説明

双極子強化型非接触電力伝送のためのシステムおよび方法

非接触電力伝送装置が開示される。送電装置が、第1の経時変化磁場を生成する。受電装置が、ギャップにより送電装置から離間されるが、第1の経時変化磁場内に配置される。受電装置は、導体と、第1の経時変化磁場内に配置され、第1の経時変化磁場に応答して移動するように支持される受電装置磁石とを備える。導体および受電装置は、受電装置磁石の移動により導体の付近に第2の経時変化磁場が生じることによって導体中に電流が誘導されるように、互いに対して位置決めされる。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願)
本出願は、ここに参照により本明細書に組み込まれる、2009年2月26日に出願された米国特許出願第61/155,886号の優先権の利益を主張するものである。
【0002】
本開示は、永久磁石による磁場強化を利用することによる、ある位置から別の位置への低周波非接触電力伝送に関する。
【背景技術】
【0003】
ファラデー効果を利用することによりある位置から別の位置に電力を無線搬送することが可能であり、変化する磁場によって電流が電気的に離隔された二次回路中を流されることが、よく知られている。
【0004】
かかる電力伝送は、変化する磁場を生じさせる一次コイルとその変化する磁場により作用を受ける二次コイルとの間の結合が高効率である場合には、適度に有効となる。普通、かかる結合は、それらのコイルを互いに極めて近くに配置することによって実現されるが、ある場合においては、かかる配置が不可能であるか、または望ましくない場合がある。コイルの結合効率は、それらのコイルが同一周波数にて高いQを有しつつ共振する場合には、極度の近接を伴わなくとも適度に高いものとなり得る。この共振現象は、生体医用インプラントの経皮給電に適用されており、携帯電話などの小型装置用のバッテリ充電に関連して研究されつつある。
【0005】
Qが100をはるかに上回ることは実際的ではなく、その場合にもRF周波を利用することが必要であり、これは、経時変化磁場に伴う医学的副作用の可能性の長期的な疫学研究が不足しているため、懸念を伴い得る。一般的には、低周波磁場は無害であるという強い証拠が存在する。したがって、低周波にて高い送電効率を実現することが望ましい。
【0006】
関連技術およびそれに関連する制約の前述の例は、例示的なものであり、包括的なものではない。本明細書を通読し図面を精査することにより、当業者には関連技術の他の制約が明らかになろう。
【0007】
例示的な実施形態が、図面の参照図において説明される。本明細書において開示される実施形態および図面は、限定的なものではなく例示的なものと見なされるべきであることが意図される。
【図面の簡単な説明】
【0008】
【図1】コイルに対して移動されることにより、コイル中に電流を流すように誘導する磁石の先行技術の概略図である。
【0009】
【図2】AC発電機の先行技術の概略図である。
【0010】
【図3】(例えば変圧器の)2つのコイル間における非接触電力伝送の先行技術の概略図である。
【0011】
【図4】2つのコイル間における非接触電力伝送を強化するための回転磁石の使用を示す概略図である。
【0012】
【図5】本発明の特定の一実施形態による、ねじれ振動永久磁石を組み込んだ誘導受電装置の概略図である。
【0013】
【図6】本発明の特定の一実施形態による、回転運動可能永久磁石を組み込んだ誘導受電装置の概略図である。
【0014】
【図7A】本発明の特定の実施形態による、機械被動永久磁石を組み込んだ誘導送電装置の図である。
【図7B】本発明の特定の実施形態による、電磁駆動永久磁石を組み込んだ誘導送電装置の図である。
【0015】
【図8A】エアギャップにより離間された送電装置および受電装置の概略図である。
【0016】
【図8B】非磁性バッテリにより離間された送電装置および受電装置の概略図である。
【0017】
【図9A】小さなギャップにより磁石がコイルから離間された、コイルの近傍の回転可能磁石の側面立面図である。
【図9B】小さなギャップにより磁石がコイルから離間された、コイルの近傍の回転可能磁石の正面立面図である。
【0018】
【図10】三相電力伝送システムの概略図である。
【0019】
【図11】受電装置磁石が発電機に機械的に結合される、別の実施形態による受電装置の図である。
【0020】
【図12】様々なタイプの作動情報を判定するための送電装置内におけるホール効果センサの使用を示す図である。
【0021】
【図13】現時点において好ましい実施形態による電力伝送システムの概略断面図である。
【発明を実施するための形態】
【0022】
以下の説明の全体にわたって、当業者に対してより十分な理解を促すために、具体的な詳細が示される。しかし、よく知られている要素は、本開示を不必要に不明瞭なものにすることを避けるために、詳細には示さず、または説明していない。したがって、本説明および本図面は、限定的な意味においてではなく例示的な意味において考慮されるべきである。本発明の実施形態を詳細に説明する前に、本発明は、その応用例において、以下の説明に述べられるまたは図面に示される作動構成要素の構造および構成の詳細に限定されないことを理解されたい。本発明は、他の実施形態が可能であり、様々な様式において実施または実行することが可能である。さらに、本明細書において使用される言い回しおよび術語は、説明を目的とするものであり、限定的なものと見なされるべきではないことが理解されよう。「含む」、「備える」、およびそれらの変形表現の本明細書における使用は、それらの語句の後に列挙される項目と、それらの項目の均等物とを包含するように意図される。別様に明示しない限り、本明細書において説明される方法におけるステップは、様々な順序において実施し得ることを理解されたい。
【0023】
図1に示されるように、導電体14のコイル12の付近における双極子ベクトル10Aを有する双極子磁石10の振動運動などにより発生する変化する磁場は、導体14中に交流電流(AC)iを流すように誘導することがよく知られている。このコンセプトは、殆どの発電機において採用されている。図2には、従来式の発電機16が概略的に示されており、磁石10が、典型的には、高導磁性の軟鉄18の三日月形状片に囲まれて、磁力線にリターンパスを与える。軟鉄18がコイル12を通過すると、磁束が強化されて、コイルを流れる交流電流iが生じる。
【0024】
図3は、(例えば変圧器20の)2つのコイル12A、12B間における非接触電力伝送のための構成を概略的に示している。さらに、「送電装置」コイル12Aを流れる交流電流i(例えば60Hzの周波数を有する)が、送電装置コイル12Aの付近にて変化する磁場を発生させること、および、この変化する磁場が、低い電力伝送効率ではあるが、付近の「受電装置」コイル12B中に同一周波数の交流電流iを流すように誘導することが、よく知られている。図2の発電機16と同様に、変圧器20は、受電装置コイル12Bが受ける送電装置コイル12Aにより生成される磁束を強化する役割を果たし得る、高導磁性材料(例えば軟鉄など)の鉄心22を組み込んでもよい。
【0025】
図4は、本発明の特定の一実施形態による、送電装置コイル32と受電装置コイル34との間における非接触電力伝送を強化するために回転磁石30を使用する、非接触電力伝送システム28を概略的に示している。磁石30および受電装置コイル34が、受電装置36(破線で示される)の一部を形成してもよく、磁石30は、受電装置コイル34に比較的近い位置において支持される。受電装置36は、送電装置コイル32においてAC電流iにより生成される経時変化磁場内に配置されてもよい。また、受電装置36は、比較的大きなギャップ42により送電装置コイル32から離間されてもよい。以下においてさらに詳細に説明されるように、ギャップ42は、既知の変圧器における非接触電力伝送に伴うギャップと比較すると、比較的大きくてもよい。さらに、従来の変圧器とは異なり、ギャップ42は、高導磁性材料(もしくは複数の高導磁性材料)および/または導電性材料(もしくは複数の導電性材料)を含まなくとも(または限定量のみを含んでも)よく、最も効率的な作動のためには、それらの材料を含むべきではない(または限定量のみを含むべきである)。
【0026】
図示される実施形態においては、磁石30は、磁気双極子ベクトル30Aがページ平面内に位置するように配向された永久双極子磁石を含み、ページの内外方向に延在する回転軸38を中心として(曲線矢印40により示されるように)回転することが可能となるように支持される。例えば、磁石30は、単位体積当たりの双極子強度が比較的高いネオジムまたは磁石自体における渦電流損失を回避させる非導電性の利点を有するフェライトを含む永久磁石により構成されてもよい。ある環境下において、コスト、双極子密度、質量密度、導電性、引張強度、等々の有利な組合せを実現し得る多数の他の磁性材料が存在し、実際には、様々な応用例における様々な基準の序列にしたがって性能全体を最適化するために、様々な磁性材料およびおそらくは非磁性材料を組み合わせたハイブリッド構造を採用することが有利である場合がある。磁石30は、低摩擦回転軸受(図示せず)を使用して回転移動するように設置されてもよい。他の実施形態においては、磁石30は、振動運動するように支持されてもよく、この場合には、軸38が、振動軸38となり得る。かかる振動型の実施形態においては、磁石30は、1つまたは複数の弾性可撓性マウント(例えば、ばね、エラストマー要素または他の適切に構成された付勢要素等)を使用して設置されてもよい。送電装置コイル32中の電流iにより生成される経時変化磁場と同期して回転または振動することにより、磁石30は、送電装置コイル32と受電装置コイル34との間の電力伝送効率を大幅に高めることが可能であり、これにより受電装置コイルに送電される電力が効果的に増幅される。
【0027】
回転/振動磁石30の電力増幅効果は、2つの理由により反直感的なものである。第1に、多くの当業者は、エネルギー保存の法則によりかかる電力伝送効率の上昇は起こり得ないと、初めのうちは不正確に推断するであろう。しかし、受電装置36(すなわち、受電装置コイル34および磁石30)における電力上昇は、送電装置(すなわち、送電装置コイル32)により生じた上昇電力によるものであるため、そのような推断は不正確なものである。第2に、高導磁性材料(例えば、図2の発電機16中に示される軟鉄18および図3の変圧器20の鉄心22など)による電磁結合に対して高度な理解を有する多数の当業者は、高導磁性材料による電磁結合が図4に示されるように大きなギャップ42間においては十分には機能しないことがよく知られているため、かかる電力伝送効率の上昇は起こり得ないと不正確に臆断するであろう。
【0028】
さらに詳細には、多くの当業者は、図4に示される回転/振動永久磁石30が高導磁性磁気材料と類似のものであると見なすであろう(なぜならば、永久磁石および高導磁性材料は共に、それらの磁化が弱い磁場によってでも容易に調整され得る特性を有するからである)。しかし、ギャップの効果は、高導磁性材料の一部分の磁化によりその材料の他の部分に逆方向の磁化を生じさせる磁場が生成される、よく知られている反磁場により、(変圧器20の鉄心22(図4)において使用されるような)高導磁性材料を組み込んだ誘導結合装置とは完全に異なる。これは、導磁性材料が、いくつかの変圧器におけるのと同様にほぼ一定の断面積の完全なトロイド様パスを形成する場合には、問題とはならない。しかし、高導磁性パスの大きなギャップは、受電装置コイル中の全体的な磁化およびそれに対応する磁束の割合を非常に大幅に低減させ得る消磁効果を生じさせる可能性がある。
【0029】
反磁場の効果の一例は、しばしば検討される、均一な環境磁場内に配置された高導磁性材料からなる独立した球の事例である。導磁性の高さに関わらず、この球の内部の磁場は印加される環境磁場の3倍を超えないことがよく知られている。この限度は、高導磁性材料が複数の磁区に分割される傾向を有する結果によるものと見なすことが可能である。高導磁性材料のこの傾向は、外部より印加される磁場の影響下における移動(例えば回転または振動の)を容易にするように支持された永久磁石材料(例えば図4の磁石30)を使用することにより、解消するか、または少なくとも緩和することが可能である。
【0030】
永久磁石は、主磁区(または単一の磁区)を有し得るものであり、したがって消磁効果を受ける度合いが比較的低いものとなり得る。高導磁性材料の場合とは対照的に、永久磁石の磁場は、外部より印加される磁場よりも桁違いに高いものとなり得る。図4の電力伝送システム28の場合には、永久磁石30の磁場(磁石30の回転/振動移動により経時的に変化し得る)は、磁石30が同期的に応答する経時変化磁場よりも桁違いに高い(例えばRMS振幅の観点において)ものとなり得る。この単一磁区(または主磁区)特性は、ある距離での低周波同期電磁結合のために利用されてもよく、以下においてさらに詳細に説明されるように大幅な効率向上/電力伝送拡大をもたらすことができる。
【0031】
図4の例示的な非接触電力伝送システム28においては、送電装置コイル32と受電装置コイル34との間における電力伝送効率の向上/拡大は、送電装置コイル32により生成される経時変化磁場によって磁石30が回転/振動させられることによって生じる。回転/振動する磁石30は、受電装置コイル34の付近の経時変化磁場の大きさを著しく増大させ、したがってそれに対応して比較的大きな誘導電流iを受電装置コイル34中に流す。同時に、回転/振動する磁石30の経時変化磁場が、送電装置コイル32と相互作用することにより、送電装置コイル32中の電流iからさらなる電力を引き出す「逆起電力」を生じさせ、したがってエネルギー保存の法則が保たれる。
【0032】
受電装置36は、回転/振動軸38を中心として回転または振動するように支持された磁石30と、受電装置コイル34とを備える。さらに一般的な実施形態においては、受電装置は、永久磁石および導体を備えてもよく、磁石の運動により導体内に電流が誘導されるように、導体に対する磁石の移動を容易にするように永久磁石が支持され、導体(例えばコイル)が配置される。いくつかの実施形態においては、磁石が周期的に繰り返して導体に対して移動可能であり、さらに磁石のこの運動により導体の付近の磁束が周期的に繰り返して変更されることが、望ましい。
【0033】
コイルに対して移動するように磁石を支持するために、様々な技術を使用することが可能である。2つの基本的なタイプのかかる技術が存在し、1つは、磁石の質量中心がコイルに対して移動しているものであり、もう1つは、磁石の質量中心がコイルに対して静止状態にあるものである。
【0034】
磁石の質量中心が、例えば図1に示されるような線形振動する磁石を使用することなどにより移動している場合には、磁石の質量中心の変位により、一般的には、機械エネルギーを周囲環境に結びつける逆方向への振動力(ニュートンの第3法則)が引き起こされ、これにより、最小限に抑えることが困難な損失を被る非効率的な共鳴体がもたらされる。その結果、かかるシステムは、比較的低いQ値(Qすなわち品質係数は、振動システムの損失の被りやすさの測定値としてよく知られている)を有する傾向がある。効率的な電力伝送を実現するためには、比較的高い(すなわち少なくとも10よりも高く、好ましくははるかに高い)Qが望ましい。
【0035】
したがって、磁石の質量中心が静止状態にある代替的な技術が、磁石を設置するための現時点において好ましい技術である。この技術は、トルクの形態で機械エネルギーを周囲環境に結びつける(ニュートンの第3法則)のを助長するが、移動しつつある質量中心を有するシステムに比べると損失を低減させることがより容易である。質量中心が静止状態となる2つのサブタイプの技術、すなわちねじれ(すなわち旋回)振動および回転振動が存在する。
【0036】
図5は、本発明の特定の一実施形態による非接触電力伝送用受電装置50を示している。受電装置50は、これに対応する送電装置(図示せず)により生成される経時変化磁場内に配置されてもよい。以下において複数の送電装置の実施形態を詳細に説明するが、受電装置50を中で使用し得る経時変化磁場は、任意の適切な技術により生成されてもよい。現時点において好ましい実施形態においては、送電装置により生成される経時変化磁場は、周期的なものであるが、この周期は、時間の経過と共に変化してもよい。受電装置36(図4)のように、受電装置50は、双極子ベクトル52Aがページ平面内に配向された永久双極子磁石52と、導体54とを備える。図示される実施形態においては、導体54は、1つまたは複数のコイル56を含み、各コイル56が、1つまたは複数の導電性ターン(明確には列挙せず)を備え、各コイルは、コイル軸56Aを有する。例示の図においては、コイル軸56Aは、ページの内外方向に延在する。
【0037】
受電装置50において、磁石52は、送電装置により生成される経時変化磁場に応答して振動軸58を中心としてねじれ振動するように支持される。振動軸58を中心とするこの振動は、両矢印62により示される。図示される実施形態においては、振動軸58は、ページ平面内に位置するが、磁石52の双極子ベクトル52Aに対してほぼ直交する(例えばある実施形態においては90°±20°であり、または別の実施形態においては90°±10°である)。磁石52は、エラストマー・マウントまたは他の可撓性マウント(例えば付勢要素)60を使用して設置され、このマウント60は、磁石の旋回を可能にし、旋回量に相関する(例えばほぼ比例する)復元トルクを(磁石52に対して)与える。可撓性マウント60は、非導電性でありかつ非強磁性体材料と同様に比較的導磁性の低い材料から(主に)製造されてもよい。ねじれ振動(磁石52およびマウント60により生成されるものなど)は、推定することが可能であり所望の値に調整することが可能な共振周波数を有する。例えば、既存の電気システムからの電力収穫を伴う用途などの多数の用途において、60Hzが、好ましい作動周波数となり得る。ねじれ振動子を備える受電装置が、他の共振周波数を生じるように設計されてもよい。いくつかの実施形態においては、かかる共振周波数は、500Hz未満である。別の実施形態においては、それらの共振周波数は、200Hz未満である。
【0038】
磁石52は、図5の例示的な実施形態に示されるように、可撓性マウント60を介してコイル56に対して設置されてもよい。これは必須ではない。いくつかの実施形態においては、磁石52およびコイル(または複数のコイル)56が、受電装置50の1つまたは複数のフレーム構成要素に対してそれぞれ個別に設置されてもよい。図示される実施形態においては、可撓性マウント60は、振動軸58上またはその付近の磁石52に結合される。これは必須ではない。いくつかの実施形態においては、可撓性マウント60が、磁石52の他の側部または領域に結合されてもよい。特定の一実施形態においては、可撓性マウント60は、振動軸58に対してほぼ直交する領域上またはその領域の付近の磁石52に結合されてもよい。図示される実施形態においては、磁石52は、ほぼ球形状を有する永久磁石(例えばネオジム磁石またはある他の磁石材料を含む永久磁石など)を備え、振動軸58は、この球の中心を二分する。この形状は必須ではない。他の実施形態においては、磁石52は、他の形状を有してもよい。磁石52は、振動軸58を中心として対称的なものであってもよい。例えば、磁石52は、ほぼ円筒形状を有してもよく、その円筒軸は、振動軸58とほぼ同軸である。かかる円筒形状磁石52は、円形断面を有してもよく、または他の断面を有してもよい。
【0039】
図6は、本発明の別の実施形態による非接触電力伝送用受電装置70を示している。多数の点において、受電装置70は、受電装置50(図5)と同様であり、受電装置70は、受電装置70における磁石52が、送電装置により生成される経時変化磁場に応答して回転軸76を中心として回転移動するように設置される点において、受電装置50と異なる。回転軸76を中心とするこの回転移動は、一方向矢印74により示される。図示される実施形態においては、回転軸76は、ページ平面内に位置するが、磁石52の双極子ベクトル52Aに対してほぼ直交する(例えばある実施形態においては90°±20°であり、または別の実施形態においては90°±10°である)。磁石52は、回転軸76を中心とする回転が可能になるように、回転連結器72を使用して設置されてもよい。回転連結器72は、好ましくは比較的低摩擦の回転軸受(例えば宝石軸受またはセラミック玉軸受など)を含んでもよい。回転連結器72は、非導電性でありかつ非強磁性体材料と同様に比較的導磁性の低い材料から(主に)製造されてもよい。受電装置70は、共振せず、すなわち磁石52の回転周波数は、広範にわたり多様であることが可能であり、これが有利となり得る。いくつかの実施形態においては、磁石52の回転周波数は、500Hz未満である。他の実施形態においては、これらの周波数は、200Hz未満である。回転する磁石がその回転軸76を中心として適切にバランスを取る場合に、周囲環境への結びつきによる機械エネルギーの損失(ニュートンの第3法則)を低減することがより容易になり得るため、回転式に設置される磁石受電装置70は、受電装置50のねじれ振動する磁石よりも好ましい場合がある。
【0040】
磁石52は、図6の例示的な実施形態において示されるように、回転連結器72を介してコイル56に対して設置されてもよい。これは必須ではない。いくつかの実施形態においては、磁石52およびコイル(または複数のコイル)56が、受電装置70の1つまたは複数のフレーム構成要素に対してそれぞれ個別に設置されてもよい。図示される実施形態においては、回転連結器72は、回転軸76上またはその付近の磁石52に結合される。これは必須ではない。いくつかの実施形態においては、回転連結器72が、磁石52の他の側部または領域に結合されてもよい。図示される実施形態においては、磁石52は、ほぼ球形状を有する永久磁石(例えばネオジム磁石など)を備え、回転軸76は、この球の中心を二分する。この形状は必須ではない。他の実施形態においては、磁石52は、他の形状を有してもよい。磁石52は、回転軸76を中心として対称的なものであってもよい。例えば、磁石52は、ほぼ円筒形状を有してもよく、その円筒軸は、回転軸76とほぼ同軸である。かかる円筒形状磁石52は、円形断面を有してもよく、または他の断面を有してもよい。
【0041】
他の点においては、受電装置70は、受電装置50と同様であってもよい。
【0042】
受電装置50のねじれ振動および受電装置70の回転振動の両方において、振動/回転の軸58、76は、磁石52の磁気双極子モーメントベクトル52Aに対してほぼ直交であり(例えばある実施形態においては90°±20°であり、または別の実施形態においては90°±10°である)、振動/回転の軸58、76は、コイル56の軸56Aに対してほぼ直交である(例えばある実施形態においては90°±20°であり、または別の実施形態においては90°±10°である)。したがって、ねじれ振動または回転運動は、(例えばコイル56を介して)導体54の付近における(永久磁石52の磁場に関連する)磁束の正味の振動を生じさせる。この経時変化磁束は、コイル56中にAC電流iを流すように誘導する。
【0043】
受電装置50または70のエネルギー伝達効率を最大限にするには、エネルギー損失を最小限に抑えることが必要となる。機械エネルギーの損失を最小限に抑えるためには、システム(受電装置50または70)は、少なくとも10の、および好ましくは10をはるかに上回る有効Qを有することが望ましい。ねじれ振動受電装置50に関する有効Qは、その従来的な定義Q∝(可撓性連結器に保存されたエネルギー/1サイクル当たりに消散されるエネルギー)を有してもよい。回転受電装置50に関する有効Qは、1回転当たりの摩擦に対する回転運動エネルギー損失の割合の逆関数、すなわちE∝(1回転当たりの合計運動エネルギー/1回転当たりの摩擦に対するエネルギー損失)として定義されてもよい。回転受電装置70に関して非常に高い有効Q値(例えばある実施形態においては1000超)が、容易に入手可能な軸受により得られる。
【0044】
受電装置50、70は、非接触電力伝送システムにおける受電装置として機能することが可能である。上述のように、かかる電力伝送システムは、経時変化磁場を生成するために、およびそれにより受電装置の磁石52の運動を誘発するために、またはより具体的には、送電装置により引き出されるエネルギーに代わる機械エネルギーを受電装置の磁石52に取得させるために、送電装置をさらに要する。
【0045】
送電装置は、受電装置50、70の付近に延在する経時変化磁場を生じさせる任意の方法を使用することが可能である。現時点において好ましい実施形態においては、送電装置により生成される経時変化磁場は、反復的なものである。例えば、送電装置により生成される経時変化磁場は、周期的なものであってもよい(しかし、この周期は時間の経過とともに変化してもよい)。一例の実施形態においては、送電装置は、交流電流が流れることにより経時変化磁場を生じさせる専用コイルを備えてもよい。別の実施形態においては、送電装置は、ある他の目的のために交流電流が既に流れつつある導体を備えることが可能である(例えば、この導体は、建築物の配電システムの一部を形成してもよい)。別の例の実施形態においては、送電装置は、動かされることにより受電装置50、70の付近に延在する経時変化磁場を生じさせる別の永久「送電装置用」磁石を備えることが可能である。かかる送電装置磁石は、非限定的な例としては、機械リンクを介して電気エネルギーを送電装置磁石の機械エネルギーへと変換する電気モータによって、または電磁相互作用(例えばローレンツ力)により電気エネルギーを送電装置磁石の機械エネルギーに変換する別の「送電装置」コイル中を流れる交流電流によって、駆動されてもよい。概して、送電装置は、送電装置磁石を動かす任意の機械的手段を使用することが可能である。
【0046】
図7Aは、本明細書において説明される受電装置のいずれかと共に使用するのに適した特定の一実施形態による送電装置100を概略的に示している。送電装置100は、モータ102を備え、このモータ102は、その駆動シャフト(明確には列挙せず)およびリンク装置104を介して送電装置磁石106に結合され、それによりモータ102は、送電装置磁石106を動かすことが可能である。非限定的な例としては、モータ102は、電気モータ(例えばAC誘導モータ、DCブラシモータ、またはDCブラシレスモータ等々)を含んでもよい。モータ102は、適切なドライバ回路(図示せず)からの適切な電気信号によって駆動されてもよい。かかるドライバ信号および回路は、当業者によく知られている。リンク装置104は、モータ102のシャフトから磁石106に機械エネルギーを伝達する任意の適切な機械リンク装置を含んでもよい。非限定的な例としては、リンク装置104は、1つまたは複数のプーリ、歯車、またはクラッチ等々を含んでもよい。リンク装置は、送電装置磁石106に対して所望の運動特性を与えつつ、モータ102をその最適な範囲(例えば最適効率範囲)内において作動させることが可能となるように設計されてもよい。
【0047】
送電装置磁石106は、本明細書において説明される受電装置磁石(例えば磁石30、52)の特性と同様の特性を有してもよい。送電装置磁石106は、ネオジムまたはフェライト等々を含み得る永久双極子磁石を含んでもよい。図7Aの例示の実施形態においては、送電装置磁石106は、円筒軸108を有するほぼ円筒形状を有し、ページの内外方向に延在する平面内において左から右に配向された双極子ベクトル106Aを有する。モータ102、リンク装置104、および磁石106は、円筒軸108と同軸であり得る回転軸110を中心として磁石106を回転させるように構成されてもよい。かかる回転移動は周期的なものであってもよいが、回転周期は変化してもよい。磁石106は、適切な回転連結器(図示せず)によって回転するように支持されてもよい。かかる回転連結器は、上述の受電装置70の回転連結器72と同様のものであってもよい。
【0048】
送電装置磁石106の円筒形状は、円形断面を有する円筒には限定されず、送電装置磁石106は、様々な断面形状を有してもよい。他の実施形態においては、送電装置磁石106は、他の形状を有してもよい。例えば、送電装置磁石106は、ほぼ球形に形状設定されてもよく、回転軸110は、球の直径とほぼ同軸となる。他の実施形態においては、モータ102、リンク装置104、および磁石106は、軸108を中心として磁石106を振動させるように(例えば第1の角度方向には回転の一部分により軸108を中心として磁石106を枢動させ、次いで逆の角度方向には元の位置に磁石106を戻すように枢動させるように)構成されてもよい。かかる振動移動は周期的なものであってもよいが、振動周期は変化してもよい。送電装置磁石106は、例えば受電装置70の回転連結器72と同様の1つまたは複数の適切な回転連結器により、または上述の受電装置50の可撓性マウント60と同様の1つまたは複数の適切な可撓性連結器により、そのように振動運動するように適切に支持されてもよい。送電装置100は、逆の角度方向に磁石106を駆動することによって、またはある角度方向に磁石106を断続的に駆動し、可撓性マウントにより加えられる復元トルクにより逆の角度方向に磁石106を戻すことが可能となることによって、磁石106に振動運動を与えてもよい。
【0049】
図7Bは、本明細書において説明される受電装置のいずれかと共に使用するのに適した別の特定の実施形態による送電装置120を概略的に示している。送電装置120は、多数の点において送電装置100と同様であるため、同様の参照数字が、送電装置100および送電装置120における同様の特徴を示すために使用される。送電装置120は、送電装置磁石106が、機械的に駆動されるのではなく、磁石106と1つまたは複数のコイル122中の経時変化電流との間の電磁相互作用によって駆動される点において、送電装置100とは異なる。図示される実施形態においては、送電装置120は、ページ平面内に実質的に同軸のコイル軸122Aを有するように位置決めおよび配向される一対のコイル122を備える。コイル122はそれぞれ、1つまたは複数のターンを備えてもよい。経時変化電流は、コイル122に印加されてもよい。
【0050】
送電装置磁石106の磁場とコイル122中の経時変化電流との相互作用により、経時変化ローレンツ力と、送電装置磁石106を動かす傾向のあるそれに対応する経時変化トルクとが生じる。コイル122中の電流は、1つまたは複数の適切なドライバ回路(図示せず)からの1つまたは複数の適切な電気信号によって駆動されてもよい。かかるドライバ信号および回路は、当業者によく知られている。多数の様々な可能なコイル構成および対応する駆動電流が存在し、これらは全て、送電装置磁石106に対して確動機械作動を行う特性を有するべきである。確動機械作動は、送電装置磁石106に対するコイル122の磁場により生じるトルクに送電装置磁石106の回転角速度を乗じた時間平均が、ゼロを超えるべきであり、好ましくは任意の所与のRMS電流に対して可能な限り大きなものであるべきであることを示唆する。
【0051】
コイル122(およびその中に電流を与える駆動回路)および磁石106は、図示される実施形態においては円筒形状磁石106の円筒軸108と同軸である回転軸110を中心として磁石106を回転させるように構成されてもよい。かかる回転移動は周期的なものであってもよいが、回転周期は変化してもよい。他の実施形態においては、コイル122(およびその中に電流を与える駆動回路)および磁石106は、軸108を中心として磁石106を振動させるように構成されてもよい。かかる振動移動は周期的なものであってもよいが、振動周期は変化してもよい。送電装置120の送電装置磁石106は、上述の送電装置100の送電装置磁石と同様の態様で、回転運動および/または振動運動するように適切に支持されてもよい。
【0052】
他の点においては、送電装置120は、送電装置100と同様であってもよい。
【0053】
図13は、現時点において好ましい一実施形態による電力伝送システム250の断面図を概略的に示している。電力伝送システム250は、受電装置252および送電装置254を含む。受電装置252は、回転運動するように支持された永久磁石256を備え、上述の回転受電装置70(図6)と実質的に同様である。より詳細には、受電装置252は、導体260を備え、この導体260は、図示される実施形態においては、1つまたは複数の導電性ターンを有するコイル262を含む。コイル262は、断面において示されており、ページ平面内において左から右に延在するコイル軸(明確には列挙せず)を有する。他の実施形態においては、受電装置252は、1つまたは複数の追加のコイル262を備えてもよい。受電装置磁石256は、双極子ベクトル256Aを有する永久双極子磁石(例えばネオジムまたはフェライト等々からなる)を含む。図示される実施形態の受電装置磁石256は、円筒状に形状設定され、円筒軸258を有する。他の実施形態においては、受電装置磁石256は、球状に形状設定されてもよく、この場合には、受電装置磁石256は、直径258を有してもよい。受電装置磁石256は、受電装置70の回転連結器72と同様の回転連結器(図示せず)によって回転運動するように支持される。受電装置磁石256の回転運動は、矢印264により示されるように円筒軸258を中心とするものであってもよい。
【0054】
送電装置254は、上述の送電装置120(図7B)と同様のコイル被動送電装置である。送電装置254は、回転運動するように支持された永久磁石274を備える。送電装置254は、導体270を備え、この導体270は、図示される実施形態においては、1つまたは複数の導電性ターンを有するコイル272を備える。コイル272は、断面において示されており、ページ平面内において左から右に延在するコイル軸(明確には列挙せず)を有する。他の実施形態においては、送電装置254は、1つまたは複数の追加のコイル272を備えてもよい。送電装置磁石274は、双極子ベクトル274Aを有する永久双極子磁石(例えばネオジムまたはフェライト等々からなる)を含む。図示される実施形態の送電装置磁石274は、円筒状に形状設定され、円筒軸276を有する。他の実施形態においては、送電装置磁石274は、球状に形状設定されてもよく、この場合には、送電装置磁石274は、直径276を有してもよい。送電装置磁石274は、受電装置70の回転連結器72(図6)と同様の回転連結器(図示せず)によって回転運動するように支持される。送電装置磁石274の回転運動は、矢印278により示されるように円筒軸276を中心とするものであってもよい。送電装置磁石274および受電装置磁石256の回転運動は、逆の角度方向へのものであることに気付かれよう。
【0055】
実施時には、送電装置254および受電装置252は、互いに比較的近くに置かれ、互いに位置合わせされてもよい。いくつかの実施形態においては、受電装置252の回転軸258および送電装置254の回転軸276は、実質的に平行である(例えば、ある実施形態においては±20°であり、または別の実施形態においては±10°である)。他の実施形態においては、受電装置252の回転軸258および送電装置254の回転軸276は、実質的に同軸である(例えば、ある実施形態においては±20°であり、または別の実施形態においては±10°である)。次いで、電流が、適切な駆動回路(図示せず)により送電装置コイル272に供給される。この電流により、送電装置磁石274は、第1の経時変化磁場を生成する方向278に回転軸276を中心として回転される。送電装置磁石274は、周期的に回転されてもよく、これにより、第1の経時変化磁場において対応する周期振動が生じる。ギャップにより送電装置254から離間された受電装置252が、第1の経時変化磁場にさらされる。第1の経時変化磁場は、受電装置コイル262中に少量の電流を誘導し得るコイル262中の対応する第1の磁束を生成することができる。しかし、第1の経時変化磁場は、受電装置磁石256に対してトルクをさらに加え、このトルクは、方向264に軸258を中心として受電装置磁石256を回転させる傾向を有する。受電装置磁石256の回転により、第2の経時変化磁場が生じ、この磁場は、受電装置コイル262中に対応する第2の磁束を生じさせ、受電装置コイル262中に対応する電流を誘導する。受電装置コイル262は、適切なロード(例えばバッテリまたはある他のロード)に電気的に接続されてもよく、そのロードに電流を送ってもよい。
【0056】
受電装置コイル262での第2の磁束(すなわち受電装置磁石256の回転により生成される磁束)は、受電装置コイル262での第1の磁束(すなわち送電装置254により出力される第1の経時変化磁場により生成される磁束)よりも大幅に高いものとなり得る。いくつかの実施形態においては、第1の磁場により生成される受電装置コイル262を通るRMS磁束に対する、第2の経時変化磁場により生成される受電装置コイル262を通るRMS磁束の比率は、10以上である。いくつかの実施形態においては、この比率は、100以上である。他の実施形態においては、この比率は10以上である。さらに他の実施形態においては、この比率は10以上である。
【0057】
電力伝送システム250は、キロワット規模のシステムにおいて受電装置コイル262に接続された電気自動車のバッテリを充電するための使用が成功している。また、電力伝送システム250は、60ワット規模の電力出力のシステムにおいて受電装置コイル262に接続されたかなり小型のバッテリに電力供給するためにも使用されている。いくつかの実施形態においては、
【0058】
図8Aは、特定の一実施形態による、送電装置152および受電装置154を含む非接触電力伝送システム150を概略的に示している。送電装置152は、上述の送電装置100または120と同様のものであってもよい。受電装置154は、上述の受電装置とまたは70と同様のものであってもよい。送電装置152および受電装置154は、ギャップ156により離間される。図8Aに図示されるギャップ156は、空気を充填されてもよく、または真空であってもよい。いくつかの実施形態においては、ギャップの寸法dは、受電装置154の最小断面幅の少なくとも10%である。いくつかの実施形態においては、ギャップ156の寸法dは、5cm以上であってもよい。いくつかの実施形態においては、ギャップ156の寸法dは、10cm以上であってもよい。いくつかの実施形態においては、ギャップ156の寸法dは、15cm以上であってもよい。
【0059】
回転/振動の軸(例えば受電装置50の軸58または受電装置70の軸76)を中心とする受電装置磁石(例えば受電装置50、70の磁石52)の「最大運動半径」を定義することもできる。ねじれ振動および/または回転運動については、受電装置154における受電装置磁石のこの最大運動半径は、振動/回転の軸と、送電装置152により生成される磁場の影響下において振動/回転の軸を中心として回転/振動する受電装置磁石上の最外点との間の距離であってもよい。この最大運動半径は、受電装置50(図5)および受電装置70(図6)においてはRで印される。いくつかの実施形態においては、受電装置磁石の最大運動半径Rに対するギャップ156の寸法dの比率は、1以上である。いくつかの実施形態においては、この比率は、5以上である。他の実施形態においては、この比率は、10以上である。さらに他の実施形態においては、この比率は、20以上である。
【0060】
図8Bは、送電装置152および受電装置154を備えた図8Aと同一の非接触電力伝送システム150を示している。しかし、図8Bの図においては、物理的障害物158が、ギャップ156内に位置する。図8Bは、送電装置152から受電装置154に電力がどのように誘導伝送され得るかを示している。障害物158は、ガス、液体、または固体を含んでもよい。障害物158は、物理的に不透過性の非磁性バッテリ(ステンレス鋼圧力チャンバの壁部など)を含んでもよい。最も効率的な作動のために、ギャップ156は、高導磁性材料(もしくは複数の高導磁性材料)および/または導電性材料(もしくは複数の導電性材料)を含むべきではない(または限定量のみ含むべきである)。ギャップ156内に配置される高導磁性材料は、送電装置152により生成される磁場が受電装置154の受電装置磁石に有効的に達するのを妨げることが可能である。ギャップ156内に配置される導電性材料は、抵抗損失に寄与するおそれがあり、電力伝送システム150の作動に望ましい磁場を消失させる傾向のある磁場を生成するおそれのある、いわゆる渦電流を生じさせることが可能である。渦電流に起因する効率低下は、渦電流ダンピングと呼ばれる場合がある。
【0061】
図9Aおよび図9Bは、コイル172および受電装置磁石174を備える受電装置170の側面立面図および正面立面図をそれぞれ示している。受電装置170において高い効率を実現するためには、磁石を移動(例えば上述のように振動または回転)可能にしつつ、受電装置磁石174に可能な限り近接させてコイル172を位置決めすることが望ましい。これは、図9Aおよび図9Bに図示されており、受電装置170は、1つまたは複数の導電性ターンを有する単一のコイル172を備え、コイル172は、可能な限り小さく保たれたスペース176により受電装置磁石174から離間される。
【0062】
いくつかの状況においては、受電装置の電力伝送効率は、複数のコイルを使用して磁石を囲むことにより高めることが可能である。例えば、図9は、特定の一実施形態による受電装置180を図示し、受電装置180は、3つのコイル182A、182B、182Cを備える。図示される実施形態においては、コイル182A、182B、182Cはそれぞれ、受電装置磁石186の回転/振動軸184の周囲に120°のオフセットで配向される。コイル182A、182B、182Cはそれぞれ、対応するコイル軸188A、188B、188Cを有し、各コイル軸188A、188B、188Cは、回転/振動軸184に対して実質的に直交である(例えばある実施形態においては90°±20°であり、または別の実施形態においては90°±10°である)。コイル182A、182B、182Cは、それらの誘導特性に関して互いに実質的に同様に設計されてもよく、受電装置磁石186が一定速度で回転/振動する場合には、実質的に同様の電流が、コイル182A、182B、182Cのそれぞれにおいて誘導されるが、各コイル182A、182B、182Cは中の電流は、120°だけ隣接する電流からオフセットされる。用途に応じて、受電装置180において誘導される電流の各位相を個別に使用することが可能であり、または標準的な電気変換技術を利用することにより、三相を単一のAC位相または直流電流(DC)に変換することが可能である。
【0063】
コイル設計の選択は、物理的次元およびスペース制約によって影響され得る(例えば、比較的平坦なデバイスが必要な場合には、複数コイル実装よりも単一のコイルが好ましいものとなり得るなど)。コイルの設計に関わらず、磁場が最強となる磁石の付近においてコイル中の導体の量を最大にすると共に、コイルの対応する抵抗を過度に上昇させることなく誘導電力を大幅に上昇させるには磁場の大きさが低すぎる領域において導体の量を最少にすることが望ましい。一般的には、コイル抵抗に対するコイル中の誘導電圧の二乗の比率を最大限にして、コイルの電力出力を際断言にすることが望ましい。この理由により、任意の所与の磁石に対する最適なコイルサイズおよびコイル形状が存在する。
【0064】
受電装置において使用される各コイルは、1つまたは複数の導電性ターンを備える。複数のターンを備える単一のコイルを考えてみたい。受電装置磁石が、角周波数ωで回転する場合には、受電装置磁石の付近に位置するコイルを通る磁束は、同様の周波数で振動すると判断するのが合理的である。理論に縛られることを望むものではないが、本発明者(ら)は、永久受電装置磁石の移動から電力を誘導する効率は、項Φ/Rに関係する(ここでΦは、コイルを通る周期磁束の振幅であり、Rは、コイル抵抗である)と考えている。項Φ/Rにおける両係数が、受電装置コイルおよびその巻線に関係するため、この項は、巻線係数と呼んでもよい。一般的には、永久受電装置磁石の移動から電力を誘導する効率は、巻線係数の上昇と共に高まる。換言すれば、巻線の抵抗を低減させつつ磁束を増加させることにより、比較的高い効率を実現することが可能である。しかし、各導電性ターンを追加することにより磁束および抵抗の両方が増大するため、これは、実現が常に容易な目標というわけではない。したがって、新たなターンによる追加的な磁束寄与の利益がその抵抗に勝る場合には、受電装置に追加の導電性ターンを加えることが最適である。
【0065】
図11は、別の実施形態による受電装置200を示しており、受電装置磁石206が、リンク装置204を介して第2の電力変換デバイス(例えば発電機またはポンプ等々)202に機械的に結合されることにより、受電装置磁石206の運動から電力を引き出す別の方法を実現する。図11の例においては、受電装置磁石206は、双極子ベクトル206Aを有する円筒形状永久磁石であり、回転軸208を中心として回転するように支持される。受電装置200のこの実施形態では、電力変換デバイス202は、回転する受電装置磁石206に付随する機械エネルギーを使用することが可能であり、このエネルギーを別の所望の形態に変換することが可能な、任意のデバイスを一般的には備えてもよい。
【0066】
いくつかの用途においては、送電装置および受電装置が常時作動状態を維持するような、継続的な電力伝送が望ましい場合がある。他の用途においては、システムの手動操作が望ましい場合がある。
【0067】
安定状態作動のために、いくつかの場合においては、受電装置磁石の運動が、受電装置磁石が応答している外部より印加される経時変化磁場(例えば送電装置により生成される経時変化磁場など)と同期することが望ましい。この外部より印加される経時変化磁場が周期的なものである場合には、この同期性は、受電装置磁石が応答する磁場と同一周期で受電装置磁石が回転、振動、または別様に移動する際に実現される。
【0068】
いくつかの用途においては、1つまたは複数の検出システムおよび/または起動システムを使用して電力伝送を制御することが望ましい場合がある。適切な受電装置の存在を検出するために、送電装置において検出システムを使用することが可能であり、その逆も可能である。受電装置磁石の動きが外部より印加される経時変化磁場と確実に同期するように補助するために、起動システムを使用することが可能である。ねじれ振動子と共に使用するのに適した検出システムおよび起動システムは、回転振動子と共に使用するには不適切である可能性があり、またその逆も不適切となる可能性がある。
【0069】
ねじれ振動子を有する受電装置の起動は、振動子の共振周波数へと調整される適切な周波数を有する磁場を生成することにより、または印加される磁場に正誤するように振動子の共振周波数を調整することにより、達成され得る。ねじれ振動子(例えば図5の受電装置50)の場合においては、外部より印加される振動磁場が、コイル56の軸56Aに対して平行な成分を有する場合に、受電装置磁石52は、その結果得られる振動トルクを受ける。印加される磁場の周波数が、ねじれ共振子の共振周波数に十分近い場合には、回転振動は、受電装置磁石52において増大し、次いでコイル56中に強化されたレベルの誘導電圧をもたらす。この強化は、受電装置50の共振子のQおよび受電装置磁石52に付随する高い磁場強度の両方によるものである。したがって、所望の周波数で作動する送電装置が、ねじれ振動子受電装置50の運動を誘発し、したがって受電装置50を「作動開始」または起動させることが可能である。
【0070】
それとは対照的に、静止状態から回転振動受電装置(例えば図6の受電装置70)を「作動開始」または起動させるためには、別の技術が望ましい場合がある。1つの起動アプローチは、送電装置が、所望の周波数に達するまで、その伝達磁場の周波数を円滑かつ漸増的に上昇させるものである。回転する送電装置磁石(例えば送電装置100(図7A)または送電装置120(図7B)の磁石106)を有する送電装置の場合には、これは、静止状態から送電装置磁石106の回転を開始させ、所望の周波数に達するまで回転の周波数を円滑かつ漸増的に上昇させることにより、達成することができる。別のアプローチは、送電装置が、意図した作動周波数にて磁場を伝達し、次いで、受電装置磁石の回転速度が、正常な(例えば同期的な)電力伝送動作を開始することが可能なポイントである外部より印加される磁場の回転速度と整合および「固定」されるまで、受電装置磁石に回転加速を被らせるように、制御装置が受電装置コイル(または複数のコイル)に制御電流を印加するものである。例えば、図6の回転受電装置70の場合においては、外部より印加される磁場の周波数を検出するために、適切なセンサ(図示せず)を使用してもよく、コイル56中の制御電流により生じる磁場により、受電装置磁石52が外部より印加される磁場の所望の作動周波数まで加速されるように、制御装置(図示せず)によってコイル56中に制御電流をもたらすことが可能である。
【0071】
ねじれ振動または回転のいずれの場合においても、ホール効果に基づく固体磁場センサなどのよく知られている電子構成要素を用いて、付近の送電装置磁石および受電装置磁石の存在、近接度、および大まかな配向の検出を実現することが可能である。かかるセンサから引き出される近接度および磁石配向の情報は、電力伝送動作を開始させるために使用することが可能である。さらに、または代替的には、電力伝送動作の開始において使用するための近接度および/または磁石配向の情報を通信するために、無線自動識別(RFID)技術または他の無線通信技術を使用することが可能である。
【0072】
ホール効果センサの場合には、ある特定の磁石により生成される信号を隔離し(例えば送電装置磁石から受電装置磁石を隔離し、またはその逆を行い)、それによりその特定の磁石の近接度を判定するために、よく知られている技術を使用することが可能である。近接度検出ホール効果センサシステムを送電装置、受電装置、またはそれらの両方内に設置することが可能であり、このシステムは、空気または非磁性の物理的に不透過性の障壁越しに同様に十分に作動するが、RFIDセンサは、金属製の障壁越しの作動においては比較的効果が劣る。
【0073】
図12は、ギャップにより離間された送電装置222および受電装置224を含む非接触電力伝送システム220を示している。システム220は、システム220の様々な作動特性に関する情報を制御装置226に供給するために使用される一対のホール効果センサ(H1、H2)を送電装置22内に組み込む。図示される実施形態においては、送電装置磁石228および受電装置磁石230が、ページの内外方向に回転軸を有しつつ回転式に設置され、センサH1、H2が、送電装置磁石228の各側部上に設置される。センサH1、H2の(磁場に対する)方向感度が、矢印により示されている。よく知られているように、センサH1、H2からの信号は、外方ラジアル方向にセンサが受ける磁場に関係する。この構成においては、センサ信号の合計(H1+H2)が、送電装置磁石228の回転に対しては比較的低感度であることが認められるが、受電装置磁石230が存在する場合には、受電装置磁石230は、センサ信号の合計(H1+H2)に著しい変化をもたらす。したがって、センサ信号の合計(H1+H2)は、受電装置224の存在および/または近接度を判定するために制御装置226により使用され得る。
【0074】
このタイプの近接度感知は、受電装置磁石230により生成される磁場の強度を感知するものとして特徴付けることができる。強度がしきい値を下回ると、制御装置226は、送電装置222を遮断させる(例えば駆動している送電装置磁石228を停止させる)信号を発することができる。強度がしきい値を上回ると、制御装置226は、送電装置222を起動させる(例えば送電装置磁石228の運動を開始させる)信号を発することができる。送電装置磁石228により生成される磁場の強度を感知するために、同様の強度感知システムが、受電装置224に実装されてもよい。受電装置内の制御装置は、強度が対応するしきい値を超えるかまたは下回る場合に、信号を発してもよい。発せられた信号は、ユーザに情報を与えてもよく(例えば、送電装置がさらに近くに移動されることが必要であるなど)、または受電装置コイルと電気ロードとの間の結合を調節するために(例えば、強度が低すぎる場合には受電装置からロードを切り離すために、または強度が十分な高さである場合には受電装置にロードを結合するために)使用されてもよい。
【0075】
システム220および送電装置22内のそのセンサH1、H2は、ある軸上における受電装置磁石230の配向を感知する能力をさらに有してもよい。直交軸上に別の対のホール効果センサを追加することにより、受電装置磁石230の配向に関するさらに正確な情報を得ることができる。かかる情報は、適切な信号を出力するために、制御装置226により使用され得る。例えば、(送電装置磁石228により生成される経時変化磁場に対する)受電装置磁石230の配向角度がしきい値量よりも大きいことが判明した場合には、制御装置226は、この配向角度を縮小するために送電装置222および受電装置224の相対配向を再調整すべきであると示唆する信号を出力することができる。(送電装置磁石228により生成される経時変化磁場に対する)受電装置磁石230の配向角度に関する同様の情報を検出するために、または送電装置磁石228および受電装置磁石230の配向角度に関する同様の情報を検出するために、同様の感知システム(例えば制御装置および複数のセンサ)を受電装置224内に設置することが可能である。
【0076】
回転振動受電装置の場合には、最大効率作動のためには送電装置磁場および受電装置磁石が同期すべき(すなわち周波数整合されるべき)であるため、送電装置磁場および受電装置磁石の相対位相を検出することが望ましい場合がある。位相差は、いわゆる「スリップ角」におけるずれにより検出することが可能であり、補正測定値は、クリティカル位相角差に達し同期が失われる前に、求めることが可能である。
【0077】
あるスリップ検出方法は、1つまたは複数のホール効果センサにより判定される磁石位置情報を通信するために、高周波(RF)チャネルを使用することが可能である。かかる磁石位置情報は、受電装置または送電装置のいずれか一方において検出することが可能であり、受電装置または送電装置の他方に通信され得る。この磁石位置情報を受領する送電装置または受電装置は、スリップ角を算出するために、自体の磁石位置を特徴付ける情報と組み合わせてこの情報を使用することが可能である。
【0078】
図12のシステム220は、スリップ角を検出するために使用することが可能である。センサH1、H2のこの配向は、センサの出力信号の合計(H1+H2)を、送電装置磁石228の角度に対しては低感度にするが、受電装置磁石230の角度に対しては高感度にする。センサ信号の差(H1−H2)は、主に送電装置磁石228に位相情報を与える。したがって、送電装置磁石228と受電装置磁石230との間の位相差は、(H1+H2)と(H1−H2)との間の位相差に関係する。このスリップ角情報により、制御装置226は、送電装置磁石228の速度を制御することが可能となる。例えば、スリップ角が、90°に過度に近づく場合には、制御装置226は、駆動している送電装置磁石228に対応する駆動信号を低減させることにより、送電装置磁石228の速度を落とし、それに対応してスリップ角を縮小させることが可能である。逆に、推定スリップ角が、十分に小さかった場合には、制御装置226は、駆動している送電装置磁石228に対応する駆動信号を増大させることが可能であり、それによりスリップ角を増大させることができるが、さらに大きな電力位相を可能にし得る。制御目標は、同期喪失を伴わずに電力伝送を最大限にすることであってもよい。図12のスリップ角制御技術は、金属製障壁越しに作動することが可能であるが、前述のRF方法は不可能である。
【0079】
電流、電圧、周波数およびトルクをモニタリングするために、適切なセンサおよび対応する検出システムを使用することもまた可能であり、かかるパラメータのモニタリングされた値は、特定の用途に対して電力伝送を制御および適合化させるために適用することが可能である。この制御能力は、送電装置、受電装置、またはそれらの両方に設置することが可能である。送電装置と受電装置との間に通信リンクを設けることが可能であるが、これは、常に必須であるわけでもなく、あらゆる用途において有益であるわけでもない。近位度検出およびスリップ角検出の両方に対して、同一のホール効果センサおよび/またはRF通信構成要素を使用することが可能である。
【0080】
さらに他の用途においては、1つまたは複数の検出および電荷ベースの「作動停止」システムを使用して電力移送を制御することが望ましい場合がある。バッテリを充電するために電荷位相システムが使用されている(すなわちバッテリが受電装置上のコイルにロードとして接続される)状況においては、このシステムは、受電装置が送電装置から離れるように移動する場合に、またはバッテリが充電される場合に、作動停止するように設計することが可能である。かかる作動停止は、例えば受電装置とバッテリとの間の電気結合部中のスイッチが開かれることなどにより、実現されてもよい。受電装置は、バッテリの充電状態に関する情報(例えば電圧測定値または他の手段)を検出する1つまたは複数のセンサを備えることが可能である。かかるセンサからの信号は、例えばバッテリの充電状態を推定しこの充電がしきい値よりも高いか否かを推定するためにそれらの信号を使用することが可能な制御装置に送ることが可能である。次いで、制御装置は、例えば受電装置とバッテリとの間の電気結合部中のスイッチを開くことなどにより、充電を停止させることができる。いくつかの実施形態においては、制御装置は、追加的にまたは代替的に、バッテリが充填されたことを示唆する信号を(例えばユーザに)発する。
【0081】
バッテリの充電状態に関する情報は、適切な通信手段を介して送電装置に送ることも可能である(例えば遠隔測定法など)。送電装置が、バッテリが充電されたと判定すると、送電装置は、経時変化磁場の生成を中断することが可能である。他の実施形態においては、送電装置自体が、送電装置に対してロードとして電気的に接続されたバッテリの充電状態を判定することが可能である。例えば、送電装置の合計電力負荷に関する情報を感知するために、送電装置側の適切なセンサを使用することが可能である。これらの信号は、送電装置の合計電力負荷を推定することが可能な制御装置に供給することが可能である。受電装置に接続されたバッテリが、十分に充電されると、送電装置の電力負荷は、大幅に低下し、その際に送電装置は、切断することが可能となる。
【0082】
前述の電力伝送システムは、磁気結合され、機械的に共振する。例えば、ねじれ振動子の機械共振は、そのQ値に関して規定される。回転振動子は、それ自体においては共振システムではないが、回転振動子は、その運動が循環的なものであり、1回転当たりのエネルギー損失の割合が小さいため、共振システムの重要な特性を有する。したがって、回転共振子は、前述のように「有効Q値」に関して規定され得る。かかる磁気結合され機械的に共振する電力伝送システムは、電磁共振子ベースのシステムに比べてかなりの利点を有する。第1に、これらのシステムにより、低周波数にて高いQまたは高い有効Qを得ることが可能となる。なぜならば、これは、小さな機械共振子には可能であるが、小さな電磁共振子には不可能であるからである。この第1の利点は、建築物の配線からのACピックアップの利用を介する非常に低電力のデバイスにおいて有効である場合がある。第2に、これらのシステムは、双極子磁石の強度から得られる強化により、比較的小さな程度の磁場変化を要する。この第2の利点は、RF磁場に組織をさらす危険が懸念され得る経皮式生体医用用途において有効である場合がある。さらに、このアプローチは、電気配線からデバイスを離間させることが有利である低電力用途にとって有効である場合がある。
【0083】
前述の特徴は、宇宙空間内、大気圏内、陸上、路上、レール上、地上および地下の両方、または水上もしくは水中を移動する車両を含む、人間により操作されるか自動式かに関わらず、電気自動車用バッテリ充電などの用途において重要となり得る。多くの場合で、かかる充電作業における金属接触を回避するだけではなく、いかなる種類の外部可撓性配線または高精度の車両位置合わせの必要性をも回避することが、有利となる。例えば、車両は、充電位置の約10cmの範囲内で移動することが可能であり、充電は、車両および充電位置が前述のような非接触電力伝送能力を有する場合には、自動的に開始される。これを容易化するために、受電装置、送電装置、またはそれらの両方が、車両に組み込まれたガイダンス・システムに位置合わせ情報を伝送することが可能であるべきである。例えば、電気自動車においては、送電装置を収容する充電ステーション上のディスプレイが、車両が適切な位置に到達したか否かを自動車の運転者に表示することが可能であり、車両がその位置に到達するために必要なあらゆる方向補正を表示することが可能である。特に垂直方向において、車両位置の許容可能範囲を拡大するために、受電装置は、最適な結合のために送電装置の位置を自動的に調節するための手段を備えることが可能である。充電作業を簡易化するために、充電ステーションと車両との間の自動通信により、供給された電気エネルギーに対する自動的な請求書発行が容易になると共に、場合によっては様々な追加の便利な情報をさらに提示することが可能となる。
【0084】
機械的に結合される電力伝送システムの別の利点は、広範なサイズの規模にわたるスケーラビリティである。例えば、皮下薬物送達のためのミリワットの電力を生成するために、1mm直径またはより小さな磁石を使用する極度に小さな生体適合性の注入可能なシステムを使用することが可能である。本明細書において説明される非接触電力伝送システムの低周波数作動により、かかるシステムは、インプラントデバイス(例えば人工心臓等々)の充電または電力供給を含むがそれらに限定されない、広範な生体医用用途に対して有効となることが予期される。他の非限定的な用途には、個人用電子デバイスおよび家庭用器具の充電が含まれる。
【0085】
本明細書において説明される様々な実施形態および実装形態は、信号を受領するために、および他の信号を生成するかまたはその信号に応答して他の動作を行うために、制御装置を利用する。かかる制御装置は、様々なタイプのプログラマブル制御装置またはプロセッサを使用して実装されてもよい。例えば、かかる制御装置は、適切にプログラムされたコンピュータ、適切にプログラムされた組込み型デジタルプロセッサ、または適切にプログラムされたロジックアレイ(例えばFPGA)等々を含んでもよい。制御装置は、2つ以上のかかるプロセッサを含んでもよい。さらに、制御装置は、プログラム情報等々を記憶する外部メモリおよび/または内部メモリ(図示せず)へのアクセスを含んでもよく、または別様に有してもよい。いくつかの実施形態においては、制御装置は、(適切なネットワーク・インターフェース(または複数のネットワーク・インターフェース)およびネットワーク・コネクション(または複数のネットワーク・コネクション)を介して、1つまたは複数の遠隔ワークステーションおよび/または他のシステムに作動的に接続されてもよい。かかるシステムにおいては、本明細書において説明される制御装置の機能の一部が、かかる遠隔ワークステーション(もしくは複数の遠隔ワークステーション)および/またはシステム(もしくは複数のシステム)上に実装されてもよい。上記において明確には示さずまたは説明しないが、かかる制御装置との整合のために、よく知られている信号調整回路を使用してもよい。非限定的な例としては、かかる信号調整回路は、アナログ/デジタル変換器(ADC)、デジタル/アナログ変換器(DAC)、増幅器、バッファ、またはフィルタ等々を含んでもよい。いくつかの実施形態においては、本明細書において参照される制御装置は、アナログ領域内の適切な制御回路により実装されてもよい。
【0086】
前述の変形および修正は、本発明の範囲内に含まれる。本明細書において開示および規定される本発明は、テキストおよび/または図面において述べられるかまたはそれらから明らかになる個々の特徴の2つ以上のあらゆる代替的な組合せに及ぶことが理解されよう。あらゆるこれらの様々な組合せが、本発明の様々な代替態様を構成する。本明細書において説明される実施形態は、本発明を実施するために知られている最善の態様を説明するものである。本発明の態様は、先行技術により許可される範囲まで代替実施形態を含むように解釈されるべきである。この開示は、全てのかかる修正、変更、追加、および下位組合せを含むものとして解釈されるべきである。例えば:
・図12は、送電装置222内の複数のホール効果センサH1、H2および制御装置226を示し、上述の説明は、これらのセンサおよび制御装置226が、受電装置224の近接度、送電装置磁石228および受電装置磁石230の相対配向、ならびにスリップ角を検出するために、どのように使用され得るかを説明する。同様のセンサシステム(例えば同様のセンサおよび制御装置)を受電装置224内に設置することが可能であること、および、送電装置222の近接度、送電装置磁石228および受電装置磁石230の相対配向、ならびにスリップ角を検出するためにかかるセンサシステムを使用することが可能であることが理解されよう。受電装置内に配置されるセンサシステムは、送電装置磁石228の移動速度を調節するのではなく、受電装置導体(例えば受電装置コイル(図12には図示しない))間の結合を調節することが可能である。非限定的な例としては、受電装置コイルとロードとの間の電気結合は、スリップ角が所望のレベルから過度に大幅に逸脱する場合に開閉し得るスイッチを含んでもよい。確動動作がロードに対してなされる範囲内にスリップ角が確実に含まれるようにする態様で、かかる結合を調節することが一般的には望ましい。
・図13は、送電装置254および受電装置252が共に回転振動子であり、すなわち送電装置磁石274および受電装置磁石256がそれらの各回転軸276、258を中心として回転移動をするように設置される、一実施形態を示す。他の実施形態においては、送電装置254および受電装置252は、ねじれ振動子を備えてもよく、送電装置磁石274および受電装置磁石256は、それらの各振動軸276、258を中心としてねじれ振動移動をするように(受電装置50の可撓性マウント60(図5)と同様の付勢要素を備える可撓性マウントを使用して)設置される。可撓性マウントおよび振動運動のため以外にも、かかるねじれ振動子の実施形態は、回転システム250について上述したものと同様の特性を有してもよい。

【特許請求の範囲】
【請求項1】
第1の経時変化磁場からエネルギーを引き出すための受電装置であって、
導体と、
前記第1の経時変化磁場内に配置され、前記第1の経時変化磁場に応答して移動するように支持される受電装置磁石と、
を備え、
前記導体および前記受電装置は、前記受電装置磁石の移動が、前記導体の付近に第2の経時変化磁場を生じさせ、それにより前記導体中に電流を誘導するように、互いに対して位置決めされる受電装置。
【請求項2】
前記導体は、1つまたは複数のコイルを備え、各コイルは、1つまたは複数の導電性ターンを備えた請求項1に記載の受電装置。
【請求項3】
前記1つまたは複数のコイルのそれぞれについて、前記コイルは、前記第1の経時変化磁場内に配置され、前記第1の磁場により生成される前記コイルを通るRMS磁束に対する、前記第2の経時変化磁場により生成される前記コイルを通るRMS磁束の比率が、10以上である請求項2に記載の受電装置。
【請求項4】
前記1つまたは複数のコイルのそれぞれについて、前記コイルは、前記第1の経時変化磁場内に配置され、前記第1の磁場により生成される前記コイルを通るRMS磁束に対する、前記第2の経時変化磁場により生成される前記コイルを通るRMS磁束の比率が、100以上である請求項2に記載の受電装置。
【請求項5】
前記1つまたは複数のコイルのそれぞれについて、前記コイルは、前記第1の経時変化磁場内に配置され、前記第1の磁場により生成される前記コイルを通るRMS磁束に対する、前記第2の経時変化磁場により生成される前記コイルを通るRMS磁束の比率が、1000以上である請求項2に記載の受電装置。
【請求項6】
前記受電装置磁石は、前記第1の経時変化磁場に応答して振動軸を中心として振動運動するように、1つまたは複数のマウントにより支持され、前記1つまたは複数のマウントはそれぞれ、前記受電装置磁石が周囲方向から離れるように前記振動軸を中心として移動する際に変形し、前記受電装置磁石に対して復元トルクを加えて前記周囲方向に前記受電装置磁石を戻す、1つまたは複数の付勢要素を備えた請求項1から5のいずれか一項に記載の受電装置。
【請求項7】
前記受電装置磁石は、前記第1の経時変化磁場に応答して回転軸を中心として回転運動するように支持される請求項1から5のいずれか一項に記載の受電装置。
【請求項8】
前記第1の経時変化磁場は、周期的なものであり、前記受電装置磁石は、その結果生じる周期トルクを受け、前記トルクにより、前記第1の経時変化磁場の周期に整合する周期で前記受電装置磁石の周期運動が生じる請求項1から7のいずれか一項に記載の受電装置。
【請求項9】
前記受電装置磁石の前記周期運動と前記周期的な第1の経時変化磁場との間の位相関係が、前記第1の経時変化磁場が前記受電装置磁石に対して確動動作を生じさせるものである請求項8に記載の受電装置。
【請求項10】
前記受電装置磁石は、実質的に双極の永久磁石を備えた請求項1から9のいずれか一項に記載の受電装置。
【請求項11】
前記受電装置磁石は、実質的に双極の永久磁石を備え、前記受電装置磁石は、前記受電装置磁石の前記振動軸および前記受電装置磁石の前記回転軸の少なくとも一方に対して±20°の範囲内において直交である双極子ベクトルを有する請求項6または7に記載の受電装置。
【請求項12】
前記受電装置磁石は、実質的に円筒状の形状を有する請求項1から11のいずれか一項に記載の受電装置。
【請求項13】
前記受電装置磁石は、実質的に円筒状の形状を有し、円筒軸が、前記受電装置磁石の前記振動軸および前記受電装置磁石の前記回転軸の少なくとも一方と±20°の範囲内においてほぼ同軸である、請求項6、7または11のいずれか一項に記載の受電装置。
【請求項14】
前記受電装置磁石は、実質的に球状の形状を有する請求項1から11のいずれか一項に記載の受電装置。
【請求項15】
前記受電装置磁石は、実質的に球状の形状を有し、前記球の直径は、前記受電装置磁石の前記振動軸および前記受電装置磁石の前記回転軸の少なくとも一方と±20°の範囲内においてほぼ同軸である請求項6、7または11のいずれか一項に記載の受電装置。
【請求項16】
前記受電装置磁石は、ネオジムおよびフェライトの中の1つまたは複数を含む請求項1から15のいずれか一項に記載の受電装置。
【請求項17】
前記導体は、複数のコイルを備え、各コイルは、1つまたは複数の導電性ターンを備え、前記複数のコイルは、前記導体中に誘導される電流が三相電流となるように、前記受電装置磁石に対して配置される請求項1から16のいずれか一項に記載の受電装置。
【請求項18】
前記受電装置磁石を可動式に支持するための1つまたは複数のサポートを備え、該1つまたは複数のサポートは、セラミック玉軸受および宝石軸受の中の1つまたは複数を備えた請求項1から17のいずれか一項に記載の受電装置。
【請求項19】
スリップ角を表す1つまたは複数の事象を感知するための1つまたは複数のセンサを備え、前記スリップ角は、前記第1の経時変化磁場の周期的変化と前記受電装置磁石の対応する周期運動との間の位相差を表す請求項1から18のいずれか一項に記載の受電装置。
【請求項20】
前記1つまたは複数のスリップ角センサから1つまたは複数の信号を受領するために接続され、前記スリップ角を推定し、前記推定されたスリップ角に基づき前記導体と電気ロードとの間の結合を調節することにより前記ロードに対して確動作動が生じるスリップ角を維持する制御装置を備えた請求項19に記載の受電装置。
【請求項21】
前記スリップ角センサは、1つまたは複数のホール効果センサを備えた請求項19または20に記載の受電装置。
【請求項22】
前記第1の経時変化磁場に対する前記受電装置磁石の配向角度を表す1つまたは複数の事象を感知するための1つまたは複数のセンサを備えた請求項1から21のいずれか一項に記載の受電装置。
【請求項23】
前記1つまたは複数の配向センサから1つまたは複数の信号を受領するために接続され、前記第1の経時変化磁場に対する前記受電装置磁石の配向角度を推定し、前記推定された配向角度がしきい値を上回る場合には出力信号を発するように構成される制御装置を備えた請求項22に記載の受電装置。
【請求項24】
前記配向センサは、1つまたは複数のホール効果センサを備えた請求項22または23に記載の受電装置。
【請求項25】
前記第1の経時変化磁場の強度を表す1つまたは複数の事象を感知するための1つまたは複数のセンサを備えた請求項1から24のいずれか一項に記載の受電装置。
【請求項26】
前記1つまたは複数の強度センサから1つまたは複数の信号を受領するために接続され、前記第1の経時変化磁場の強度を推定し、前記推定された強度が、第1のしきい値を上回る場合および第2のしきい値を下回る場合のいずれか一方または両方の場合に、出力信号を発するように構成された制御装置を備えた請求項25に記載の受電装置。
【請求項27】
前記強度センサは、1つまたは複数のホール効果センサを備えた請求項25または26に記載の受電装置。
【請求項28】
前記導体は、バッテリに電気的に接続される請求項1から27のいずれか一項に記載の受電装置。
【請求項29】
前記バッテリの電荷を表す1つまたは複数の事象を感知するための1つまたは複数のセンサを備えた請求項28に記載の受電装置。
【請求項30】
前記1つまたは複数の電荷センサから1つまたは複数の信号を受領するために接続され、前記バッテリの前記電荷を推定し、しきい値以上の前記推定された電荷に応答して前記導体と前記バッテリとの間のスイッチの状態を制御するように構成される制御装置を備えた請求項29に記載の受電装置。
【請求項31】
前記1つまたは複数の電荷センサから1つまたは複数の信号を受領するために接続され、前記バッテリの前記電荷を推定し、前記推定された電荷がしきい値以上である場合に出力信号を発するように構成される制御装置を備えた請求項29に記載の受電装置。
【請求項32】
第1の経時変化磁場を生成するための送電装置と、
ギャップにより前記送電装置から離間される受電装置と、
を備え、前記受電装置は、
導体と、
前記第1の経時変化磁場内に配置され、前記第1の経時変化磁場に応答して移動するように支持される受電装置磁石と、
を備え、前記導体および前記受電装置は、前記受電装置磁石の移動が前記導体の付近に第2の経時変化磁場を生じさせ、それにより前記導体中に電流を誘導するように、互いに対して位置決めされる電力伝送装置。
【請求項33】
前記受電装置磁石は、前記第1の経時変化磁場に応答して回転軸を中心として回転運動するように支持され、前記受動磁石の最大運動半径に対する前記ギャップの比率が、1以上である請求項32に記載の装置。
【請求項34】
前記受電装置磁石は、前記第1の経時変化磁場に応答して回転軸を中心として回転運動するように支持され、前記受動磁石の最大運動半径に対する前記ギャップの比率が、5以上である請求項32に記載の装置。
【請求項35】
前記受電装置磁石は、前記第1の経時変化磁場に応答して回転軸を中心として回転運動するように支持され、前記受動磁石の最大運動半径に対する前記ギャップの比率が、10以上である請求項32に記載の装置。
【請求項36】
前記受電装置磁石は、前記第1の経時変化磁場に応答して振動軸を中心として振動運動するように支持され、前記受動磁石の最大運動半径に対する前記ギャップの比率が、1以上である請求項32に記載の装置。
【請求項37】
前記受電装置磁石は、前記第1の経時変化磁場に応答して振動軸を中心として振動運動するように支持され、前記受動磁石の最大運動半径に対する前記ギャップの比率が、5以上である請求項32に記載の装置。
【請求項38】
前記受電装置磁石は、前記第1の経時変化磁場に応答して振動軸を中心として振動運動するように支持され、前記受動磁石の最大運動半径に対する前記ギャップの比率が、10以上である請求項32に記載の装置。
【請求項39】
非磁性障壁が、前記送電装置と前記受電装置との間の前記ギャップ内に配置される請求項32から38のいずれか一項に記載の装置。
【請求項40】
前記障壁は、ヒトまたは動物の組織、非磁性材料を含む壁および非磁性材料を備えた筐体の中の1つまたは複数を備えた請求項39に記載の装置。
【請求項41】
前記送電装置は、中において移動するように支持された送電装置磁石を備え、前記送電装置磁石の運動により、前記第1の経時変化磁場が生じる請求項32から40のいずれか一項に記載の装置。
【請求項42】
前記送電装置磁石は、振動軸を中心として振動運動するように1つまたは複数のマウントにより支持され、該1つまたは複数のマウントはそれぞれ、前記受電装置磁石が周囲方向から離れるように前記振動軸を中心として移動する際に変形し、前記受電装置磁石に対して復元トルクを加えて前記周囲方向に前記受電装置磁石を戻す、1つまたは複数の付勢要素を備えた請求項41に記載の装置。
【請求項43】
前記受電装置磁石は、前記第1の経時変化磁場に応答して振動軸を中心として振動運動するように、1つまたは複数のマウントにより支持され、該1つまたは複数のマウントはそれぞれ、前記受電装置磁石が周囲方向から離れるように前記振動軸を中心として移動する際に変形し、前記受電装置磁石に対して復元トルクを加えて前記周囲方向に前記受電装置磁石を戻す、1つまたは複数の付勢要素を備え、前記送電装置磁石および前記受電装置磁石の前記振動軸は、±20°の範囲内において実質的に平行である請求項42に記載の装置。
【請求項44】
前記受電装置磁石は、前記第1の経時変化磁場に応答して振動軸を中心として振動運動するように、1つまたは複数のマウントにより支持され、該1つまたは複数のマウントはそれぞれ、前記受電装置磁石が周囲方向から離れるように前記振動軸を中心として移動する際に変形し、前記受電装置磁石に対して復元トルクを加えて前記周囲方向に前記受電装置磁石を戻す、1つまたは複数の付勢要素を備え、前記送電装置磁石および前記受電装置磁石の前記振動軸は、±20°の範囲内において実質的に同軸である請求項42に記載の装置。
【請求項45】
前記送電装置磁石は、回転軸を中心として回転運動するように支持される請求項41に記載の装置。
【請求項46】
前記送電装置磁石は、前記第1の経時変化磁場に応答して回転軸を中心として回転運動するように支持され、前記送電装置磁石および前記受電装置磁石の前記回転軸は、±20°の範囲内において実質的に平行である請求項45に記載の装置。
【請求項47】
前記送電装置磁石は、前記第1の経時変化磁場に応答して回転軸を中心として回転運動するように支持され、前記送電装置磁石および前記受電装置磁石の前記回転軸は、±20°の範囲内において実質的に同軸である請求項45に記載の装置。
【請求項48】
前記送電装置磁石は、実質的に双極の永久磁石を備えた請求項41から47のいずれか一項に記載の装置。
【請求項49】
前記送電装置磁石は、前記送電装置磁石の前記振動軸および前記送電装置磁石の前記回転軸の少なくとも一方に対して±20°の範囲内において実質的に直交である磁気双極子ベクトルを有する実質的に双極の磁石を備えた請求項42から45のいずれか一項に記載の装置。
【請求項50】
前記送電装置磁石は、モータを備え、前記送電装置磁石は、機械リンク装置を介して前記モータに連結され、モータの移動が、対応する送電装置磁石の移動を生じさせる請求項41から49のいずれか一項に記載の装置。
【請求項51】
前記送電装置は、1つまたは複数のコイルを備え、前記送電装置磁石は、前記1つまたは複数のコイルの付近に配置され、前記1つまたは複数のコイル中の経時変化電流が、前記送電装置磁石の対応する移動を生じさせる請求項41から49のいずれか一項に記載の装置。
【請求項52】
前記送電装置磁石を可動式に支持するための1つまたは複数のサポートを備え、前記1つまたは複数のサポートは、セラミック玉軸受および宝石軸受の中の1つまたは複数を備えた請求項41から51のいずれか一項に記載の装置。
【請求項53】
前記送電装置は、スリップ角を表す1つまたは複数の事象を感知するための1つまたは複数のセンサを備え、前記スリップ角は、前記送電装置磁石の周期移動と前記受電装置磁石の対応する周期運動との間の位相差を表す請求項41から52のいずれか一項に記載の装置。
【請求項54】
前記1つまたは複数のスリップ角センサから1つまたは複数の信号を受領するために接続され、前記スリップ角を推定し、前記推定されたスリップ角に応答して前記送電装置磁石の運動を制御することにより前記導体に電気的に接続されたロードに対して確動作動が伝えられるスリップ角を維持する制御装置を備えた請求項53に記載の装置。
【請求項55】
前記スリップ角センサは、1つまたは複数のホール効果センサを備えた請求項53から54のいずれか一項に記載の装置。
【請求項56】
送電装置が、前記送電装置磁石に対する前記受電装置磁石の配向角度を表す1つまたは複数の事象を感知するための1つまたは複数のセンサを備えた請求項41から55のいずれか一項に記載の装置。
【請求項57】
前記1つまたは複数の配向センサから1つまたは複数の信号を受領するために接続され、前記送電装置磁石に対する前記受電装置磁石の配向角度を推定し、前記推定された配向角度がしきい値を上回る場合には出力信号を発するように構成される制御装置を備えた請求項56に記載の装置。
【請求項58】
前記配向センサは、1つまたは複数のホール効果センサを備えた請求項56または57に記載の装置。
【請求項59】
前記送電装置は、前記受電装置磁石により生成される前記第2の経時変化磁場の強度を表す1つまたは複数の事象を感知するための1つまたは複数のセンサを備えた請求項41から58のいずれか一項に記載の装置。
【請求項60】
前記1つまたは複数の強度センサから1つまたは複数の信号を受領するために接続され、前記第2の経時変化磁場の前記強度を判定し、前記推定された強度が、第1のしきい値を上回る場合および第2のしきい値を下回る場合のいずれか一方または両方の場合に、出力信号を発するように構成される制御装置を備えた請求項59に記載の装置。
【請求項61】
前記強度センサは、1つまたは複数のホール効果センサを備えた請求項59または60に記載の装置。
【請求項62】
1つまたは複数のRFID近接センサを備え、前記RFID近接センサは、前記送電装置および前記受電装置の1つまたは複数の中に配置される請求項32から61のいずれか一項に記載の装置。
【請求項63】
前記導体は、バッテリに電気的に接続される請求項32から62のいずれか一項に記載の装置。
【請求項64】
前記送電装置は、前記バッテリの電荷を表す1つまたは複数の事象を感知するための1つまたは複数のセンサを備えた請求項63に記載の装置。
【請求項65】
前記1つまたは複数の電荷センサは、前記第1の経時変化磁場の生成に付随する電力を検出する請求項64に記載の装置。
【請求項66】
前記1つまたは複数の電荷センサから1つまたは複数の信号を受領するために接続され、前記バッテリの前記電荷を推定し、該推定された電荷がしきい値以上であると判定された場合に前記第1の経時変化磁場の生成を中断するように構成される制御装置を備えた請求項65に記載の装置。
【請求項67】
前記1つまたは複数の電荷センサから1つまたは複数の信号を受領するために接続され、前記バッテリの前記電荷を推定し、該推定された電荷がしきい値以上である場合に出力信号を発するように構成される制御装置を備えた請求項65に記載の装置。
【請求項68】
第1の経時変化磁場を生成するための送電装置と、
ギャップにより前記送電装置から離間される受電装置であり、前記第1の経時変化磁場内に配置された可動受電装置磁石を備える受電装置と、
前記受電装置磁石の運動の機械エネルギーを別の形態のエネルギーに変換するための手段と、
を備え、
前記第1の経時変化磁場は、前記第1の経時変化磁場の影響下において前記受電装置磁石を移動させる経時変化トルクを前記受電装置磁石に対して印加し、
前記受電装置磁石は、回転軸を中心とする回転運動および振動軸を中心とする振動運動の少なくとも一方を行うように支持され、前記受電装置磁石の最大運動半径に対する前記ギャップの比率が、1以上である電力伝送装置。
【請求項69】
前記受電装置磁石の最大運動半径に対する前記ギャップの比率が、5以上である請求項68に記載の装置。
【請求項70】
前記受電装置磁石の最大運動半径に対する前記ギャップの比率が、10以上である請求項68に記載の装置。
【請求項71】
電気ロードに対して電荷を送る方法であって、
第1の経時変化磁場内に受電装置磁石を配置するステップと、
前記第1の経時変化磁場に応答して移動するように前記受電装置磁石を支持するステップと、
前記受電装置磁石の移動により1つまたは複数のターンを備えるコイルの付近に第2の経時変化磁場が生じることによって前記コイル中に電流が誘導されるように、前記受電装置に対して前記コイルを位置決めするステップと、
前記ロードに前記コイルを電気的に接続するステップと、
を含む方法。
【請求項72】
前記第1の磁場により生成される前記コイルを通るRMS磁束に対する、前記第2の経時変化磁場により生成される前記コイルを通るRMS磁束の比率が、10以上である請求項71に記載の方法。
【請求項73】
1つまたは複数のマウントを使用して、前記第1の経時変化磁場に応答して振動軸を中心として振動運動するように前記受電装置磁石を支持するステップを含み、前記1つまたは複数のマウントはそれぞれ、前記受電装置磁石が周囲方向から離れるように前記振動軸を中心として移動する際に変形し、前記受電装置磁石に対して復元トルクを加えて前記周囲方向に前記受電装置磁石を戻す、1つまたは複数の付勢要素を備えた請求項71または72に記載の方法。
【請求項74】
前記第1の経時変化磁場に応答して回転軸を中心として回転運動するように前記受電装置磁石を支持するステップを含む請求項71または72に記載の方法。
【請求項75】
前記第1の経時変化磁場は、周期的なものであり、前記受電装置磁石は、その結果生じる周期トルクを受け、前記トルクにより、前記第1の経時変化磁場の周期に整合する周期で前記受電装置磁石の周期運動が生じる請求項71から74のいずれか一項に記載の方法。
【請求項76】
前記ロードはバッテリである請求項71から75のいずれか一項に記載の方法。
【請求項77】
前記バッテリの電荷を検出するステップと、
前記バッテリの前記電荷がしきい値を上回る場合に、前記コイルと前記ロードとの間の電気接続を切断するステップと、
を含む請求項76に記載の方法。
【請求項78】
本請求項において開示される任意の特徴、前記特徴の組合せ、または前記特徴の下位組合せを含む装置。
【請求項79】
本請求項において開示される任意の特徴、前記特徴の組合せ、または前記特徴の下位組合せを含む方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公表番号】特表2012−518982(P2012−518982A)
【公表日】平成24年8月16日(2012.8.16)
【国際特許分類】
【出願番号】特願2011−551379(P2011−551379)
【出願日】平成22年2月26日(2010.2.26)
【国際出願番号】PCT/CA2010/000252
【国際公開番号】WO2010/096917
【国際公開日】平成22年9月2日(2010.9.2)
【出願人】(300066874)ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア (24)