説明

光パルス列変換装置、光パルス列発生装置及び光パルス列変換方法

【課題】本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を出力することである。
【解決手段】位相変調信号に応じて、入力される光パルス列に位相変調を施す位相変調部21と、前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する群速度分散部22と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光パルス列変換装置、光パルス列発生装置及び光パルス列変換方法に関する。
【背景技術】
【0002】
従来、時間幅が数ピコ秒(ps)の光パルス列は、ビットレートが数十Gbit/s以上の超高速通信に必須である。時間幅が数ピコ秒の光パルス列を生成する方法としては、モードロックレーザを用いて直接発生する方法や、パルス圧縮を適用する方法(例えば、非特許文献1参照)が知られているが、光増幅機構が必要であり、光パルス発生器としての構造が複雑になるという欠点がある。これに対して、電気信号を印加した光強度変調器に連続光を入力し、光の振幅を変調することで光パルスを生成する方法は、簡潔かつ安定である。実際、リチウムナイオベート(LN:LithiumNiobate)結晶をマッハツェンダー干渉計に組み込んだLN強度変調器や、電界吸収型強度変調器(EAM:Electro Absorption Modulator)に40GHzの正弦波電気信号を印加し、パルス幅が5〜10psの光パルス列を得る方法がよく知られている。
【0003】
一方、データを付加した信号を生成する上で、ビットレートとして現在最も普及している値は、OC-192/STM-64などの規格に代表される、約10Gbit/sである。ところが、LN強度変調器やEAMに10GHzの正弦波電気信号を印加しても、得られる光パルスの時間幅は一般に十数psから数十psであり、幅が数psの光パルスを得ることはできない。これは、強度変調器を用いた光パルス発生においては、印加する電気信号の時間幅と、得られる光パルスの時間幅との間に一定の割合があるためで、10GHzの正弦波電気信号入力に対して、幅が数psの光パルスを直接発生させることは原理的に難しい。ただし繰り返し周波数が10GHzであり、帯域が40GHz相当で、十数psの時間幅を持つパルス形状の電気信号を強度変調器に印加すれば、繰り返し周波数が10GHzで時間幅が数psの光パルスを直接発生させることは可能であるが、そのような電気信号を発生させることは容易ではなく、高速で複雑な電気信号処理器を必要とする。以上の理由により、繰り返し周波数が10GHzで、幅が数psの光パルス列を容易に発生させる技術が求められている。
【0004】
繰り返し周波数が10GHzで時間幅が数psの光パルス列を得る方法として、高い周波数の正弦波電気信号を強度変調器に印加して短パルス列を発生させた後、光パルスの繰り返し周波数を下げる手法が考えられる。例えば、40GHzの正弦波電気信号をLN強度変調器もしくはEAMに印加して、繰り返し周波数が40GHzかつ時間幅が数psの光パルスを発生した後、時間的に隣接した四つの光パルスのうち三つを強度変調により間引くことで、10GHz繰り返しの光パルス列を得ることが可能である。
【非特許文献1】T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser & Photonics Rev., Vol.2, p.83 (2008).
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかし、従来の高い繰り返し周波数で短パルス列を発生し、強度変調により光パルスを間引くことで繰り返し周波数を下げる方法については、光パルス列に対して本質的に大きな損失を伴っていた。例えば、40GHzの繰り返し周波数を10GHzとなるように間引くと、四つのうち三つの光パルスを消去することになるため、損失は6dB(75%)である。さらにこの場合、光パルスを間引くため強度変調器に印加する電気信号として、繰り返し周波数が10GHzで、幅が25ps以下の電気パルス列を発生する高速電気信号処理器が必要であった。
【0006】
本発明の課題は、本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を出力することである。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明に係る光パルス列変換装置は、
位相変調信号に応じて、入力される光パルス列に位相変調を施す位相変調部と、
前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する群速度分散部と、を備える。
【0008】
好ましくは、前記位相変調は、前記減じられた繰り返し周波数を持つ光パルス列に対して、前記群速度分散と絶対値が同じで符号が逆の群速度分散を与えた場合に生じる光パルス列の各光パルスの位相への変調である。
【0009】
好ましくは、前記群速度分散部は、分散補償ファイバである。
【0010】
好ましくは、前記位相変調信号は、矩形波及び正弦波の少なくとも1つからなる。
【0011】
好ましくは、前記入力される光パルス列の繰り返し周波数が2Δfであり、
前記群速度分散は、大きさが 1/(4πΔf2) 又は-1/(4πΔf2)であり、
前記位相変調信号は、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπ/2である。
【0012】
好ましくは、前記入力される光パルス列の繰り返し周波数が4Δfであり、
前記群速度分散は、大きさが1/(8πΔf2)であり、
前記位相変調信号は、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値が3π/4である矩形波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである矩形波信号と、の合波信号である。
【0013】
好ましくは、前記入力される光パルス列の繰り返し周波数が4Δfであり、
前記群速度分散は、大きさが1/(8πΔf2)であり、
前記位相変調信号は、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値がπ/4である正弦波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである正弦波信号と、の合波信号である。
【0014】
本発明に係る光パルス列発生装置は、
前記光パルス列変換装置と、
短パルスの光パルス列を発生して前記位相変調部に出力する光パルス列発生部と、
前記位相変調信号を発生して前記位相変調部に出力する位相変調信号発生部と、を備える。
【0015】
本発明に係る光パルス列変換方法は、
位相変調信号に応じて、入力される光パルス列に位相変調を施す工程と、
前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する工程と、を含む。
【発明の効果】
【0016】
本発明によれば、本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を出力できる。
【発明を実施するための最良の形態】
【0017】
以下、図面を参照して本発明に係る実施の形態を説明する。但し、本発明は図示例に限定されるものではない。
【0018】
本実施の形態では、光パルス列を発生し、その光パルス列に位相変調を施し、さらに群速度分散を与えることにより、本質的に無損失で、繰り返し周波数を減じて光パルス列を出力する光パルス列発生装置1及びその光パルス列発生方法を提案する。
【0019】
先ず、図1を参照して本実施の形態の装置構成を説明する。図1に、本実施の形態の光パルス列発生装置1の構成を示す。なお、図1において、光信号が伝搬される光経路を太線で表し、電気信号が伝搬される電気経路を細線で表す。また、光パルス列発生装置1における光経路は、光ファイバ等により構成され、電気経路が導線等により構成される。
【0020】
図1に示すように、光パルス列発生装置1は、光パルス列発生部10と、光パルス列変換装置20と、位相変調信号発生部30と、を備えて構成される。光パルス列発生部10は、レーザ光源11と、強度変調部12と、強度変調信号発生部13と、を備えて構成される。光パルス列変換装置20は、位相変調部21と、群速度分散部22と、を備えて構成される。
【0021】
光パルス列発生部10は、繰り返し周波数が高く短パルス(パルス幅(時間幅)が短い光パルス)の光パルス列を発生して出力する。また、光パルス列発生部10から出力される光パルス列は、パルスごとで位相がそろっているものとする。
【0022】
レーザ光源11は、連続(CW:Continuous Wave)光を発生するレーザ光源である。レーザ光源11には、DFB−LD(Distributed Feedback-LASER Diode)等が用いられる。強度変調信号発生部13は、強度変調部12の強度変調用の電気信号(強度変調信号)を発生して出力する。強度変調部12は、レーザ光源11から出力された連続光と、強度変調信号発生部13から出力された強度変調信号とが入力され、その強度変調信号に応じて、連続光を繰り返し周波数の高い短パルスの光パルス列に変換して出力する。強度変調部12には、LN強度変調器やEAM等が用いられる。例えば、強度変調信号発生部13が発生する強度変調信号の繰り返し周波数が40GHzである場合に、強度変調部12は、繰り返し周波数が40GHzの光パルス列を出力する。
【0023】
位相変調信号発生部30は、光パルス列変換装置20の位相変調用の電気信号である位相変調信号を発生して出力する。この位相変調信号については、詳細に後述する。光パルス列変換装置20は、光パルス列発生部10から出力された光パルス列を、繰り返し周波数が低く短パルスの光パルス列に変換して出力する。
【0024】
位相変調部21は、光パルス列発生部10(強度変調部12)から出力された繰り返し周波数が高く短パルスの光パルス列と、位相変調信号発生部30から出力された位相変調信号とが入力され、その位相変調信号に応じて前記入力された光パルス列に位相変調を施して出力する。位相変調部21には、例えば、LNやPLZT(lead Lanthanum Zirconate Titanate)などの非線形結晶にもとづく位相変調器が用いられる。この位相変調については、詳細に後述する。
【0025】
群速度分散部22は、位相変調部21により位相変調された光パルス列が入力され、その光パルス列に群速度分散を与え、繰り返し周波数を減じた光パルス列として出力する。群速度分散部22には、例えば、光ファイバ、ファイバブラッググレーティング、回折格子対、そしてプリズム対が用いられる。群速度分散部22としては、光ファイバの一種である分散補償ファイバ(DCF:Dispersion Compensating Fiber)が好ましい。この群速度分散については、詳細に後述する。
【0026】
次に、図2〜図23を参照して、光パルス列発生装置1の動作原理を述べる。
【0027】
光パルス列発生装置1において、光パルス列発生部10が繰り返し周波数の高い短パルスの光パルス列を発生し、光パルス列変換装置20は、光パルス列発生部10により発生された光パルス列を変換して繰り返し周波数の低い短パルスの光パルス列を出力する。このような動作において、光パルス列変換装置20における動作を主として説明する。
【0028】
先ず、本実施の形態の前提となる技術を説明する。「Temporal self-imaging effect(時間的自己結像効果)」もしくは「Temporal Talbot effect(時間的Talbot効果)」と呼ばれる現象が、
T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. B, Vol. 71, p.1373 (1981).
に示されている。以下、この文献を第1の文献という。
【0029】
上記現象を用いて、光パルス列の繰り返し周波数を整数倍に増加させる方法が、
J. Azana and M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett., Vol. 24, p.1672 (1999).
などにより知られている。以下、この文献を第2の文献という。
【0030】
一般に、光パルスに群速度分散(GVD:Group Velocity Dispersion。以下、単にGVDともいう)の効果を与えると、光パルスの時間波形が変形する。ここで、GVDを与えるとは、周波数軸上で光パルスのスペクトルに対してexp[iθ(f)] = exp[i2π2θ0f2]なる因子を乗じ、各周波数成分に対してθ(f) = 2π2θ0f2なる位相シフトを与えることを意味する。ただしfは光パルスの中心周波数を0とする周波数、またθ0はGVDの大きさを表す定数であり、例えば分散値β2 [s2/m]、長さL [m]の光ファイバによって与えられるGVDの大きさは、θ02Lと書ける。時間的Talbot効果による時間的自己結像とは、繰り返し周波数がΔfである光パルス列に対して、ある一定量θ0=1/(πΔf2)、もしくはこの整数倍であるGVDを与えても、光パルス列の時間波形が不変となる現象である。この現象は、次のように説明される。図2に時間波形、図3の実線にスペクトルを示すような、時間間隔がΔtで、繰り返し周波数がΔf=1/Δtである光パルス列を考える。
【0031】
なお、時間領域で光パルス列の位相はそろっているものとし、また周波数領域でスペクトルを形成する周波数コム成分も位相がそろっているものとする。この光パルス列に対して、大きさがθ0=1/(πΔf2)で表されるGVDを与えることは、スペクトルに対して、図3の点線で示すようにθ(f)=2π(f/Δf)2なる位相シフトを与えることと等価である。このときmを整数として、スペクトルにおいてコム成分が存在する周波数f=mΔfにおいて、位相シフトの量が2πの整数倍となるから、すべてのコム成分は位相シフトを受けていない場合と等価である。よって光パルス列の時間波形も、図2に示す初期波形と同じ形になるのである。この現象が、時間的Talbot効果として知られているものである。
【0032】
次に、「部分的な時間的Talbot効果」と、それを用いて光パルス列の繰り返し周波数を倍増させる方法について示す。図2および図3の実線に波形を示す光パルス列に対して、大きさがθ0=1/(4πΔf2)で表されるGVDを与えると、スペクトルには図4の点線に示すようなθ(f)=(π/2)(f/Δf)2なる位相シフトを受ける。このとき、m=0,1,2,3,4,…として、周波数f=±mΔfに存在する周波数コム成分が受ける位相シフトはそれぞれ0, π/2, 2π, 9π/2, 8π,…となる。すなわち、mが偶数の場合は位相シフトが0であり、奇数の場合はπ/2である。光パルス列のスペクトルにこのような位相シフトが与えられた場合の時間波形を考える上で、周波数f=±mΔfに存在する周波数コムについてmが偶数である成分と、奇数である成分に分解する。それぞれの成分に対応するスペクトルを図5および図7に示し、また各スペクトルに対応するパルス振幅の時間波形を、それぞれ図6および図8に示す。
【0033】
図5にスペクトル波形、図6に時間波形が示されている光パルス列は、隣接パルス間相対位相差がなく、繰り返し周波数が2Δfの光パルス列である。一方、図7にスペクトル波形、図8に時間波形が示されている光パルス列は、繰り返し周波数が2Δf、隣接パルス間相対位相差がΔφ=π、の逆位相パルス列で、図5および図6に示した光パルス列に対して、-π/2の相対位相差を持っている。ここで、スペクトルが周波数に対して一律の位相シフトθを持つ場合、光パルス列の時間波形は時間に対して一律に-θの位相シフトを持つことを意味することに注意が必要である。
【0034】
結局、図6と図8の時間波形を足し合わせると、スペクトルが図4で表される光パルス列の時間波形は図9に示すとおり、繰り返し周波数が2Δfで、隣接パルス間相対位相差Δφが+π/2および-π/2である状態が交互に繰り返されるような光パルス列であることがわかる。なお図2の光パルス列と比較して、図9の光パルス列は振幅の尖塔値が1/√2であり、強度の尖塔値は1/2である。このように、光パルス列に対してθ0=1/(4πΔf2)で表されるGVDを与えることで光パルス列の繰り返し周波数が倍増する効果は、部分的な時間的Talbot効果と呼ばれ、上記第2の文献で開示されている。なお図6、図8、図9においてφは、図6に示す位相のそろった光パルス列を基準とした、光パルスの相対位相差を示している。また、図2の光パルス列に対してθ0=-1/(4πΔf2)で表されるGVDを与えても、θ0=1/(4πΔf2)の場合と同様の結果が得られる。
【0035】
本実施の形態では、上記部分的な時間的Talbot効果によって繰り返し周波数を倍増させる方法と逆の形を用い、光パルス列の繰り返し周波数を半減する手法を提案する。すなわち、光パルス列変換装置20において、位相変調部21は、光パルス列発生部10(強度変調部12)から出力された位相がそろっていて繰り返し周波数が2Δfである光パルス列と、位相変調信号発生部30から出力された位相変調信号とが入力され、その位相変調信号に応じて、その入力された光パルス列に対して、隣接パルス間相対位相差が+π/2および-π/2である状態が交互に繰り返されるように位相変調を施して出力する。群速度分散部22は、位相変調部21から入力された光パルス列に対して、値がθ0=1/(4πΔf2)または-1/(4πΔf2)で表されるGVDを与えて出力する。これにより、群速度分散部22の出力として、位相がそろっていて繰り返し周波数がΔfである光パルス列が得られる。
【0036】
位相変調部21に対しては、繰り返し周波数がΔfで位相変調度φの最小値が0、最大値がπ/2 ラジアンとなるように、図10および図11において実線に示すように矩形波あるいは正弦波の電気信号を位相変調信号として位相変調信号発生部30が発生して印加する方法が考えられる。図10および図11における点線は、位相変調部21に入力される光パルス列である。また図10および図11における破線は、理想的な位相変調信号の波形であり、これに極力近い波形をファンクションジェネレータなどにより直接発生させられることが望ましい。位相変調とGVDを与える操作は本質的には無損失で実行することができる。その結果として、光パルス列の繰り返し周波数を減じる手法に関して、本実施の形態で提案した方法は、本質的に無損失で実現できるという大きな利点があり、背景技術で述べたような強度変調器で光パルスを間引く方法とは根本的な差異があると言える。
【0037】
上記の光パルス列変換装置20による光パルス列変換方法を繰り返し適用することにより、光パルス列の繰り返し周波数をΔfからΔf/2、Δf/4、Δf/8、…と半減させていくことができる。例えば、光パルス列の繰り返し周波数をΔf/4に減じたい場合は、先ず、上記光パルス列変換装置20の光パルス列変換方法で光パルス列の繰り返し周波数をΔfからΔf/2に減じる。その後、別の光パルス列変換装置の位相変調部が、前記繰り返し周波数をΔf/2に減じた光パルス列に対して、図10または図11のような位相変調をするよう繰り返し周波数ΔfをΔf/2に変更し、さらにその別の光パルス列変換装置の群速度分散部が、値がθ0=-1/(πΔf2)で表されるGVDを与えられるように、前記光パルス列変換方法を適用すればよい。
【0038】
一方、部分的な時間的Talbot効果の別の条件を用いれば、光パルス列に対してそれぞれ一度の位相変調とGVDを与えることにより、光パルス列の繰り返し周波数を直接四分の一に減じることができる。つまり、1台の光パルス列変換装置20により実現できる。以下にその手法を示す。
【0039】
図2および図3に波形を示す光パルス列に対して、大きさがθ0=1/(8πΔf2)で表されるGVDを与えると、スペクトルは図12の点線に示すようなθ(f)=(π/4)(f/Δf)2なる位相シフトを受ける。このとき、m=0,1,2,3,4,…として、周波数f=±mΔfに存在する周波数コム成分が受ける位相シフトはそれぞれ0,π/4,π,9π/4, 4π,…となる。光パルス列のスペクトルにこのような位相シフトが与えられた場合の時間波形を考える上で、周波数f=±mΔfに存在する周波数コムについて、nを整数としてm=4n(0,±4,±8,…)に対応する成分、m=4n+2(±2,±6,±10,…)に対応する成分、そしてm=2n+1(奇数)に対応する成分に分解する。それぞれの成分に対応するスペクトルを図13、図15、および図17に示し、また各スペクトルに対応するパルス振幅の時間波形を、それぞれ図14、図16、および図18に示す。
【0040】
図13にスペクトル波形、図14に時間波形が示されている光パルス列は、隣接パルス間相対位相差がなく、繰り返し周波数が4Δfの光パルス列である。また図15にスペクトル波形、図16に時間波形が示されている光パルス列は、隣接パルス間相対位相差がΔφ=π、繰り返し周波数が4Δfの光パルス列で、図13および図14に示した光パルス列に対して、+πの相対位相差を持っている。一方、図17にスペクトル波形、図18に時間波形が示されている光パルス列は、隣接パルス間相対位相差がΔφ=π、繰り返し周波数が2Δfの光パルス列で、図13および図14に示した光パルス列に対して、-π/4の相対位相差を持っている。
【0041】
結局、図14、図16、そして図18の時間波形を足し合わせると、スペクトルが図12で表される光パルス列の時間波形は図19に示すとおり、繰り返し周波数が4Δfで、隣接パルス間相対位相差Δφが+π/4、+3π/4、-3π/4、-π/4というパターンで繰り返されるような光パルス列であることがわかる。なお図2の光パルス列と比較して、図19の光パルス列は振幅の尖塔値が1/2であり、強度の尖塔値は1/4である。このように、光パルス列に対してθ0=1/(8πΔf2)で表されるGVDを与えることで、光パルス列の繰り返し周波数が4倍になる効果は、部分的な時間的Talbot効果のひとつである。一方、図2の光パルス列に対してθ0=-1/(8πΔf2)で表されるGVDを与えると、得られる結果は図19とは異なり、図20のようになる。
【0042】
本実施の形態では、この部分的な時間的Talbot効果を逆の形で用い、位相変調とGVDを一度ずつ与えることで、光パルス列の繰り返し周波数を四分の一にする手法を提案する。すなわち、1台の光パルス列変換装置20において、位相変調部21は、光パルス列発生部10(強度変調部12)から出力された位相がそろっていて繰り返し周波数が4Δfである光パルス列と、位相変調信号発生部30から出力された位相変調信号とが入力され、その位相変調信号に応じて、その入力された光パルス列に対して、位相変調度φが図21で表されるような位相変調を施して出力する。図21の実線は、理想的な位相変調信号波形であり、極力これに近い波形をファンクションジェネレータなどにより発生させられることが望ましい。群速度分散部22は、位相変調部21から入力された光パルス列に対して、値がθ0=1/(8πΔf2)で表されるGVDを与え出力する。これにより、群速度分散部22の出力として、位相がそろっていて繰り返し周波数がΔfである光パルス列が得られる。このプロセスは、図2の光パルス列にθ0= -1/(8πΔf2)なるGVDを与えた際、図20の光パルス列が得られるプロセスを逆に用いたものである。
【0043】
現実的な条件の元で、図21で示される位相変調を行うには、位相変調信号発生部30が、繰り返し周波数が2ΔfおよびΔfで、立ち上がり時間が元の光パルス列の間隔Δt/4=1/(4Δf)と同程度の矩形波電気信号を発生し、合波してから位相変調信号として出力して、位相変調部21に印加すればよい。具体的には、位相変調部21に、電圧がVπのときに入力光の位相変調度がπとなる位相変調器を用いた場合、図22の実線に示すように繰り返し周波数が2Δfでピーク電圧がV=3Vπ/4の矩形波電気信号aと、繰り返し周波数がΔfでピーク電圧がV=Vπの矩形波電気信号bとを用い、図22の点線に示す位相変調部21に入力される光パルス列に対する矩形波電気信号a,bそれぞれのタイミングを合わせ、合波した結果が図23に示す位相変調信号cになるよう位相変調信号発生部30を調整すればよい。なお図22および図23で、破線は図21の理想的な位相変調信号の波形を示していて、図23では各光パルスの中心部で理想に近い位相変調信号が得られていることが分かる。
【0044】
以上、本実施の形態によれば、光パルス列変換装置20において、位相変調部21が、位相変調信号発生部30から出力される位相変調信号に応じて、光パルス列発生部10から入力される光パルス列に位相変調を施し、群速度分散部22が、その位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えることで、繰り返し周波数の減じられたパルス列を出力し、さらに、位相変調部21の位相変調が、前記減じられた繰り返し周波数を持ち、位相のそろった光パルス列に対して、群速度分散部22の群速度分散と絶対値が同じで逆符号の値である群速度分散を直接与える場合に変化する各光パルスの位相への変調である。このため、繰り返し周波数を増加する部分的な時間的Talbot効果を逆方向に行うことになり、本質的に無損失で、パルス列の繰り返し周波数を低い値に変換した光パルス列を出力できる。
【0045】
また、光パルス列発生部10が発生する光パルス列の繰り返し周波数が2Δfであり、群速度分散部22の群速度分散の大きさが 1/(4πΔf2) 又は-1/(4πΔf2)であり、位相変調信号発生部30が発生する位相変調信号が、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπ/2であるものとする。この場合に、1台の光パルス列変換装置20により、本質的に無損失で繰り返し周波数をΔfに減じた(1/2に減じた)光パルス列を出力できる。
【0046】
また、光パルス列発生部10が発生する光パルス列の繰り返し周波数が4Δfであり、群速度分散部22の群速度分散の大きさが 1/(8πΔf2)であり、位相変調信号発生部30が発生する位相変調信号が、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値が3π/4である矩形波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである矩形波信号と、の合波信号であるものとする。この場合に、1台の光パルス列変換装置20により、本質的に無損失で繰り返し周波数をΔfに減じた(1/4に減じた)光パルス列を出力できる。
【0047】
また、光パルス列発生装置1により、強度変調部12で光パルス列を出力した後は本質的に無損失の処理を行うことで、繰り返し周波数が低い光パルス列を発生できる。特に、光パルス列発生部10は、短パルスの光パルス列を発生し、その光パルス列を光パルス列変換装置20が変換する。このため、強度変調部12で光パルス列を出力した後は本質的に無損失で繰り返し周波数が低い短パルスの光パルス列を発生できる。
【実施例1】
【0048】
図24〜図28を参照して、上記実施の形態の実施例1を説明する。本実施例では、計算機シミュレーションを用い、光パルス列発生部10が発生した繰り返し周波数が4Δf=40GHzである光パルス列に対して、上記実施の形態の光パルス列変換装置20による光パルス列変換方法を適用し、位相変調信号発生部30が発生した矩形波からなる位相変調信号を用いて、繰り返し周波数がΔf=10GHzである光パルス列を発生させた結果を示す。
【0049】
レーザ光源11が、波長が1552.5nm(193.1THz)の連続光を発生し、強度変調部12としてのEAMで強度変調することを想定し、この光パルス列発生部10により生成された光パルス列は、繰り返し周波数が40GHz、光パルスが幅5ps、そしてピークパワーが1mWであるとする。図24および図25に、この光パルス列の電力密度スペクトル波形および強度の時間波形を示す。この光パルス列を位相変調部21に入力し、位相変調を行う。位相変調部21は、電圧Vπが印加されると、光の位相がπシフトされるものとする。位相変調信号発生部30は、波形の模式図が図22で示されるような、繰り返し周波数が2Δf=20GHzでピーク電圧が3Vπ/4である矩形波電気信号aと、繰り返し周波数がΔf=10GHzでピーク電圧がVπである矩形波電気信号bとを合波し、波形が図23に示されている位相変調信号cを生成して位相変調部21に印加する。
【0050】
また、群速度分散部22に分散媒体としてDCFを用いることを想定し、GVDの値がβ2=204.737ps2/km (-160ps/nm/km)、分散スロープ値が-0.6ps/nm2/km、長さがL= 1.943 kmのDCFとする。なおこれらの数値は、先に述べた部分的な時間的Talbot効果に関する条件θ02L=1/(8πΔf2)を満足する。簡単のため、位相変調部21と群速度分散部22との挿入損失は無視しているが、損失を考慮しても、得られる結果に本質的な影響は及ぼさない。
【0051】
図26は、位相変調された光パルス列の電力密度スペクトルを示す。図24のスペクトルと比較して包絡線は変化しておらず、周波数軸上で周波数コム成分の数が4倍になって、コム成分どうしの間隔が40GHzから10GHzとなっている。図27は、群速度分散部22を通過して得られた光パルス列の強度の時間波形を示していて、図25と比較して光パルスひとつの波形は変わっていないが、パルス間隔が100psとなっていて、繰り返し周波数が40GHzから10GHzに変化している。さらにパワーの尖塔値が1mWから4倍の4mWになっていて、入力光の平均パワーが損失を受けることなく保たれていて、パルスの数が四分の一になった分、パワーの尖塔値が4倍の増大したことがわかる。
【0052】
図27の波形を対数軸上で表示したものを図28に示す。繰り返し周波数が10GHzのパルス列のピーク強度と、繰り返し周波数が40GHzの残留成分強度との比は40dBであり、残留成分はほぼ無視できると言える。つまり、図21に示した理想的な位相変調を行わずとも、図23に示した現実的な位相変調方法を適用することで、十分な精度の10GHz繰り返し周波数の光パルス列が得られるのである。
【0053】
以上、本実施例によれば、1台の光パルス列変換装置20により、本質的に無損失で繰り返し周波数をΔfに減じた(1/4に減じた)光パルス列を出力できることが確かめられた。
【0054】
また、位相変調部21は、位相変調信号発生部30により発生される矩形波からなる位相変調信号に応じて光パルス列に位相変調を施す。このため、理想的な状態に近い位相変調信号により、精度良く本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を出力できる。
【0055】
また、群速度分散部22は、DCFを用いて構成される。このため、単位長さあたりの分散効果が高く、群速度分散部22に用いる光ファイバの長さを短くできる。
【実施例2】
【0056】
図29〜図33を参照して、上記実施の形態の実施例2を説明する。本実施例では、上記実施例1と同様に、計算機シミュレーションを用い、光パルス列発生部10が発生した繰り返し周波数が4Δf=40GHzである光パルス列に対して、上記実施の形態の光パルス列変換装置20による光パルス列変換方法を適用し、位相変調信号発生部30が発生した正弦波からなる位相変調信号を用いて、繰り返し周波数がΔf=10GHzである光パルス列を発生させた結果を示す。計算機シミュレーションの条件は、上記実施例1と同様であるものとする。
【0057】
一般に、帯域が数十GHzの高周波電気信号を扱う上では、矩形波よりも正弦波を出力する方が容易である。上記実施の形態の光パルス列変換装置20による光パルス列変換方法では、図21に示した矩形波位相変調信号を組み合わせて図23の位相変調信号を用いる代わりに、周波数がΔfおよび2Δfで、しかるべき振幅、バイアス、そしてタイミングを与えた正弦波電気信号を、図29のピーク電圧がVπ/4で繰り返し周波数が2Δfの正弦波電気信号dの波形と、ピーク電圧がVπで繰り返し周波数がΔfの正弦波電気信号eの波形とのように組み合わせても、動作が可能である。図30に、図29に示した二つの正弦波電気信号d,eを合波した結果の位相変調信号gを実線で示す。図30で破線は、図21に示した理想的な位相変調信号波形を表すが、実線で示されている位相変調信号gの一次および二次の傾きを無視すると、光パルス列の各光パルスに対して、所望の位相変調度が得られていることがわかる。
【0058】
図24および図25で示される光パルス列に対して、図30のような位相変調を行った場合に得られるスペクトルの波形を図31に示す。図26で得られた結果と同じく、図31では周波数コムの間隔が10GHzとなっているが、図24のスペクトル波形と比較すると、包絡線は若干ひずんだ形状をしている。群速度分散部22を通過した後の光パルス列のパルス強度の時間波形を図32に示す。図32では、図27で得られた結果と同様に、繰り返し周波数が10GHzに減じられた光パルス列が得られていることがわかる。また、図33は図32の波形を対数軸上で表示したものであるが、繰り返し周波数10GHzの光パルス列のピーク強度と、残留成分の強度の比は約20dBであり、図28の結果と比較すると消光比が劣化していることがわかる。しかし、光時分割信号の逆多重処理等の光信号処理向けのクロックパルス列に応用することを考えると、得られた光パルス列の消光比の劣化が許容範囲内の程度であり、得られる光パルス列が実用可能であることが分かる。
【0059】
以上、本実施例によれば、実施例1と同様に、光パルス列発生部10が発生する光パルス列の繰り返し周波数が4Δfであり、群速度分散部22の群速度分散の大きさが 1/(8πΔf2)であり、位相変調信号発生部30が発生する位相変調信号が、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値がπ/4である正弦波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである正弦波信号と、の合波信号である。この場合に、1台の光パルス列変換装置20により、本質的に無損失で繰り返し周波数をΔfに減じた(1/4に減じた)光パルス列を出力できることが確かめられた。
【0060】
また、位相変調部21は、位相変調信号発生部30により発生される正弦波からなる位相変調信号に応じて光パルス列に位相変調を施す。このため、容易に生成可能な位相変調信号により、本質的に無損失で繰り返し周波数を低い値に変換した光パルス列を容易に出力できる。
【0061】
なお、上記実施の形態及び実施例における記述は、本発明に係る光パルス列変換装置、光パルス列発生装置及び光パルス列変換方法の一例であり、これに限定されるものではない。
【0062】
例えば、上記実施の形態及び実施例では、位相変調信号を、矩形波又は正弦波からなるものとしたが、これに限定されるものではない。位相変調信号を、矩形波及び正弦波の少なくとも1つからなるものとしてもよい。
【0063】
また、上記実施の形態及び実施例では、光パルス列発生部10が、位相がそろった光パルス列を発生し、光パルス列変換装置20が、位相がそろった繰り返し周波数を減じた光パルス列を出力する構成としたが、これに限定されるものではない。例えば、光パルス列発生部が、任意の位相シフトを有する光パルス列を発生し、光パルス列変換装置において、その光パルス列に対して、Talbot効果が発生するような位相順序となるように、位相変調部が位相変調し、群速度分散部がGVDを与えることで、出力する光パルス列の繰り返し周波数を減じる構成としてもよい。つまり、光パルス列発生装置(光パルス列変換装置)から出力される光パルス列の位相がそろっていない構成としてもよい。
【0064】
また、上記実施の形態及び実施例で説明した光パルス列発生装置の各構成要素の細部構成、及び細部動作に関しては、本発明の趣旨を逸脱することのない範囲で適宜変更可能であることは勿論である。
【図面の簡単な説明】
【0065】
【図1】本発明に係る実施の形態の光パルス列発生装置の構成を示すブロック図である。
【図2】光パルス列の時間波形を示す図である。
【図3】光パルス列のスペクトル波形を示す図である。
【図4】光パルス列にθ0=1/(4πΔf2)なるGVDを与えた際のスペクトル波形と、各周波数コムの位相θとを示す図である。
【図5】nを整数として、図4のスペクトルからf=2nΔfの成分のみを抽出したスペクトル波形と、各周波数コムの位相θとを示す図である。
【図6】図5のスペクトル波形に対応する、光パルス列の時間波形と位相φとを示す図である。
【図7】nを整数として、図4のスペクトルからf=(2n+1) Δfの成分のみを抽出したスペクトル波形と、各周波数コムの位相θとを示す図である。
【図8】図7のスペクトル波形に対応する、光パルス列の時間波形と位相φとを示す図である。
【図9】図4のスペクトル波形に対応する、光パルス列の時間波形と位相φとを示す図である。
【図10】繰り返し周波数Δfの矩形波位相変調波形を示す図である。
【図11】繰り返し周波数Δfの正弦波位相変調波形を示す図である。
【図12】光パルス列にθ0 =1/(8πΔf2)なるGVDを与えた際のスペクトル波形と、各周波数コムの位相θとを示す図である。
【図13】nを整数として、図12のスペクトル波形からf=4nΔfの成分のみを抽出したスペクトル波形と、各周波数コムの位相θとを示す図である。
【図14】図13のスペクトルに対応する、光パルス列の時間波形と位相φとを示す図である。
【図15】nを整数として、図12のスペクトルからf=(4n+2)Δfの成分のみを抽出したスペクトル波形と、各周波数コムの位相θとを示す図である。
【図16】図15のスペクトルに対応する、光パルス列の時間波形と位相φとを示す図である。
【図17】nを整数として、図12のスペクトルからf=(2n+1)Δfの成分のみを抽出したスペクトル波形と、各周波数コムの位相とを示す図である。
【図18】図17のスペクトルに対応する、光パルス列の時間波形と位相φを示す図である。
【図19】図12のスペクトルに対応する、光パルス列の時間波形と位相φを示す図である。
【図20】光パルス列にθ0=-1/(8πΔf2)なるGVDを与えた際の光パルス列の時間波形と位相φを示す図である。
【図21】光パルス列に加える位相変調波形を示す図である。
【図22】ピーク電圧が3Vπ/4で繰り返し周波数が2Δfの矩形波電気信号波形と、ピーク電圧がVπで繰り返し周波数がΔfの矩形波電気信号波形とを示す図である。
【図23】図22の二つの矩形波を合波した位相変調信号波形を示す図である。
【図24】光パルス列の電力密度スペクトル波形を示す図である。
【図25】光パルス列の時間波形を示す図である。
【図26】図23の位相変調を施された光パルス列の電力密度スペクトル波形を示す図である。
【図27】DCFを通過した光パルス列の時間波形を示す図である。
【図28】図27の光パルス列の時間波形の対数軸表示図である。
【図29】ピーク電圧がVπ/4で繰り返し周波数が2Δfの正弦波電気信号波形と、ピーク電圧がVπで繰り返し周波数がΔfの正弦波電気信号波形とを示す図である。
【図30】図29の二つの正弦波を合波した位相変調信号波形を示す図である。
【図31】図30の位相変調を施された光パルス列の電力密度スペクトル波形を示す図である。
【図32】DCFを通過した光パルス列の時間波形を示す図である。
【図33】図32の光パルス列の時間波形の対数軸表示図である。
【符号の説明】
【0066】
1 光パルス列発生装置
10 光パルス列発生部
11 レーザ光源
12 強度変調部
13 強度変調信号発生部
20 光パルス列変換装置
21 位相変調部
22 群速度分散部
30 位相変調信号発生部

【特許請求の範囲】
【請求項1】
位相変調信号に応じて、入力される光パルス列に位相変調を施す位相変調部と、
前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する群速度分散部と、を備える光パルス列変換装置。
【請求項2】
前記位相変調は、前記減じられた繰り返し周波数を持つ光パルス列に対して、前記群速度分散と絶対値が同じで符号が逆の群速度分散を与えた場合に生じる光パルス列の各光パルスの位相への変調である請求項1に記載の光パルス列変換装置。
【請求項3】
前記群速度分散部は、分散補償ファイバである請求項1又は2に記載の光パルス列変換装置。
【請求項4】
前記位相変調信号は、矩形波及び正弦波の少なくとも1つからなる請求項1から3のいずれか一項に記載の光パルス列変換装置。
【請求項5】
前記入力される光パルス列の繰り返し周波数が2Δfであり、
前記群速度分散は、大きさが 1/(4πΔf2) 又は-1/(4πΔf2)であり、
前記位相変調信号は、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπ/2である請求項4に記載の光パルス列変換装置。
【請求項6】
前記入力される光パルス列の繰り返し周波数が4Δfであり、
前記群速度分散は、大きさが1/(8πΔf2)であり、
前記位相変調信号は、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値が3π/4である矩形波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである矩形波信号と、の合波信号である請求項4に記載の光パルス列変換装置。
【請求項7】
前記入力される光パルス列の繰り返し周波数が4Δfであり、
前記群速度分散は、大きさが1/(8πΔf2)であり、
前記位相変調信号は、繰り返し周波数が2Δfであり、位相変調度の最小値が0で且つ最大値がπ/4である正弦波信号と、繰り返し周波数がΔfであり、位相変調度の最小値が0で且つ最大値がπである正弦波信号と、の合波信号である請求項4に記載の光パルス列変換装置。
【請求項8】
請求項1から7のいずれか一項に記載の光パルス列変換装置と、
短パルスの光パルス列を発生して前記位相変調部に出力する光パルス列発生部と、
前記位相変調信号を発生して前記位相変調部に出力する位相変調信号発生部と、を備える光パルス列発生装置。
【請求項9】
位相変調信号に応じて、入力される光パルス列に位相変調を施す工程と、
前記位相変調が施された光パルス列に、部分的な時間的Talbot効果に必要な群速度分散を与えて、繰り返し周波数が減じられた光パルス列を出力する工程と、を含む光パルス列変換方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate