説明

マニピュレータ及びその経路生成方法

【課題】 ロボットマニピュレータが物体をつかむ過程で物体と衝突することなく目標位置へと移動できる最短経路を実時間で生成する方法を提案する。
【解決手段】 作業対象物体とグリッパを球形に模型化してグリッパの現在位置、物体の位置及びグリッパの目標位置を測定し、グリッパの現在位置、物体の位置及びグリッパの目標位置からなる三角形の夾角(Φ)を求めて、グリッパの移動すべき2次元平面上の円弧経路を計算し、グリッパの現在位置、物体の位置及びグリッパの目標位置からなる変換行列を求めて、2次元平面上の円弧経路を3次元空間上の経路に変換することによって、マニピュレータが物体と衝突することなく物体を把持できる最短経路を自動で生成し、結果として安全な作業経路及び作業時間の短縮を実現することができる。

【発明の詳細な説明】
【技術分野】
【0001】
ロボットマニピュレータが物体をつかむ過程で物体と衝突することなく移動できる最短経路を生成する方法に関するものである。
【背景技術】
【0002】
一般に、電気的または磁気的な作用を用いて人間の動作に似た運動を行う機械装置をロボットという。初期のロボットは、生産現場における作業自動化・無人化などを目的としたマニピュレータ(manipulator)や搬送ロボットなどの産業用ロボットで、人間に代えて危険な作業、単純な反復作業、大きい力を要する作業を行ってきた。一方、最近では、人間に似た関節体系を有し、人間の作業及び生活空間において人間と共存しながら様々なサービスを提供する人間型ロボット(humanoid robot)への研究開発が活発に進められている。
【0003】
かかる人間型ロボットは、電気的・機械的メカニズムによって、人間の腕や手の動作に似た運動ができるように作られたマニピュレータを用いて作業を行っている。今使用されている大部分のマニピュレータは、多数のリンク(link)が互いに連結されてなり、各リンクの連結部品を関節(joint)という。マニピュレータは、それらのリンクと関節との幾何学的な関係によって運動特性が決定される。この幾何学的な関係を数学的に表現したものが運動学(Kinematics)であり、大部分のマニピュレータは、運動学的な特性(kinematics characteristic)を用いて、作業を行うための方向(目標位置)にロボット先端(Gripper;以下、「グリッパ」という。)を移動させる。
【0004】
マニピュレータが与えられた作業(例えば、物体をつかむ作業)を行うには、マニピュレータが作業を行う前の現在位置(開始点)から、作業が行える、すなわち、物体を把持できる目標位置(目標点)までのマニピュレータの移動経路を生成することが重要である。この場合、マニピュレータが現在位置から物体と衝突することなく目標位置へと移動できる最短経路の軌跡を生成する必要がある。
【発明の概要】
【発明が解決しようとする課題】
【0005】
ロボットマニピュレータが物体をつかむ過程で物体と衝突することなく目標位置へと移動できる最短経路を実時間で生成する方法を提案する。
【課題を解決するための手段】
【0006】
このために、本発明の一側面は、物体を把持するためのマニピュレータの移動経路を生成する方法であって、マニピュレータの先端に設けられたグリッパの現在位置、物体の位置及びグリッパの目標位置を認識し、グリッパの現在位置、物体の位置及びグリッパの目標位置から平面上の回転角を計算し、平面上の回転角を用いてグリッパの移動すべき2次元平面上の円弧経路を計算し、グリッパの現在位置、物体の位置及びグリッパの目標位置からなる変換行列を計算し、変換行列を用いて2次元平面上の円弧経路を3次元空間上の経路に変換することを含む。
【0007】
また、グリッパの現在位置は、マニピュレータが物体を把持する作業を行う前の開始点の位置である。
【0008】
また、物体の位置は、把持しようとする物体の中心位置である。また、グリッパの目標位置は、マニピュレータが物体を把持する目標点の位置である。また、平面上の回転角を計算することは、グリッパの現在位置、物体の位置及びグリッパの目標位置を連結してなる三角形の夾角を計算することを含む。
【0009】
また、2次元平面上の円弧経路を計算することは、物体の半径とグリッパの半径との和を求め、グリッパが一定時間移動した夾角を求め、物体の半径とグリッパの半径との和に、グリッパが一定時間移動した夾角をかけて、円弧軌跡を生成する2次元平面上のx、y座標を求めることを含む。
【0010】
また、変換行列を計算することは、グリッパの現在位置、物体の位置及びグリッパの目標位置から円弧軌跡を生成する三角平面を3次元の行列に変換することを含む。
【0011】
また、3次元空間上の経路に変換することは、3次元の行列に2次元平面上のx、y座標をかけて、グリッパの移動すべき3次元空間上の経路を生成することを含む。
【0012】
また、本発明の一側面に係るマニピュレータは、物体を把持するグリッパと、物体を把持するための目標位置にグリッパを移動させる複数のリンクと、グリッパの現在位置、物体の位置及びグリッパの目標位置を認識する認識部と、グリッパの現在位置、物体の位置及びグリッパの目標位置を用いて、グリッパの移動すべき2次元平面上の円弧経路を計算し、計算された2次元平面上の円弧経路を用いて、グリッパの移動すべき3次元空間上の経路を生成する経路生成部と、を含む。
【0013】
また、経路生成部は、グリッパの現在位置、物体の位置及びグリッパの目標位置を用いて2次元平面上の円弧経路を計算する2次元経路計算部と、グリッパの現在位置、物体の位置及びグリッパの目標位置からなる変換行列を計算して、2次元平面上の円弧経路を3次元空間上の経路に変換する3次元経路変換部と、を含む。
【0014】
また、2次元経路計算部は、グリッパの現在位置、物体の位置及びグリッパの目標位置から平面上の回転角を計算し、平面上の回転角を用いてグリッパの移動すべき2次元平面上の円弧経路を計算する。
【0015】
また、2次元経路計算部は、物体の半径とグリッパの半径との和を求め、グリッパが一定時間移動した夾角を求め、物体の半径とグリッパの半径との和に、グリッパが一定時間移動した夾角をかけて、円弧軌跡を生成する2次元平面上のx、y座標を求める。
【0016】
また、3次元経路変換部は、グリッパの現在位置、物体の位置及びグリッパの目標位置から円弧軌跡を生成する三角平面を3次元の行列に変換し、3次元の行列に2次元平面上のx、y座標をかけて、グリッパの移動すべき3次元空間上の経路を生成する。
【0017】
また、本発明の一側面に係るマニピュレータは、経路生成部で生成された経路に沿ってグリッパを移動させるように複数のリンクを駆動する関節をさらに含む。
【発明の効果】
【0018】
提案されたマニピュレータ及びその経路生成方法によれば、作業対象物体とグリッパを球形に模型化してグリッパの現在位置、物体の位置及びグリッパの目標位置を測定し、グリッパの現在位置、物体の位置及びグリッパの目標位置からなる三角形の夾角(Φ)を求めて、グリッパの移動すべき2次元平面上の円弧経路を計算し、グリッパの現在位置、物体の位置及びグリッパの目標位置からなる変換行列を求めて、2次元平面上の円弧経路を3次元空間上の経路に変換することによって、マニピュレータが物体と衝突することなく物体を把持できる最短経路を自動で生成し、結果として安全な作業経路及び作業時間の短縮を実現することができる。
【図面の簡単な説明】
【0019】
【図1】本発明の一実施例に係る歩行ロボットの外観構成図である。
【図2】図1に示すロボットの主要関節構造を示す図である。
【図3】本発明の一実施例に係るロボットの運動学的余裕駆動マニピュレータの形状を簡略に示す構成図である。
【図4】本発明の一実施例に係るロボットマニピュレータにおいてグリッパの移動経路を生成するための制御システムを示すブロック図である。
【図5】本発明の一実施例に係るグリッパが物体をつかむ様子をモデリングした図である。
【図6】本発明の一実施例に係るグリッパが物体をつかむために移動すべき2次元平面上の円弧経路を示す図である。
【図7】本発明の一実施例に係るグリッパが物体をつかむために移動すべき3次元空間上の円弧経路を示す図である。
【図8】本発明の一実施例に係るグリッパが物体をつかむために移動する実際の経路を示す図である。
【図9】本発明の一実施例に係るロボットマニピュレータにおいてグリッパの移動経路を生成するための方法を示すフローチャートである。
【発明を実施するための形態】
【0020】
以下、本発明の実施例を、添付の図面を参照しつつ詳細に説明する。
【0021】
図1は、本発明の一実施例に係るロボットの一例を示す外観図である。図1で、本発明の一実施例に係るロボット100は、人間と同様に、2本の脚110R,110Lにより直立移動する二足歩行ロボットで、胴部120と、胴部120の上部に設けられる2本の腕130R,130L及び頭140と、を備え、2本の脚110R,110L及び腕130R,130Lの先端にはそれぞれ、足111R,111L及び手131R,131Lを備える。
【0022】
参照符号においてRとLは、ロボット100の右側(Right)と左側(Left)を表す。
【0023】
図2は、図1に示すロボットの主要関節構造を示す図である。図2で、2本の腕130R,130Lは、ロボット100の肩、肘、手首に該当する部分が回転できるように肩関節132R,132L、肘関節133R,133L、手首関節134R,134Lをそれぞれ備え、肩関節132R,132Lは、胴部120上部の両側端に位置する。
【0024】
各腕130R,130Lの肩関節132R,132Lは、x軸(ロール軸)、y軸(ピッチ軸)、z軸(ヨー軸)に、肘関節133R,133Lはy軸に、手首関節134R,134Lは、x軸、y軸、z軸に動くことができる。
【0025】
また、2本の腕130R,130Lには、肩関節132R,132Lと肘関節133R,133Lとを連結する上部リンク135R,135L、及び肘関節133R,133Lと手首関節134R,134Lとを連結する下部リンク136R,136Lをそれぞれ備え、各関節(132R,132L)、(133R,133L)、(134R,134L)の可動角範囲において一定レベルの自由度で移動可能にする。
【0026】
そして、2本の脚110R,110Lと連結される胴部120には、ロボット100の腰に該当する部分が回転できるように腰関節121を備え、胴部120に連結される頭140には、ロボット100の首に該当する部分が回転できるように首関節141を備える。
【0027】
本発明の一実施例において、2本の腕130R,130Lは、モーションが可能な作業を行うマニピュレータ130であり、マニピュレータ130の先端に設けられる2つの手131R,131Lが、作業対象物体をつかむグリッパ131に該当する。これを図3に簡略に図式化している。
【0028】
図3は、本発明の一実施例に係るロボットの運動学的余裕駆動マニピュレータの形状を簡略に示す構成図である。同図で、マニピュレータ130は、電気的・機械的メカニズムによって、人間の腕や手の動作に似た運動ができるように作られたもので、現在使用されている大部分のマニピュレータ130は、複数のリンク135,136(具体的に、上部リンクまたは下部リンク)が複数の関節132,133,134(具体的に、肩関節、肘関節または手首関節)を介して互いに連結されて構成される。マニピュレータ130は、これらリンク135,136と関節(joint)132,133,134との幾何学的な関係によって運動特性が決定される。この幾何学的な関係を数学的に表現したものが運動学(Kinematics)であり、大部分のマニピュレータ130はこのような運動学的特性(kinematics characteristic)を有し、作業を行うための方向にグリッパ131を移動させる。本発明の一実施例に係るマニピュレータ130は、位置及び方向の調節が可能なリンク135,136を用いて作業対象物体をつかむための目標位置にグリッパ131を移動させる。
【0029】
図3からわかるように、同一物体をつかむために目標位置に移動するマニピュレータ130の形状は、(a)または(b)のように様々に変化可能である。
【0030】
図4は、本発明の一実施例に係るロボットマニピュレータにおいてグリッパの移動経路を生成するための制御システムを示すブロック図であり、ユーザーインターフェース部200、経路生成部210、認識部220、ロボット制御部230及び駆動部240を含む。
【0031】
ユーザーインターフェース部200では、マニピュレータ130、特に、グリッパ131で行うための作業命令(例えば、テーブル上に置かれている物体をつかむための把持命令)を、使用者がスイッチ操作や音声などで入力する。
【0032】
経路生成部210は、ユーザーインターフェース部200から入力される作業命令に応じて作業対象物体Aと衝突することなく作業対象物体Aをつかむためのグリッパ131の移動を制御するための作業経路を生成し、これをロボット制御部230に伝達する。
【0033】
また、経路生成部210は、作業対象物体Aの位置、グリッパ131の現在位置及びグリッパ131の目標位置を用いて、グリッパ131が移動すべき2次元平面上の円弧経路を計算する2次元経路計算部211と、作業対象物体Aの位置、グリッパ131の現在位置及びグリッパ131の目標位置からなる変換行列を計算することで、2次元平面上の円弧経路を、グリッパ131が移動すべき3次元空間上の経路に変換する3次元経路変換部212と、を含む。
【0034】
認識部220は、グリッパ131が作業命令を行う上で必要な情報、すなわち、作業命令を行う前のグリッパ131の現在位置における形状(開始点)、作業命令が行えるグリッパ130の目標位置における形状(目標点)、及び把持しようとする作業対象物体Aの位置を認識して経路生成部210に伝達する。この認識情報に基づき、経路生成部210でグリッパ131の移動経路を生成する。
【0035】
一方、認識部220で作業対象物体Aの位置、グリッパ131の現在位置及びグリッパ131の目標位置を認識する方法は、図5を参照して後述する。
【0036】
ロボット制御部230は、経路生成部210から伝達された作業経路に基づいて駆動部240を制御してマニピュレータ130を駆動させることで、マニピュレータ130の先端に設けられたグリッパ131の移動を制御する。
【0037】
以下、上記のように構成されたロボットマニピュレータ及びその経路生成方法の動作過程及び作用効果について説明する。
【0038】
図5は本発明の一実施例に係るグリッパが物体をつかむ様子をモデリングした図であり、図6は、本発明の一実施例に係るグリッパが物体をつかむために移動すべき2次元平面上の円弧経路を示す図であり、図7は、本発明の一実施例に係るグリッパが物体をつかむために移動すべき3次元空間上の円弧経路を示す図である。
【0039】
図5は、マニピュレータ130が作業対象物体Aをつかむと仮定した時に、作業対象物体A及びマニピュレータ130の先端に設けられたグリッパ131を球形に模型化した状態を示している。同図で、認識部220は、作業対象物体Aの位置、グリッパ131の現在位置及びグリッパ131の目標位置を、下記のように認識する。
【0040】
まず、認識部220は、把持しようとする作業対象物体Aを球形に模型化し、この模型化した球形物体Aの中心位置Xobjを作業対象物体Aの位置と認識し、それを経路生成部210に伝達する。
【0041】
また、認識部220は、マニピュレータ131が作業対象物体Aを把持する前のグリッパ131の形状を球形に模型化し、該模型化した球形グリッパ131の中心位置、すなわち、グリッパ131が作業対象物体Aを把持する作業を行う前の開始点の位置Xを、グリッパ131の現在位置と認識し、それを経路生成部210に伝達する。
【0042】
また、認識部220は、マニピュレータ131が作業対象物体Aを把持する時のグリッパ131の形状を球形に模型化し、該模型化した球形グリッパ131の中心位置、すなわち、グリッパ131が作業対象物体Aを把持する作業を行う時の目標点の位置Xを、グリッパ131の目標位置と認識し、それを経路生成部210に伝達する。
【0043】
したがって、経路生成部210の2次元経路計算部211は、認識部220から伝達された作業対象物体Aの位置Xobj、グリッパ131の現在位置X及びグリッパ131の目標位置Xを連結してなる三角形の夾角、すなわち、平面上の回転角φを計算し、この計算した平面上の回転角φを用いて、グリッパ131が移動すべき2次元平面上の円弧経路を計算する。グリッパ131が移動すべき2次元平面上の円弧経路を計算する方法は、下記のの通りである。
【0044】
グリッパ131が作業対象物体Aを把持する前の現在位置Xから作業対象物体Aを把持した時の目標位置Xまで移動するのにかかる時間をTとすれば、2次元平面上の円弧は、図6に示すように、模型化した球形物体Aの半径Rと模型化した球形グリッパ131の半径Rとを合算した値(R+R)に、グリッパ131が一定時間t(0<t<T、グリッパが物体と衝突することなく移動できる経路移動時間)移動した回転角φをかけて求める。ここで、グリッパ131が一定時間tに移動した2次元平面上のx、y座標は、下記の式(1)のように求める。
【0045】
【数1】

式(1)で、R(t)は、グリッパ131が一定時間tに移動した2次元平面上の円弧を表し、x(t)、y(t)は、グリッパ131が一定時間tに移動した時点での2次元平面上のx、y座標を表す。
【0046】
このように、経路生成部210の2次元経路計算部211で作業対象物体Aの位置Xobj、グリッパ131の現在位置X及びグリッパ131の目標位置Xの3点からなる平面上の回転角φを計算することで、グリッパ131が移動すべき2次元平面上の円弧経路を計算すると、経路生成部210の3次元経路変換部212は、計算された2次元平面上の円弧経路を用いて、グリッパ131が実際に移動すべき3次元空間上の経路を生成する。グリッパ131の移動すべき3次元空間上の経路を生成する方法は、下記の通りである。
【0047】
まず、経路生成部210の3次元経路変換部212は、作業対象物体Aの位置Xobj、グリッパ131の現在位置X及びグリッパ131の目標位置Xから、図7に示すように、3次元空間上の円弧経路を生成する三角平面を、下記の式(2)を用いて3次元の行列Rとして求める。
【0048】
【数2】

式(2)で、nは、3次元三角平面のx軸値であり、oは、3次元三角平面のy軸値であり、aは、3次元三角平面のz軸値である。
【0049】
式(2)で求めた3次元の行列Rに、上記の式(1)で求めた2次元平面上のx、y座標をかけて、下の式(3)のように、グリッパ131の移動すべき3次元空間上の経路を生成する。
【0050】
【数3】

式(3)で、Rは3次元三角平面の行列を、
【0051】
【数4】

は2次元平面上のx、y座標を、
【0052】
【数5】

は作業対象物体Aの位置Xobjを、
【0053】
【数6】

はグリッパ131の移動すべき3次元空間上の経路X’を、それぞれ表す。
【0054】
図8は、本発明の一実施例に係るグリッパが物体を把持するために移動する実際の経路を示す図である。同図で、グリッパ131は、作業対象物体Aを把持する前の現在位置Xから、作業対象物体Aを把持した時の目標位置Xまで、点線のような経路で実際に移動する。
【0055】
図9は、本発明の一実施例に係るロボットマニピュレータにおいてグリッパの移動経路を生成するための方法を示すフローチャートである。同図で、マニピュレータ130の先端に設けられたグリッパ131が、作業対象物体Aをつかむための作業を行おうとする際に、認識部220は、作業対象物体Aの位置Xobj、グリッパ131の現在位置X及びグリッパ131の目標位置Xを認識して経路生成部210に伝達する(300)。
【0056】
次に、経路生成部210の2次元経路計算部211は、認識部220から伝達された作業対象物体Aの位置Xobj、グリッパ131の現在位置X及びグリッパ131の目標位置Xを連結してなる三角形の夾角、すなわち、平面上の回転角φを、図5に示すように計算する(302)。
【0057】
続いて、経路生成部210の2次元経路計算部211は、計算した平面上の回転角φを用いて、グリッパ131の移動すべき2次元平面上の円弧経路を、図6に示すように計算する(304)。
【0058】
そして、経路生成部210の3次元経路変換部212は、認識部220から伝達された作業対象物体Aの位置Xobj、グリッパ131の現在位置X及びグリッパ131の目標位置Xから、図7に示すように、3次元空間上の円弧経路を生成する三角平面を3次元の行列Rに変換する(306)。
【0059】
続いて、経路生成部210の3次元経路変換部212は、変換された3次元の行列Rに、2次元経路計算部211で計算された2次元平面上のx、y座標をかけて、グリッパ131の移動すべき3次元空間上の実際経路を、図8に示すように生成する(308)。
【符号の説明】
【0060】
10 ロボット
130 マニピュレータ
131 グリッパ
132,133,134 関節
135,136 リンク
210 経路生成部
211 2次元経路計算部
212 3次元経路変換部
220 認識部
230 ロボット制御部
240 駆動部

【特許請求の範囲】
【請求項1】
物体を把持するためのマニピュレータの移動経路を生成する方法であって、
前記マニピュレータの先端に設けられたグリッパの現在位置、前記物体の位置及び前記グリッパの目標位置を認識し、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置から平面上の回転角を計算し、
前記平面上の回転角を用いて前記グリッパの移動すべき2次元平面上の円弧経路を計算し、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置からなる変換行列を計算し、
前記変換行列を用いて前記2次元平面上の円弧経路を3次元空間上の経路に変換する、マニピュレータの経路生成方法。
【請求項2】
前記グリッパの現在位置は、前記マニピュレータが前記物体を把持する作業を行う前の開始点の位置である、請求項1に記載のマニピュレータの経路生成方法。
【請求項3】
前記物体の位置は、把持しようとする前記物体の中心位置である、請求項1に記載のマニピュレータの経路生成方法。
【請求項4】
前記グリッパの目標位置は、前記マニピュレータが前記物体を把持する目標点の位置である、請求項1に記載のマニピュレータの経路生成方法。
【請求項5】
前記平面上の回転角を計算することは、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置を連結してなる三角形の夾角を計算する、請求項1に記載のマニピュレータの経路生成方法。
【請求項6】
前記2次元平面上の円弧経路を計算することは、
前記物体の半径と前記グリッパの半径との和を求め、
前記グリッパが一定時間移動した夾角を求め、
前記物体の半径と前記グリッパの半径との和に、前記グリッパが一定時間移動した前記夾角をかけて、円弧軌跡を生成する2次元平面上のx、y座標を求める、請求項5に記載のマニピュレータの経路生成方法。
【請求項7】
前記変換行列を計算することは、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置から前記円弧軌跡を生成する三角平面を3次元の行列に変換する、請求項6に記載のマニピュレータの経路生成方法。
【請求項8】
前記3次元空間上の経路に変換することは、
前記3次元の行列に前記2次元平面上のx、y座標をかけて、前記グリッパの移動すべき3次元空間上の経路を生成する、請求項7に記載のマニピュレータの経路生成方法。
【請求項9】
物体を把持するグリッパと、
前記物体を把持するための目標位置に前記グリッパを移動させる複数のリンクと、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置を認識する認識部と、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置を用いて、前記グリッパの移動すべき2次元平面上の円弧経路を計算し、前記計算された2次元平面上の円弧経路を用いて、前記グリッパの移動すべき3次元空間上の経路を生成する経路生成部と、
を含む、マニピュレータ。
【請求項10】
前記グリッパの現在位置は、前記マニピュレータが前記物体を把持する作業を行う前の開始点の位置である、請求項9に記載のマニピュレータ。
【請求項11】
前記物体の位置は、把持しようとする前記物体の中心位置である、請求項9に記載のマニピュレータ。
【請求項12】
前記グリッパの目標位置は、前記マニピュレータが前記物体を把持する目標点の位置である、請求項9に記載のマニピュレータ。
【請求項13】
前記経路生成部は、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置を用いて前記2次元平面上の円弧経路を計算する2次元経路計算部と、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置からなる変換行列を計算して、前記2次元平面上の円弧経路を3次元空間上の経路に変換する3次元経路変換部と、
を含む、請求項9に記載のマニピュレータ。
【請求項14】
前記2次元経路計算部は、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置から平面上の回転角を計算し、
前記平面上の回転角を用いて前記グリッパの移動すべき2次元平面上の円弧経路を計算する、請求項13に記載のマニピュレータ。
【請求項15】
前記平面上の回転角は、前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置を連結する三角形の夾角である、請求項14に記載のマニピュレータ。
【請求項16】
前記2次元経路計算部は、
前記物体の半径と前記グリッパの半径との和を求め、
前記グリッパが一定時間移動した夾角を求め、
前記物体の半径と前記グリッパの半径との和に、前記グリッパが一定時間移動した前記夾角をかけて、円弧軌跡を生成する前記2次元平面上のx、y座標を求める、請求項15に記載のマニピュレータ。
【請求項17】
前記3次元経路変換部は、
前記グリッパの現在位置、前記物体の位置及び前記グリッパの目標位置から前記円弧軌跡を生成する三角平面を3次元の行列に変換し、
前記3次元の行列に前記2次元平面上のx、y座標をかけて、前記グリッパの移動すべき3次元空間上の経路を生成する、請求項16に記載のマニピュレータ。
【請求項18】
前記経路生成部で生成された経路に沿って前記グリッパを移動させるように前記複数のリンクを駆動する関節をさらに含む、請求項9に記載のマニピュレータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−18113(P2013−18113A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2012−144536(P2012−144536)
【出願日】平成24年6月27日(2012.6.27)
【出願人】(390019839)三星電子株式会社 (8,520)
【氏名又は名称原語表記】Samsung Electronics Co.,Ltd.
【住所又は居所原語表記】129,Samsung−ro,Yeongtong−gu,Suwon−si,Gyeonggi−do,Republic of Korea
【Fターム(参考)】