説明

フッ素化有機化合物の製造方法

【課題】 本発明の課題は、和な条件下、大気中で安定な六フッ化硫黄を使用して、安全な方法でフッ素化有機化合物を製造できる、工業的に好適なフッ素化有機化合物の製造方法を提供することにある。
【解決手段】 本発明の課題は、一般式(1)
【化1】


(式中、Rは、置換基を有していても良い、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基、Aは、アルカリ金属を示す。)
で示される有機アルカリ金属と六フッ化硫黄を反応させることを特徴とする、一般式(2)
【化2】


(式中、Rは、前記と同義である。)
で示されるフッ素化有機化合物の製造方法によって解決される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フッ素化有機化合物の製造方法に関する。フッ素化有機化合物は、難燃性のフッ素樹脂、フッ素化ゴム、医薬品の合成原料として有用な化合物である(例えば、非特許文献1参照)
【非特許文献1】Chemical & Engineering News, June 5, pp15-32(2006)。
【背景技術】
【0002】
従来、フッ素化有機化合物の製造方法としては、例えば、四フッ化硫黄、N,N-ジメチルアミノサルファートリフロリド(DAST)、ビス(メトキシエチル)アミノサルファーフロリド、四フッ化セレンを使用する方法等が知られているが、これらのフッ素化剤は毒性が高い上、熱的安定性が低い爆発性の化合物であるため、工業的に使用するためには問題があり、取り扱いの容易な安全なフッ素化剤が求められていた(例えば、非特許文献2参照)。
【非特許文献2】J.Org.Chem., 40, pp574(1975).
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明の課題は、上記問題点を解決し、温和な条件下、大気中で安定な六フッ化硫黄を使用して、安全な方法でフッ素化有機化合物を製造できる、工業的に好適なフッ素化有機化合物の製造方法を提供することにある。
【課題を解決するための手段】
【0004】
本発明の課題は、一般式(1)
【0005】
【化1】

【0006】
(式中、Rは、置換基を有していても良い、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基、Aは、アルカリ金属を示す。)
で示される有機アルカリ金属と六フッ化硫黄を反応させることを特徴とする、一般式(2)
【0007】
【化2】

【0008】
(式中、Rは前記と同義である。)
で示されるフッ素化有機化合物の製造方法によって解決される。
【発明の効果】
【0009】
本発明により、温和な条件下、大気中で安定な六フッ化硫黄を使用して、安全な方法でフッ素化有機化合物を製造できる、工業的に好適なフッ素化有機化合物の製造方法を提供することができる。
【発明を実施するための最良の形態】
【0010】
本発明においては一般式(3)
【0011】
【化3】

【0012】
(式中、R及びAは、前記と同義であり、Xは、フッ素原子以外のハロゲン原子を示す。)
で示される経路によりフッ素化有機化合物を製造する。
【0013】
本発明の反応において使用する有機アルカリ金属は、一般式(1)
【0014】
【化4】

【0015】
(式中、Rは、置換基を有していても良い、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基、Aは、アルカリ金属を示す。)
で示される。その一般式(1)において、Rは置換基を有していても良いアルキル基、シクロアルキル基、アリール基又はヘテロアリール基を示す。なお、これらの基は有機アルカリ金属と反応しない置換基で置換されていても良い。
【0016】
前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜20のアルキル基が挙げられる。なお、これらの基は、各種異性体を含む。
【0017】
前記シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の炭素原子数3〜20のシクロアルキル基が挙げられる。なお、これらの基は、各種異性体を含む。
【0018】
前記アリール基としては、例えば、フェニル基、p-トリル基、ナフチル基、アントリル基等の炭素原子数6〜20のアリール基が挙げられる。なお、これらの基は、各種異性体を含む。
【0019】
前記ヘテロアリール基としては、例えば、フリル基、ピロリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピロリジル基、インドリル基、イドオキサゾリジル基、ピリジル基、キノリル基等の炭素原子数2〜20のヘテロアリール基が挙げられる。
【0020】
前記置換基としては、炭素原子を介して出来る置換基、酸素原子を介して出来る置換基、窒素原子を介して出来る置換基、硫黄原子を介して出来る置換基が挙げられる。
【0021】
前記炭素原子を介して出来る置換基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロブチル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、シクロブテニル基、シクロペンテニル基等のアルケニル基;キノリル基、ピリジル基、ピロリジル基、ピロリル基、フリル基、チエニル基等の複素環基;フェニル基、トリル基、フルオロフェニル基、キシリル基、ビフェニリル基、ナフチル基、アントリル基、フェナントリル基等のアリール基が挙げられる。なお、これらの基は、各種異性体を含む。
【0022】
前記酸素原子を介して出来る置換基としては、例えば、メトキシル基、エトキシル基、プロポキシル基、ブトキシル基、ペンチルオキシル基、ヘキシルオキシル基、ヘプチルオキシル基、ベンジルオキシル基等のアルコキシル基;フェノキシル基、トルイルオキシル基、ナフチルオキシル基等のアリールオキシル基が挙げられる。なお、これらの基は、各種異性体を含む。
【0023】
前記窒素原子を介して出来る置換基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、メチルエチルアミノ基、メチルブチルアミノ基、ジフェニルアミノ基、N-メチル-N-メタンスルホニルアミノ基等の第二アミノ基;モルホリノ基、ピペリジノ基、ピロリジノ基、インドリル基等の複素環式アミノ基が挙げられる。なお、これらの基は、各種異性体を含む。
【0024】
前記硫黄原子を介して出来る置換基としては、例えば、チオメトキシル基、チオエトキシル基、チオプロポキシル基等のチオアルコキシル基;チオフェノキシル基、チオトルイルオキシル基、チオナフチルオキシル基等のチオアリールオキシル基等が挙げられる。なお、これらの基は、各種異性体を含む。
【0025】
Aは、アルカリ金属を示すが、例えば、リチウム金属、ナトリウム金属、カリウム金属、好ましくはリチウム金属である。
【0026】
本発明の分解において使用する有機アルカリ金属の量は、六フッ化硫黄1モルに対して、好ましくは1.0〜1000モル、更に好ましくは1.0〜100モル、特に好ましくは1.0〜50モルである。
【0027】
本発明の分解は、溶媒の存在下で行うのが望ましく、使用される溶媒としては、反応を阻害しないものならば特に限定されないが、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;1,3-ジメチル-2-イミダゾリジノン、1,3-ジメチルイミダゾリジン-2,4-ジオン等の尿素類;スルホラン等のスルホン類;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素が挙げられるが、好ましくはエーテル類、脂肪族炭化水素類、芳香族炭化水素類、更に好ましくはエーテル類、飽和脂肪族炭化水素類、特に好ましくはヘキサン、エーテル、テトラヒドロフランが使用される。なお、これらの溶媒は、単独又は二種以上を混合して使用しても良い。
【0028】
前記溶媒の使用量は、六フッ化硫黄1gに対して、好ましくは0.1〜1000ml、更に好ましくは0.2〜500ml、特に好ましくは0.5〜100mlである。
【0029】
本発明の分解は、例えば、六フッ化硫黄(予め冷却して固体としておいても良い)、有機アルカリ金属及び溶媒を混合して、攪拌しながら分解させる等の方法によって行われる。その際の分解温度は、好ましくは-100〜200℃、更に好ましくは-80〜150℃、特に好ましくは-20〜100℃であり、反応圧力は特に制限されないが、通常、常圧又は加圧下で行う。
【実施例】
【0030】
次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。なお、フッ素化有機化合物は19F-NMRにより確認した。
【0031】
実施例1(フッ化t-ブチルの合成)
攪拌装置を備えた内容量300mlのガラス製容器に、無水ジエチルエーテル200mlを加え、-78℃に冷却して攪拌しながら、六フッ化硫黄を導入して、白色固体として六フッ化硫黄を析出させた。次いで、アルゴン雰囲気下、-78〜-60℃で1.58mol/lのt-ブチルリチウムペンタン溶液25.3ml(40mmol)をゆるやかに滴下した。徐々に昇温して固体の六フッ化硫黄を気体として除去した。分解終了後、反応液を室温にて濾過した後、濾液をガスクロマトグラフィーで分析したところ、フッ化t-ブチルが生成していた(図1)。なお、イソブテンはフッ化t-ブチルからフッ素が脱離したものである。
【0032】
実施例2(フッ化t-ブチルの合成)
実施例1において、無水ジエチルエーテルを加えなかったこと以外は、実施例1と同様に反応を行った。その結果、反応液の19F-NMR分析によって-131.549ppmにフッ化t-ブチルのピークが確認された(図2、文献値;-132.4ppm)。
【0033】
実施例3(フッ化sec-ブチルの合成)
実施例2において、1.58mol/lのt-ブチルリチウムペンタン溶液を1.08mol/lのsec-ブチルリチウムシクロヘキサン−ヘキサン混合溶液10mlに変えたこと以外は、実施例1と同様に反応を行った。その結果、反応液の19F-NMR分析によって-173.062ppmにフッ化sec-ブチルのピークが確認された(図3、文献値;-173.2ppm)。
【産業上の利用可能性】
【0034】
本発明は、フッ素化有機化合物の製造方法に関する。フッ素化有機化合物は、難燃性のフッ素樹脂、フッ素化ゴム、医薬品の合成原料として有用な化合物である。
【図面の簡単な説明】
【0035】
【図1】実施例1で得られた濾液のガスクロマトグラフフィーである。
【図2】実施例2で得られたの濾液の19F-NMRスペクトルである。
【図3】実施例3で得られたの濾液の19F-NMRスペクトルである。

【特許請求の範囲】
【請求項1】
一般式(1)
【化1】

(式中、Rは、置換基を有していても良い、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基、Aは、アルカリ金属を示す。)
で示される有機アルカリ金属と六フッ化硫黄を反応させることを特徴とする、一般式(2)
【化2】

(式中、Rは、前記と同義である。)
で示されるフッ素化有機化合物の製造方法。
【請求項2】
有機リチウム試薬が、アルキルリチウムである請求項1記載のフッ素化有機化合物の製造方法。
【請求項3】
有機リチウム試薬が、t-ブチルリチウム又はsec-ブチルリチウムである請求項1記載のフッ素化有機化合物の製造方法。
【請求項4】
反応温度が-78〜25℃である請求項1記載のフッ素化有機化合物の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2009−292749(P2009−292749A)
【公開日】平成21年12月17日(2009.12.17)
【国際特許分類】
【出願番号】特願2008−146339(P2008−146339)
【出願日】平成20年6月4日(2008.6.4)
【出願人】(000000206)宇部興産株式会社 (2,022)
【Fターム(参考)】