2配管32(2)に接続する。接続配管35(2)は、2台目の第1配管31(2)を1台目の第2配管32(1)に接続する。
【0043】
上記構成により、冷却水回路60は、2つの冷却水回路要素6(1)、6(2)を直列に接続している。冷却水は、冷却水回路60内を次のように循環する。1台目の冷却水ポンプ21(1)から送り出される冷却水は、第1配管31(1)及び接続配管35(1)を経由して2台目の第2配管32(2)に入り、散水器23(2)及び水槽25(2)を経由して、冷却水ポンプ21(2)に到達する。2台目の冷却水ポンプ21(2)から送り出される冷却水は、2台目の第1配管31(2)及び接続配管35(2)を経由して1台目の第2配管32(1)に入り、散水器23(1)及び水槽25(1)を経由して、冷却水ポンプ21(1)に到達する。このように、冷却水の循環が行われる。
【0044】
図3を参照して、第3実施形態に係る室外機システム100を説明する。図3は、第3実施形態に係る室外機システム100の制御機構を示す概略図である。室外機システム100は、2つの室外機2を備えており、各室外機2は制御装置38を備えている。各制御装置38は、各室外機2の圧縮機11、冷却水ポンプ21、及びファン17を制御する。第3実施形態に係る室外機システム100は、特殊な運転モードを実施できる。以下、運転モードに関する説明を行う。
【0045】
制御装置38(1)、38(2)は、複数の運転モードの中から1つの運転モードを選択できるように構成されている。複数の運転モードは、第1冷房運転モード及び第2冷房運転モードを含んでいる。
【0046】
第1冷房運転モードにおいて、制御装置38(1)、38(2)は、互いに通信して空調負荷の大きさに応じて、駆動される室外機2の数を変更する。例えば、空調負荷が比較的小さい場合、制御装置38(1)、38(2)は、2台目の室外機2(2)を停止させる。室外機2(2)の停止は、その室外機2(2)に備えられている圧縮機11(2)、冷却水ポンプ21(2)、及びファン17(2)の停止を意味する。
【0047】
第2冷房運転モードにおいて、制御装置38(1)、38(2)は、互いに通信して空調負荷の大きさに応じて、駆動される圧縮機11の数を変更する。例えば、空調負荷が第1冷房運転モードより大きいが2つの冷媒回路要素5(1)、5(2)を運転するまでもない場合、制御装置38(1)、38(2)は、2台目の圧縮機11(2)を停止させる。一方、第2冷房運転モードにおいて、制御装置38(1)、38(2)は、全ての冷却水ポンプ21及びファン17の駆動を維持する。このため、室外機システム100は、圧縮機11(2)の運転動力を削減しながらもクーリングタワー50(2)の冷却効果を冷媒回路要素5(1)の冷房運転でも利用できるので、エネルギー消費が抑制された効率的な冷房を実施できる。
【0048】
図4を参照して、第4実施形態に係る室外機システム100を説明する。図4は、第4実施形態に係る空調機1の概略構成図である。図4において、室外機システム100は、3つの室外機2(1)、2(2)、2(3)を備えている。以下、第4実施形態に係る冷媒回路10及び冷却水回路60の構成を説明する。
【0049】
図4において、冷媒回路10は、3つの冷媒回路要素5(1)、5(2)、5(3)と、冷媒接続機構70とを備えている。冷媒接続機構70は、ガス冷媒配管27と、液冷媒配管28と、2つのガス冷媒枝配管29(2)、29(3)と、2つの液冷媒枝配管30(2)、30(3)とを備えている。ガス冷媒枝配管29(3)は、3台目のガス冷媒配管19(3)を、ガス冷媒配管27に接続する。液冷媒枝配管30(3)は、3台目の液冷媒配管20(3)を、液冷媒配管28に接続する。上記構成により、冷媒回路10は、3つの冷媒回路要素5(1)、5(2)、5(3)を共通の室内熱交換器3に対して並列に接続している。
【0050】
図4において、冷却水回路60は、3つの冷却水回路要素6(1)、6(2)、6(3)と、冷却水接続機構80とを備えている。冷却水接続機構80は、3つの接続配管35(1)、35(2)、35(3)を備えている。接続配管35(1)は、1台目の第1配管31(1)を2台目の第2配管32(2)に接続する。接続配管35(2)は、2台目の第1配管31(2)を3台目の第2配管32(3)に接続する。接続配管35(3)は、3台目の第1配管31(3)を1台目の第2配管32(1)に接続する。上記構成により、冷却水回路60は、3つの冷却水回路要素6(1)、6(2)、6(3)を直列に接続している。
【0051】
室外機システム100は、n台の室外機2を含むことができる。nは、任意の自然数を示している。
【0052】
この場合、冷媒回路10は、n個の冷媒回路要素5(1)−5(n)と、冷媒接続機構70とを備えている。冷媒接続機構70は、ガス冷媒配管27と、液冷媒配管28と、n−1つのガス冷媒枝配管29(2)−29(n)と、n−1つの液冷媒枝配管30(2)−30(n)とを備えている。k台目のガス冷媒枝配管29(k)は、k台目のガス冷媒配管19(k)を、ガス冷媒配管27に接続する。k台目の液冷媒枝配管30(k)は、k台目の液冷媒配管20(k)を、液冷媒配管28に接続する。ここで、kは、1からnまでの任意の1つの数である。この結果、n個の冷媒回路要素5(1)−5(n)が共通の室内熱交換器に対して並列に接続される。
【0053】
この場合、冷却水回路60は、n個の冷却水回路要素6(1)−6(n)と、冷却水接続機構80とを備えている。冷却水接続機構80は、n個の接続配管35(1)−35(n)を備えている。接続配管35(k)は、k台目の第1配管31(k)をk+1台目の第2配管32(k+1)に接続する。ここで、kは、1からnまでの任意の1つの数である。また、接続配管35(n)は、n台目の第1配管31(n)を1台目の第2配管32(1)に接続する。この結果、n個の冷却水回路要素6(1)−6(n)が直列に接続される。
【0054】
図5を参照して、第5実施形態に係る室外機システム100を説明する。図5は、第5実施形態に係る空調機1の概略構成図である。以下、第2実施形態と第5実施形態との間の相違点を説明する。図5において、1台目の室外機2(1)は、2台目の室外機2(2)と比べて、比較的高い位置にある。1台目の水槽25(1)が2台目の水槽25(2)よりも高い位置にあるため、2台目の水槽25(2)から1台目の水槽25(1)に冷却水を移動するのに要する仕事量は、1台目の水槽25(1)から2台目の水槽25(2)に冷却水を移動するのに要する仕事量よりも大きい。したがって、2つの冷却水ポンプ21(1)、22(2)が同じ出力を発揮している場合、1台目の水槽25(1)の水量は、2台目の水槽25(2)の水量よりも少なくなる。
【0055】
第5実施形態に係る冷却水回路要素6は、複数の水槽25間における水量の偏りを修正する手段を備えている。具体的には、冷却水回路要素6は、流量調整弁37及びボールタップ36を備えている。流量調整弁37は、その開度を変更することによって、流量を調整する。ボールタップ36は、水槽25内の水位に応じて、流量調整弁37の開度を変更させる。より詳しくは、ボールタップ36は、水位が高くなるに連れて流量調整弁37の開度を絞って水槽25への流入量を減らし、低くなるに連れて流量調整弁37の開度を大きくして水槽25への流入量を増やすように、流量調整弁37を制御する。この結果、複数の水槽25間における水量の偏りが修正される。ボールタップ36は、水槽25内の水槽に関する情報を検出するセンサとしての機能と、水槽25の水量と第2配管の流量とが相反するように流量調整弁を制御する弁制御機構としての機能とを、備えている。
【0056】
図6を参照して、第6実施形態に係る室外機システム100を説明する。図6は、第6実施形態に係る冷却水接続機構80の概略図である。以下、第2実施形態と第6実施形態との間の相違点を説明する。第6実施形態に係る室外機システム100は、接続配管35(1)、35(2)の接続において、接続先又は接続元の間違いを防止する構成を備えている。この間違いは、例えば、1台目の第1配管31と2台目の第1配管が接続されてしまうような誤配管である。第6実施形態に係る室外機システム100は、このような不具合の発生を防止する。
【0057】
図6において、冷却水接続機構80は、2つのカップリング40を備えている。各カップリング40は、第1継手要素41と、第2継手要素42とを備えている。第1継手要素41は、第1配管31(1)、31(2)と、接続配管35(1)、35(2)の一端とに設けられる。第2継手要素42は、第2配管32(1)、32(2)と、接続配管35(1)、35(2)の他端とに設けられる。第1継手要素41及び第2継手要素42は、第1継手要素41と第2継手要素42との係合を許容し、第1継手要素41同士の係合及び第2継手要素同士42の係合を禁止するように、構成されている。このため、カップリング40は、配管の接続において、接続先又は接続元の間違いを防止できる。
【0058】
図7を参照して、第7実施形態に係るパッケージ式室外機102を説明する。図7は、第7実施形態に係る空調機1の概略構成図である。以下、第1実施形態と第7実施形態との間の相違点を説明する。第7実施形態に係る冷却水回路要素106は、配管の接続における自由度を向上させる構成を備えている。第7実施形態に係る冷却水回路要素106及び冷却水回路160は、第1実施形態に係る冷却水回路要素6及び冷却水回路60とは部分的に異なっている。
【0059】
図7において、冷却水回路要素106は、第1配管51、第2配管52、出口配管53、入口配管54、及び四方弁55を備えている。第7実施形態に係る第1配管51及び第2配管52は、第1実施形態に係る第1配管31及び第2配管32とは、機能において部分的に異なっている。
【0060】
第1配管51及び第2配管52は、それぞれケース4の外部に開口している。出口配管53は、クーリングタワー50の出口E50に接続されている。入口配管54は、クーリングタワー50の入口I50に接続されている。四方弁55は、第1配管51及び第2配管52の接続先を切り換える経路切換機構である。四方弁55は、接続先の切換によって、クーリングタワー50の出口E50及び入口I50のそれぞれを、第1配管51及び第2配管52の一方及び他方に連通させるように構成されている。四方弁55は、切換位置として、順方向位置及び逆方向位置のいずれか一方を選択できる。図7において、四方弁55は順方向位置にある。四方弁55が順方向位置にあるとき、第1配管51が出口配管53に接続され、第2配管52が入口配管54に接続される。この結果、クーリングタワー50の出口E50が第1配管51に連通し、クーリングタワー50の入口I50が第2配管52に連通する。四方弁55が逆方向位置にあるとき、第1配管51が入口配管54に接続され、第2配管52が出口配管53に接続される。この結果、クーリングタワー50の出口E50が第2配管52に連通し、クーリングタワー50の入口I50が第1配管51に連通する。
【0061】
図8から図10を参照して、第8から第10実施形態に係る室外機システム200を説明する。第8から第10実施形態に係る室外機システム200は、いずれも、第7実施形態に係る室外機102を備えている。
【0062】
図8は、第8実施形態に係る空調機1の概略構成図である。室外機システム200は、2つの室外機102(1)、102(2)と、室内熱交換器3と、冷媒接続機構70と、冷却水接続機構80とを備えている。
【0063】
図8において、2つの四方弁55(1)、55(2)は、共に、順方向位置にある。この場合、同一の室外機102において、冷却水ポンプ21から送出される冷却水が第1配管51に供給され、冷却水が第2配管52からクーリングタワー50に供給される。このため、2つの冷却水回路要素106(1)、106(2)は、図2に示される2つの冷却水回路要素6(1)、6(2)に、実質的に等しい。また、冷却水接続機構80は、図2に示される冷却水接続機構80と同様の構成を有しており、2つの接続配管35(1)、35(2)を備えている。このため、冷却水回路160は、2つの冷却水回路要素106(1)、106(2)を直列に接続している。
【0064】
また、2つの四方弁55(1)、55(2)が共に逆方向位置にあってもよい。この場合、冷却水ポンプ21から送出される冷却水が第2配管52に供給され、冷却水が第1配管51からクーリングタワー50に供給される。しかし、これは、第1配管51と第2配管52とが互いに置換されていることに等しい。このため、2つの冷却水回路要素106(1)、106(2)は、実質的に、図2に示される2つの冷却水回路要素6(1)、6(2)と同様の機能を発揮する。この場合も、冷却水回路160は、2つの冷却水回路要素106(1)、106(2)を直列に接続している。
【0065】
上述したように、室外機102において四方弁55が共に順方向位置又は逆方向位置にある場合、室外機102は、機能上、第1実施形態に係る室外機2に等しい。このため、n個の接続配管35(1)−35(n)を用いて、k台目の第1配管31(k)をk+1台目の第2配管32(k+1)に接続することによって、n個の冷却水回路要素106(1)−106(n)を直列に接続できる。
【0066】
図9は、第9実施形態に係る空調機1の概略構成図である。第9実施形態に係る冷却水接続機構180は、第8実施形態に係る冷却水接続機構80と、部分的に異なっている。図9において、1台目の四方弁55(1)は逆方向位置にあり、2台目の四方弁55(2)は順方向位置にある。また、第9実施形態に係る冷却水接続機構180は、接続配管56(1)と、接続配管56(2)とを備えている。接続配管56(1)は、1台目の第1配管51(1)を2台目の第1配管51(2)に接続する。接続配管56(2)は、2台目の第2配管52(2)を1台目の第2配管52(1)に接続する。このため、冷却水回路160は、2つの冷却水回路要素106(1)、106(2)を直列に接続している。
【0067】
図10は、第10実施形態に係る空調機1の概略構成図である。第10実施形態に係る室外機システム200は、3つの室外機102(1)、102(2)、102(3)と、冷却水接続機構180とを備えている。図10において、四方弁55(1)は逆方向位置にあり、四方弁55(2)は順方向位置にあり、四方弁55(3)は逆方向位置にある。第10実施形態に係る冷却水接続機構180は、3つの接続配管57(1)、57(2)、57(3)を備えている。接続配管57(1)は、1台目の第1配管51(1)を2台目の第1配管51(2)に接続する。接続配管57(2)は、2台目の第2配管52(2)を3台目の第2配管52(3)に接続する。接続配管57(3)は、3台目の第1配管51(3)を1台目の第2配管52(1)に接続する。このため、冷却水回路160は、3つの冷却水回路要素106(1)、106(2)、106(3)を直列に接続している。
【0068】
上述したように、四方弁55は、第1配管51と第2配管52とを置換する機能を有している。このため、n個の冷却水回路要素106(1)−106(n)を直列にするために、接続配管の接続先及び接続元が、第1配管51又は第2配管52のいずれか一方に限定されない。したがって、n個の接続配管を用いて、接続配管の接続先及び接続元を考慮することなく一の室外機102と別の室外機102とを接続することによって、n個の冷却水回路要素106(1)−106(n)を直列に接続できる。
【0069】
図11を参照して、第11実施形態に係るパッケージ式室外機102を説明する。図11は、第11実施形態に係る空調機1の概略構成図である。以下、第7実施形態と第11実施形態との間の相違点を説明する。第11実施形態に係る冷却水回路要素106は、第7実施形態に係る四方弁55に代えて、経路切換機構90を備えている。経路切換機構90は、構成において四方弁55と異なっているが、機能において四方弁55に等しい。
【0070】
図11において、経路切換機構90は、第1順方向配管91、第2順方向配管92、第1バイパス管93、第2バイパス管94、第1順方向弁95、第2順方向弁96、第1逆方向弁97、及び第2逆方向弁98を備えている。第1順方向配管91は、出口配管53を第1配管51に接続している。第2順方向配管92は、第2経路52を入口配管54に接続している。第1バイパス管93は、第1経路51を入口配管54に接続している。第2バイパス管94は、出口配管53を第2配管52に接続している。第1順方向弁95は、第1順方向配管91を開閉する。第2順方向弁96は、第2順方向配管92を開閉する。第1逆方向弁97は、第1逆方向配管93を開閉する。第2逆方向弁98は、第2逆方向配管94を開閉する。
【0071】
経路切換機構90は、順方向切換又は逆方向切換を選択できる。
【0072】
経路切換機構90が順方向切換を選択としているとき、順方向弁95、96が開放されており、逆方向弁97、98が閉鎖されている。この場合は、四方弁55が順方向位置にある場合に相当し、第1配管51が出口配管53に接続され、第2配管52が入口配管54に接続される。このため、冷却水ポンプ21から送出される冷却水が第1配管51に供給され、冷却水が第2配管52からクーリングタワー50に供給される。
【0073】
経路切換機構90が逆方向切換を選択としているとき、順方向弁95、96が閉鎖されており、逆方向弁97、98が開放されている。この場合は、四方弁55が逆方向位置にある場合に相当し、第1配管51が入口配管54に接続され、第2配管52が出口配管53に接続される。このため、冷却水ポンプ21から送出される冷却水が第2配管52に供給され、冷却水が第1配管51からクーリングタワー50に供給される。
【0074】
図12を参照して、第12実施形態に係る室外機システム200を説明する。図12は、第12実施形態に係る空調機1の概略構成図である。第12実施形態に係る室外機システム200は、第11実施形態に係る2つの室外機102と、第9実施形態に係る冷却水接続機構180とを備えている。図12において、1台目の経路切換機構90(1)は逆方向切換を選択しており、2台目の経路切換機構90(2)は、順方向切換を選択している。このため、冷却水回路160は、2つの冷却水回路要素106(1)、106(2)を直列に接続している。
【符号の説明】
【0075】
2、102 室外機
3 室外熱交換器
4 ケース
5 冷媒回路要素
6 冷却水回路要素
10 冷媒回路
11 圧縮機
12 四方弁(方向切換機構)
13 空気熱交換器
16 水熱交換器
17 ファン
21 冷却水ポンプ
25 水槽
31 第1配管(第1経路)
32 第2配管(第2経路)
35、56、57 接続経路
36 流量調整弁
37 ボールタップ(水量センサ及び弁制御機構)
38 制御装置
40 カップリング
41 第1継手要素
42 第2継手要素
50 クーリングタワー
55 四方弁(経路切換機構)
60、160 冷却水回路
70 冷媒接続機構
80、180 冷却水接続機構
90 経路切換機構
100、200 室外機システム
E50 クーリングタワーの出口
I50 クーリングタワーの出口

【特許請求の範囲】
【請求項1】
空気熱交換器及び圧縮機を有し且つ外部の室内熱交換器に接続される冷媒回路要素と、
クーリングタワーにより冷媒を冷却する冷却水回路要素と、
空気熱交換器及びクーリングタワーを流れる空気流を発生させるファンと、
冷媒回路要素及び冷却水回路要素を収納するケースとを備えており、
冷媒回路要素は、圧縮機により送り出される冷媒の流れ方向を切り換える方向切換機構と、空気熱交換器の液冷媒接続側に配置され且つ冷却水と冷媒との間で熱交換する水熱交換器とを備えており、
冷却水回路要素は、冷却水を送り出す冷却水ポンプと、クーリングタワーの出口に接続され且つケースの外部に開口する第1経路と、クーリングタワーの入口に接続され且つケースの外部に開口する第2経路とを備えている、パッケージ式室外機。
【請求項2】
複数の請求項1に記載のパッケージ式室外機を備える室外機システムであって、
全ての冷媒回路要素を共通の室内熱交換器に対して並列に接続する冷媒接続機構と、
一の室外機の第1経路を別の室外機の第2経路に接続することによって、全ての冷却水回路要素を直列に接続する冷却水接続機構とを備えている、室外機システム。
【請求項3】
一部の室外機の圧縮機を駆動し且つ残りの室外機の圧縮機を休止させながら、全ての室外機の冷却水ポンプ及びファンを駆動する運転モードを選択できるように構成されている、請求項2に記載の室外機システム。
【請求項4】
各冷却水回路要素は、冷却水を蓄える水槽と、水槽内の水量に関する情報を検出する水量センサと、第2経路の流量を調整する流量調整弁と、弁制御機構とを備えており、
弁制御機構は、水量センサによって検出される水量と第2経路の流量とが相反するように流量調整弁を制御する、請求項2に記載の室外機システム。
【請求項5】
冷却水接続機構は、第1経路を第2経路に接続する複数の接続経路と、カップリングとを備えており、
カップリングは、第1経路及び接続経路の一端に設けられる第1継手要素と、第2経路及び接続経路の他端に設けられる第2継手要素とを備えており、
第1継手要素及び第2継手要素は、第1継手要素と第2継手要素との係合を許容し、第1継手要素同士の係合及び第2継手要素同士の係合を禁止するように、構成されている、請求項2に記載の室外機システム。
【請求項6】
空気熱交換器及び圧縮機を有し且つ外部の室内熱交換器に接続される冷媒回路要素と、
クーリングタワーにより冷媒を冷却する冷却水回路要素と、
空気熱交換器及びクーリングタワーを流れる空気流を発生させるファンと、
冷媒回路要素及び冷却水回路要素を収納するケースとを備えており、
冷媒回路要素は、圧縮機により送り出される冷媒の流れ方向を切り換える方向切換機構と、空気熱交換器の液冷媒接続側に配置され且つ冷却水と冷媒との間で熱交換する水熱交換器とを備えており、
冷却水回路要素は、冷却水を送り出す冷却水ポンプと、ケースの外部に開口する第1経路と、ケースの外部に開口する第2経路と、第1経路及び第2経路の接続先を切り換える経路切換機構とを備えており、
経路切換機構は、接続先の切換によって、クーリングタワーの出口及びクーリングタワーの入口のそれぞれを、第1経路及び第2経路の一方及び他方に接続するように構成されている、パッケージ式室外機。
【請求項7】
複数の請求項6に記載のパッケージ式室外機を備える室外機システム、または少なくとも1台の請求項1記載のパッケージ式室外機および少なくとも1台の請求項6記載のパッケージ式室外機を備える室外機システムであって、
全ての冷媒回路要素を共通の室内熱交換器に対して並列に接続する冷媒接続機構と、
一の室外機の第1経路又は第2経路を別の室外機の第1経路又は第2経路に接続することによって、全ての冷却水回路要素を直列に接続する冷却水接続機構とを備えている、室外機システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−19591(P2013−19591A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−153004(P2011−153004)
【出願日】平成23年7月11日(2011.7.11)
【出願人】(000006781)ヤンマー株式会社 (3,810)
【Fターム(参考)】