説明

屈曲光伝送媒体製造装置および屈曲光伝送媒体製造方法

【課題】 多数本の光伝送媒体について、クラックをつけず、かつ、一括で一様な屈曲状態を得ることができる屈曲光伝送媒体製造装置および屈曲光伝送媒体製造方法を提供する。
【解決手段】 光伝送媒体の一部を加熱する放電電極Aと、該光伝送媒体または該放電電極Aを移動させる移動手段101、306とを備え、光伝送媒体または放電電極Aを移動させながら、該光伝送媒体の一部を加熱する屈曲光伝送媒体製造装置であって、前記放電電極Aの近傍に導体50または絶縁体60を配置したことを特徴とする屈曲光伝送媒体製造装置。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、屈曲光伝送媒体製造装置および屈曲光伝送媒体製造方法に関するものである。
【背景技術】
【0002】
光ファイバ等の光伝送媒体を屈曲させる技術に関しては、例えば、特許文献1に記載された技術が知られている。
特許文献1には、光ファイバを変形させる技術において、アーク放電を利用して、光ファイバの一部分を加熱し、所定の半径で曲げることで屈曲状態を得る技術が記載されている。
この技術によれば、非接触のアーク放電により光ファイバを曲げることで、クラックのない屈曲状態を得ることができる。
しかしながら、特許文献1には、多数本の光ファイバを一括で屈曲させる際の問題点については記載されていない。
【0003】
図11を用いて説明する。
図11は従来の多数本の光ファイバを一括で屈曲させる様子を示す図であり、(a)はアーク放電の温度分布を示す図、(b)は光ファイバの配置を示す図、(c)は屈曲させた光ファイバを示す斜視図である。
1〜8は光ファイバ、Aは非接触加熱手段であるアーク放電電極、aは光ファイバ幅、bは電極間隔、xは高温域、yは光ファイバの屈曲に適切な中温域、zは低温域である。
アーク放電の温度分布は、図11(a)に示されるように、アーク放電電極A間の中心に高温域x、高温域xの周囲に中温域y、中温域yの周囲に低温域zとなる。
ここで、多数本の光ファイバ1〜8を一括して屈曲させるために、図11(b)に示されるように一列に並べると、光ファイバ3〜6は中温域y内に入るものの、光ファイバ1、2、7、8は低温域z内に入ってしまう。
なお、このような問題が生じるのは、光ファイバ幅a/電極間隔bが0.5以上の場合である。
この状態で光ファイバを屈曲させると、図11(c)に示されるように、温度域の違いにより光ファイバ1、2、7、8の屈曲が不十分となり、屈曲状態にバラツキが生じてしまう問題点があった。
【0004】
なお、この問題点を回避するため、光ファイバをアーク放電電極A間の中心を横切るように並べたり、複数の列に並べたりすることも考えられる。
しかしながら、光ファイバをアーク放電電極A間の中心を横切るように並べると、光ファイバ4、5などが高温域x内に入り、損傷してしまうおそれがある。
また、複数の列に並べると、屈曲の過程で光ファイバ同士が接触して融着してしまうおそれがある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−292718号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、以上のような問題点に鑑みてなされたものであり、その目的とするところは、多数本の光伝送媒体について、クラックをつけず、かつ、一括で一様な屈曲状態を得ることができる屈曲光伝送媒体製造装置および屈曲光伝送媒体製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は下記の技術的構成により、上記課題を解決できたものである。
(1)光伝送媒体の一部を加熱する放電電極と、該光伝送媒体または該放電電極を移動させる移動手段とを備え、光伝送媒体または放電電極を移動させながら、該光伝送媒体の一部を加熱する屈曲光伝送媒体製造装置であって、前記放電電極の近傍に導体または絶縁体を配置したことを特徴とする屈曲光伝送媒体製造装置。
(2)前記光伝送媒体は多数本の光ファイバであることを特徴とする前記(1)記載の屈曲光伝送媒体製造装置。
(3)多数本の光ファイバ幅/電極間隔が0.5以上0.95以下であることを特徴とする前記(2)記載の屈曲光伝送媒体製造装置。
(4)前記放電電極はアーク放電電極であることを特徴とする前記(1)記載の屈曲光伝送媒体製造装置。
(5)前記導体は金属であることを特徴とする前記(1)記載の屈曲光伝送媒体製造装置。
(6)前記絶縁体はセラミックであることを特徴とする前記(1)記載の屈曲光伝送媒体製造装置。
(7)さらに、前記移動手段の動作を制御する制御手段を備えることを特徴とする前記(1)記載の屈曲光伝送媒体製造装置。
(8)移動手段および放電電極を用いて光伝送媒体を屈曲させる屈曲光伝送媒体製造方法であって、移動手段により光伝送媒体または放電電極を移動させながら、該放電電極により該光伝送媒体の一部を加熱する移動加熱工程と、該光伝送媒体を曲げる屈曲工程とを有し、前記放電電極の近傍に導体または絶縁体を配置したことを特徴とする屈曲光伝送媒体製造方法。
(9)前記光伝送媒体は多数本の光ファイバであることを特徴とする前記(8)記載の屈曲光伝送媒体製造方法。
(10)多数本の光ファイバ幅/電極間隔が0.5以上0.95以下であることを特徴とする前記(9)記載の屈曲光伝送媒体製造方法。
(11)前記放電電極はアーク放電電極であることを特徴とする前記(8)記載の屈曲光伝送媒体製造方法。
(12)前記導体は金属であることを特徴とする前記(8)記載の屈曲光伝送媒体製造方法。
(13)前記絶縁体はセラミックであることを特徴とする前記(8)記載の屈曲光伝送媒体製造方法。
(14)さらに、前記移動手段の動作を制御する制御手段を備えることを特徴とする前記(8)記載の屈曲光伝送媒体製造方法。
【発明の効果】
【0008】
本発明によれば、多数本の光伝送媒体について、クラックをつけず、かつ、一括で一様な屈曲状態を得ることができる屈曲光伝送媒体製造装置および屈曲光伝送媒体製造方法を提供できる。
【図面の簡単な説明】
【0009】
【図1】実施形態1の多数本の光ファイバを一括で屈曲させる様子を示す図であり、(a)はアーク放電の温度分布を示す図、(b)は光ファイバの配置を示す図、(c)は屈曲させた光ファイバを示す斜視図
【図2】実施形態2の多数本の光ファイバを一括で屈曲させる様子を示す図であり、(a)はアーク放電の温度分布を示す図、(b)は光ファイバの配置を示す図、(c)は屈曲させた光ファイバを示す斜視図
【図3】態様Iの屈曲光伝送媒体製造装置の概念図であって、(a)は正面図、(b)はα−α線断面図
【図4】態様Iの屈曲光伝送媒体製造方法を示す概念図であって、(a)は光ファイバを光ファイバ載置台に載せた図、(b)は移動加熱工程と屈曲工程を連続して行っている図、(c)は光伝送媒体の屈曲が終了した図
【図5】態様IIの屈曲光伝送媒体製造装置の概念図であって、(a)は正面図、(b)はβ−β線断面図
【図6】態様IIの屈曲光伝送媒体製造方法を示す概念図であって、(a)は光ファイバを光ファイバ載置台に載せた図、(b)は移動加熱工程と屈曲工程を連続して行っている図、(c)は光伝送媒体の屈曲が終了した図
【図7】態様IIIの屈曲光伝送媒体製造装置の概念図であって、(a)は正面図、(b)はγ−γ線断面図
【図8】態様IIIの屈曲光伝送媒体製造方法を示す概念図であって、(a)は光ファイバを光ファイバ載置台に載せた図、(b)は移動加熱工程と屈曲工程を連続して行っている図、(c)は光伝送媒体の屈曲が終了した図
【図9】態様IVの屈曲光伝送媒体製造方法を示す概念図
【図10】制御回路の一例を示すブロック図
【図11】従来の多数本の光ファイバを一括で屈曲させる様子を示す図であり、(a)はアーク放電の温度分布を示す図、(b)は光ファイバの配置を示す図、(c)は屈曲させた光ファイバを示す斜視図
【発明を実施するための形態】
【0010】
以下、図面を用いて本発明の実施形態について具体的に説明する。
【0011】
(実施形態1)
図1を用いて実施形態1を説明する。
図1は実施形態1の多数本の光ファイバを一括で屈曲させる様子を示す図であり、(a)はアーク放電の温度分布を示す図、(b)は光ファイバの配置を示す図、(c)は屈曲させた光ファイバを示す斜視図である。
50は金属等の導体である。
アーク放電の温度分布は、アーク放電電極A間の中心に高温域x、高温域xの周囲に中温域y、中温域yの周囲に低温域zとなる。
しかしながら、実施形態1では温度分布は同心円状にならず、図1(a)に示されるように、導体50がアーク放電電極A近傍に配置されることで、導体50方向に引き寄せられてゆがみを生じる。
このゆがみにより、中温域yの上部が略水平になり、図1(b)に示されるように、多数本の光ファイバ1〜8を一列に並べて中温域y内に入れることが可能になる。
なお、光ファイバ幅a/電極間隔bは0.5以上0.95以下が好ましく、より好ましくは0.5以上0.9以下である。
この状態で光ファイバを屈曲させると、図1(c)に示されるように、屈曲状態が一様で、先端が揃った状態の光ファイバを得ることができる。
【0012】
(実施形態2)
図2を用いて実施形態2を説明する。
図2は実施形態2の多数本の光ファイバを一括で屈曲させる様子を示す図であり、(a)はアーク放電の温度分布を示す図、(b)は光ファイバの配置を示す図、(c)は屈曲させた光ファイバを示す斜視図である。
60はセラミック等の絶縁体である。
アーク放電の温度分布は、アーク放電電極A間の中心に高温域x、高温域xの周囲に中温域y、中温域yの周囲に低温域zとなる。
しかしながら、実施形態2では温度分布は同心円状にならず、図2(a)に示されるように、絶縁体60がアーク放電電極A近傍に配置されることで、絶縁体60から離れるように迂回してゆがみを生じる。
このゆがみにより、中温域yの下部が略水平になり、図2(b)に示されるように、多数本の光ファイバ1〜8を一列に並べて中温域y内に入れることが可能になる。
なお、光ファイバ幅a/電極間隔bは0.5以上0.95以下が好ましく、より好ましくは0.5以上0.9以下である。
この状態で光ファイバを屈曲させると、図2(c)に示されるように、屈曲状態が一様で、先端が揃った状態の光ファイバを得ることができる。
【0013】
以下、本発明を用いる屈曲光伝送媒体製造装置および屈曲光伝送媒体製造方法について説明する。
【0014】
(態様I)
(構成)
図3は態様Iの屈曲光伝送媒体製造装置の概念図であって、(a)は正面図、(b)はα−α線断面図である。
101は、移動手段である水平方向移動手段、102は光ファイバ載置台、103は支持柱、104は押板、201は光ファイバ支え台、202は支柱、301は支持筐体、303は基礎台座、308はコ字型ブラケット、Gは溝である。
態様Iの屈曲光伝送媒体製造装置は、光ファイバの一部を加熱するアーク放電電極Aと、光ファイバを移動させる水平方向移動手段101とを備える。
そして、アーク放電電極Aと水平方向移動手段101は連動して、光ファイバを移動させながら、該光ファイバの一部を加熱する。
【0015】
具体的には、図3に示すように、平面上に基礎台座303が置かれ、基礎台座303に支持筐体301が固定されることが好ましい。
そして、支持筐体301にコ字型ブラケット308を固定することができる。
また、基礎台座303上に水平方向移動手段101、光ファイバ支え台201、支柱202が設けられることが好ましい。
これにより、移動手段101と非接触加熱手段Aの相対位置を固定することができる。
【0016】
水平方向移動手段101、光ファイバ載置台102、支持柱103、押板104は一体として構成される。
水平方向移動手段101は図3(a)の左右方向に移動させることができる。
そして、水平方向移動手段101上に、支持柱103を介して光ファイバ載置台102を固定することで、光ファイバ載置台102上の光ファイバを移動させることができる。
水平方向移動手段101は、手動または自動のボールネジ機構等で構成し、一定速度で光ファイバを水平方向へ移動させることが好ましい。
なお、支持柱103に高さ調節手段となるリフト機構を設けることで、光ファイバとアーク放電電極Aとの高さを調節できるようにすることが好ましい。
すなわち、非接触加熱手段に対する光伝送媒体の位置を上下に調節し、間接的に光伝送媒体への加熱温度を微調整する。
また、光ファイバ載置台102上に、光ファイバの位置を安定させる溝Gを設け、押板104で光ファイバを押さえる構成とすることが好ましい。
溝Gは、V溝や矩形溝等にすることができる。
【0017】
光ファイバ支え台201は、光ファイバを水平に保つための台である。
光ファイバは、光ファイバ支え台201と光ファイバ載置台102との間に掛け渡される。
光ファイバ支え台201にも高さ調節手段となるリフト機構を設けることが好ましい。
また、光ファイバ支え台201上にも溝Gを設けることが好ましい。
支柱202は、セラミック等の絶縁体からなる支柱である。
支柱202の先に導体50または絶縁体60を取り付けることで、放電電極Aの近傍に導体50または絶縁体60を配置することができる。
また、支柱202自体を絶縁体とすることで、アーク放電の基礎台座303へのショートを防ぐことができる。
【0018】
コ字型ブラケット308は、図3(b)に示すように、内部にアーク放電電極Aを備えている。
なお、非接触加熱手段としては、アーク放電電極Aのほかにバーナーなどを用いることもできる。
しかしながら、高温で効率よく光伝送媒体を屈曲させる観点からアーク放電電極Aであることが好ましい。
非接触加熱手段を用いることで、光ファイバの屈曲部分が加熱手段と接触しないので、光ファイバに傷をつけるおそれがない。
【0019】
(動作)
図4は、態様Iの屈曲光伝送媒体製造方法を示す概念図であって、(a)は光ファイバを光ファイバ載置台に載せた図、(b)は移動加熱工程と屈曲工程を連続して行っている図、(c)は光伝送媒体の屈曲が終了した図である。
態様Iの屈曲光伝送媒体製造方法は、水平方向移動手段101およびアーク放電電極Aを用いて光ファイバ1〜8を屈曲させる屈曲光伝送媒体製造方法であって、水平方向移動手段101により光ファイバ1〜8を移動させながら、アーク放電電極Aにより光ファイバ1〜8の一部を加熱する移動加熱工程と、光ファイバ1〜8を曲げる屈曲工程と、を有し、放電電極Aの近傍に導体50または絶縁体60を配置したことを特徴とする。
【0020】
まず、図4(a)に示すように、屈曲させる光ファイバ1〜8を光ファイバ載置台102と光ファイバ支え台201に掛け渡す。
そして、光ファイバ1〜8を溝Gに嵌め、押さえ板104で固定する。
次に、図4(b)に示すように、水平方向移動手段101により光ファイバ1〜8を水平に移動させながら、所望の位置でアーク放電電極Aによりアーク放電を行って光ファイバ1〜8の一部を加熱する(移動加熱工程)。
そして、光ファイバを軟化点以上に加熱することで光ファイバの自重により該光ファイバを曲げる(屈曲工程)。
【0021】
すなわち、態様Iでは、光ファイバ1〜8は、光ファイバ自身の重さによりアーク放電電極Aで加熱されている箇所で曲がっていく。
そして、この間も水平方向移動手段101は光ファイバ1〜8を移動させ続けているので、光ファイバ1〜8は一定の範囲を連続的に加熱されることになり、微小な曲げ加工が連続して屈曲部分が形成される。
【0022】
なお、光ファイバの加熱温度は、アーク放電の温度およびアーク放電電極Aと光ファイバ1〜8との距離により調節されるが、その温度は、光ファイバ1〜8を構成する材料の軟化点以上の温度とすることが好ましい。
また、光ファイバ1〜8が複数の材料により構成されており、その軟化点が同一でない場合、最も高い軟化点を採用する。
なお、ここでいう軟化点は、JIS−R3103−1に準拠して測定した値をいう。
【0023】
次に、図4(c)に示すように、所定の箇所で水平方向移動手段101の移動およびアーク放電を止めると、光ファイバ1〜8は90°曲がった時点で屈曲を止める。
その後、自然冷却を行い、光ファイバ1〜8を屈曲光伝送媒体製造装置から取り外すことで、光ファイバ1〜8の屈曲が終了する。
なお、屈曲する光ファイバは、ガラス、プラスチック等のいずれの材料からなるものであってもよく、用途に応じて適宜選択することができる。
しかしながら、屈曲を正確に保つ観点からガラス製光ファイバが好ましい。
また、光ファイバは、単心の光ファイバであっても複数本の光ファイバで構成される光ファイバ構造体であってもよく、一度に加工される光ファイバの数量に制限はない。
なお、本発明の屈曲光伝送媒体製造方法を繰り返すことで、屈曲を2箇所以上に持つ光伝送媒体を製造することも可能である。具体的には光伝送媒体の複数箇所を順に屈曲させることで蛇行形状の光ファイバなどを形成することができる。
このように光路を自在に変更した光伝送媒体を用いれば、省スペースの光回路を作製することが可能になる。
【0024】
なお、光ファイバの曲率半径rは以下のように示すことができる。
水平方向移動手段101の移動距離をX(mm)とする。
求める曲率半径をr(mm)とし、光ファイバの屈曲の角度をθ(rad)とすると、光ファイバの屈曲部分の長さはr・θ(mm)となる。
そして、本発明では移動距離Xと屈曲部分の長さr・θは一致するはずなのでX=r・θとなる。
これを単位時間当たりの変化で表すと、
dX/dt=(r・dθ)/dt・・・(1)
となる。
dX/dtは水平方向移動手段101の移動速度V(mm/s)であり、dθ/dtは光ファイバの屈曲における角速度ω(rad/s)であるので、(1)式は
V=rω・・・(2)
と表すことができる。
したがって、曲率半径rは
r=V/ω・・・(3)
と表すことができる。
このように、光ファイバの曲率半径rは、水平方向移動手段101の移動速度V、光ファイバの屈曲における角速度ωにより決定される。
したがって、例えば角速度ωを一定に保てば、移動速度Vを速くすることで曲率半径を大きくでき、移動速度Vを遅くすることで曲率半径を小さくできる。
このようにして、曲率半径rを正確に調整できる。
【0025】
(態様II)
(構成)
図5は態様IIの屈曲光伝送媒体製造装置の概念図であって、(a)は正面図、(b)はβ−β線断面図である。
304は回転治具、305は、光伝送媒体を曲げるレバーである。
態様IIの屈曲光伝送媒体製造装置は、図5(a)、(b)に示すように、支持筐体301に角速度を調節して回転自在な回転治具304を備え、回転治具304に光伝送媒体を曲げるレバー305が設けられている。
したがって、水平方向移動手段101の移動速度だけでなく、回転治具304の角速度も調節することで、幅広く光伝送媒体の曲率半径を調整することができる。
その他の構成は態様Iと同一であり、詳細な説明は省略する。
なお、この例では、アーク放電電極近傍Aを回転治具304の回転中心としているが、他に光ファイバの屈曲の中心近傍を回転治具304の回転中心とすることもできる。
【0026】
(動作)
図6は、態様IIの屈曲光伝送媒体製造方法を示す概念図であって、(a)は光ファイバを光ファイバ載置台に載せた図、(b)は移動加熱工程と屈曲工程を連続して行っている図、(c)は光伝送媒体の屈曲が終了した図である。
態様IIの屈曲光伝送媒体製造方法は、屈曲工程で回転治具304を用いることを特徴とする。
なお、その他の動作は態様Iと同一であり、詳細な説明を省略する。
【0027】
まず、図6(a)に示すように、レバー305が光ファイバ1〜8の上部に接するように回転治具304を調節しておく。
次に、図6(b)に示すように、移動加熱工程を経て押し出されてきた光ファイバ1〜8に対して、回転治具304を図6の反時計周りに回転させることで、レバー305を用いて光ファイバ1〜8を屈曲させる。
態様IIでは、回転治具304およびレバー305を用いて屈曲を調節するので、光ファイバが自重で変形しないように、加熱温度を態様Iよりも低くすることが好ましい。
具体的には、光ファイバ1〜8を構成する材料のひずみ点以上軟化点未満の温度が好ましい。
さらに好ましくは、徐冷点以上軟化点未満である。
なお、光ファイバ1〜8が複数の材料により構成されており、その温度が同一でない場合、最も高い温度を採用する。
なお、ここでいうひずみ点、徐冷点は、JIS−R3103−2に準拠して測定した値をいう。
加熱温度の調節は、アーク放電電極Aに対する光ファイバ1〜8の位置を上下に調節することで微調整できる。
そして、図6(c)に示すように、所定の箇所で水平方向移動手段101の移動、アーク放電、および回転治具304の回転を止める。
【0028】
なお、加熱温度を態様Iと同様とし、レバー305を光ファイバ1〜8の下からあてて、曲がりを支えるようにして曲率半径を調整することもできる。
【0029】
(態様III)
(構成)
図7は、態様IIIの屈曲光伝送媒体製造装置の概念図であって、(a)は正面図、(b)はγ−γ線断面図である。
302は支持柱、306は、移動手段である移動台座である。
態様IIIの屈曲光伝送媒体製造装置は、光ファイバの一部を加熱するアーク放電電極Aと、アーク放電電極Aを移動させる移動台座306とを備える。
そして、アーク放電電極Aと移動台座306は連動して、アーク放電電極Aを移動させながら、光ファイバの一部を加熱する。
すなわち、光ファイバではなくアーク放電電極Aが移動する。
【0030】
具体的には、図7(a)、(b)に示すように、基礎台座303上に2つの移動台座306を設けることが好ましい。
移動台座306、支柱202、支持柱302、コ字型ブラケット308は一体として構成されることが好ましい。
移動台座306は図7(a)の左右方向に移動させることができる。
そして、2つの移動台座306上にそれぞれ支持柱302を設け、2つの支持柱302上にコ字型ブラケット308を固定することで、アーク放電電極Aを移動させることができる。
また、支柱202を移動台座306上に設けることで、導体50または絶縁体60も同時に移動させることができる。
なお、態様IIIでは、コ字型ブラケット308と支持筐体301とを固定しない。
移動台座306は、手動または自動のボールネジ機構等で構成し、一定速度でアーク放電電極Aを水平方向へ移動させることが好ましい。
なお、支持柱302に高さ調節手段となるリフト機構を設けることで、光ファイバとアーク放電電極Aとの高さを調節できるようにすることが好ましい。
その他の構成は態様Iと同一であり、詳細な説明は省略する。
なお、態様IIのように、回転治具304およびレバー305を用いることもできる。
【0031】
(動作)
図8は、態様IIIの屈曲光伝送媒体製造方法を示す概念図であって、(a)は光ファイバを光ファイバ載置台に載せた図、(b)は移動加熱工程と屈曲工程を連続して行っている図、(c)は光伝送媒体の屈曲が終了した図である。
態様IIIの屈曲光伝送媒体製造方法は、移動台座306およびアーク放電電極Aを用いて光ファイバ1〜8を屈曲させる屈曲光伝送媒体製造方法であって、移動台座306によりアーク放電電極Aを移動させながら、アーク放電電極Aにより光ファイバ1〜8の一部を加熱する移動加熱工程と、光ファイバ1〜8を曲げる屈曲工程と、を有し、放電電極Aの近傍に導体50または絶縁体60を配置したことを特徴とする。
すなわち、光ファイバ1〜8ではなくアーク放電電極Aを移動させる。
その他の動作は態様Iと同様であり、詳細な説明は省略する。
【0032】
まず、図8(a)に示すように、屈曲させる光ファイバ1〜8を光ファイバ載置台102と光ファイバ支え台201に掛け渡す。
そして、光ファイバ1〜8を溝Gに嵌め、押さえ板104で固定する。
次に、図8(b)に示すように、移動台座306によりアーク放電電極Aを水平に移動させながら、所望の位置でアーク放電電極Aによりアーク放電を行って光ファイバ1〜8の一部を加熱する(移動加熱工程)。
そして、光ファイバを軟化点以上に加熱することで光ファイバの自重により該光ファイバを曲げる(屈曲工程)。
次に、図8(c)に示すように、所定の箇所で移動台座306の移動およびアーク放電を止めると、光ファイバ1〜8は90°曲がった時点で屈曲を止める。
なお、態様IIのように、回転治具304およびレバー305を用いることもできる。
この場合、回転治具304を、非接触加熱手段Aと同一速度・同一方向に移動させながら回転させることで、態様IIと同様の効果を得ることができる。
【0033】
(態様IV)
図9は、態様IVの屈曲光伝送媒体製造方法を示す概念図である。
304′は、2つのレバー305を有する回転治具である。
なお、屈曲光伝送媒体製造装置については、コ字型ブラケット308、回転治具304′、導体50または絶縁体60のみを示している。
移動手段として、図示していない二次元または三次元駆動ステージを用いることで、コ字型ブラケット308および回転治具304′を、二次元または三次元に自在に動かすことができるようになる。
これにより、図9(a)、図9(b)、図9(c)、図9(d)のように、光伝送媒体の複数箇所を順に屈曲させることで、精度良く、かつ、容易に光ファイバを所望の形状にすることができる。
【0034】
(制御回路)
図10は、制御回路の一例を示すブロック図である。
401は、制御手段である制御コンピュータ、402は移動手段駆動回路、403は非接触加熱手段駆動回路、404は回転治具駆動回路、405はリフト機構駆動回路である。
本発明の他の実施形態の屈曲光伝送媒体製造装置は、光ファイバ1〜8の一部を加熱するアーク放電電極Aと、光ファイバ1〜8またはアーク放電電極Aを移動させる移動手段101、306と、アーク放電電極Aおよび移動手段101、306の動作を制御する制御コンピュータ401とを備える。
すなわち、制御コンピュータ401が、アーク放電電極Aおよび移動手段101、306を連動させて、光ファイバ1〜8またはアーク放電電極Aを移動させながら、光ファイバ1〜8の一部を加熱する。
【0035】
図10に示す制御回路は、支持筐体301の内部などの適当な場所に配置される。
制御回路は、制御コンピュータ401によって動作が統括される。
制御コンピュータ401は、CPU、メモリ、各種インターフェース等を備えており、該メモリには、動作に必要な動作プログラムや各種データが格納されていることが好ましい。
移動手段駆動回路402は、水平方向移動手段101または移動台座306を左右に移動させるモータ等を駆動する回路である。
非接触加熱手段駆動回路403は、アーク放電電極Aへの電流可変等により発熱温度等の制御を行う回路である。
回転治具駆動回路404は、回転治具304を回転させるモータ等を駆動する回路である。
リフト機構駆動回路405は、支持柱103、302、光ファイバ支え台201などにリフト機構を設けたときに、リフト機構を上下移動させるモータ等を駆動する回路である。
制御コンピュータ401が、移動手段駆動回路402、非接触加熱手段駆動回路403、治具回転用モータ駆動回路404を連動させることで、光伝送媒体1〜8をスムーズに屈曲させることができる。
【実施例】
【0036】
以下、実施例を用いて説明する。
<実施例1>
実施例では態様IIの屈曲光伝送媒体製造装置を用いた。
基礎台座303としてアルミ製L字型ブラケットを用意した。
水平方向移動手段101、支持柱103、光ファイバ載置台102、押板104としてステッピングモータ駆動ボールネジ式の自動X軸ステージを用意した。
アーク放電電極Aには、古河電工社製光ファイバ融着機、商品名:「S146」内のアーク放電電極(電極間隔:2.1mm)を取り出して用いた。
コ字型ブラケット308として、市販のガラスエポキシ製コ字型ブラケットを用いた。回転治具304として、ステッピングモータ駆動の自動θ軸回転ステージを用意した。
レバー305として、直径5mmのアルミ製円柱を用意し、自動θ軸回転ステージに固定した。
なお、回転治具304は、その回転中心がアーク放電電極となるようにアルミ製L字型ブラケットに固定した。
支柱202として、セラミック支柱(光ファイバ軸方向長さ2mm、幅1.5mm、垂直方向高さ190mm)を用いて、その先端にアルミニウム製の導体(光ファイバ軸方向長さ0.5mm、幅2mm、垂直方向高さ2mm)を配置した。
導体とアーク放電電極の上下方向の距離は2mmとなるようにした。
光ファイバ1〜8として、8心石英ガラス製光ファイバテープ心線(GI50マルチモード、クラッド径0.125mm、被覆外径0.25mm、長さ200mm、古河電工社製、商品名:「PE−A10G」)を用いた。
なお、先端から50mmのところまで、被覆を除去した。
また、光ファイバは、アーク放電電極中心の上1mmを通過するように調整した。
そして、自動X軸ステージおよびアーク放電電極を連動させ、自動X軸ステージの移動速度Vを1(mm/s)、自動θ軸回転ステージの角速度ωをπ/3(rad/s)とした。
光ファイバの先端から10mmの箇所がアーク放電電極にもっとも近くなったときをアーク放電の開始点とした。
以上の条件で、アーク放電を1.5秒行って光ファイバが90°になるように屈曲させ、実施例1の屈曲光ファイバを得た。
その後、デジタルマイクロスコープ(キーエンス社製、商品名:「VHX−900」)を用いて各光ファイバの屈曲角度を精密に測定した。
【0037】
<実施例2>
導体に代えて、ジルコニア製の絶縁体(光ファイバ軸方向長さ2mm、幅1.5mm、垂直方向高さ10mm)を配置した。
絶縁体とアーク放電電極の上下方向の距離は0.5mmとなるようにした。
光ファイバは、アーク放電電極中心の下0.1mmを通過するように調整した。
その他は実施例1と同様にして、実施例2の屈曲光ファイバを得た。
その後、デジタルマイクロスコープ(キーエンス社製、商品名:「VHX−900」)を用いて各光ファイバの屈曲角度を精密に測定した。
【0038】
<比較例1>
導体を用いなかった。
その他は実施例1と同様にして、比較例1の屈曲光ファイバを得た。
その後、デジタルマイクロスコープ(キーエンス社製、商品名:「VHX−900」)を用いて各光ファイバの屈曲角度を精密に測定した。
【0039】
<比較例2>
絶縁体を用いなかった。
その他は実施例2と同様にして、比較例2の屈曲光ファイバを得た。
その後、デジタルマイクロスコープ(キーエンス社製、商品名:「VHX−900」)を用いて各光ファイバの屈曲角度を精密に測定した。
【0040】
各光ファイバの屈曲角度を表1に示す。
【0041】
【表1】

【0042】
表から明らかなように、実施例1は導体を電極近傍に置いたので、すべてのファイバで89〜90°の屈曲角度を得られた。屈曲角度の最大値と最小値の差は0.8°でバラツキも小さかった。
また、実施例2は絶縁体を電極近傍に置いたので、すべてのファイバで89〜90度の屈曲角度を得られた。屈曲角度の最大値と最小値の差は0.8°でバラツキも小さかった。
これに対し、比較例1は電極近傍に導体がないので、外側のファイバの屈曲角度が85度未満となってしまった。屈曲角度の最大値と最小値の差は10.3°でバラツキも大きかった。
また、比較例2は電極近傍に絶縁体がないので、外側のファイバの屈曲角度が85度未満となってしまった。屈曲角度の最大値と最小値の差は10.6°でバラツキも大きかった。
なお、比較例1、2の屈曲光ファイバは、図6(c)のようにレバー305で押さえている間は90°を保っていたが、装置から取り外すと光ファイバの弾性で図11(c)のようにバラツキを生じた。
以上のように、電極近傍に絶縁体または導体を配置することにより、多数本の光ファイバについて、クラックをつけず、かつ、一括で一様な屈曲状態を得ることができた。
【符号の説明】
【0043】
1〜8 光ファイバ
50 導体
60 絶縁体
101 水平方向移動手段
102 光ファイバ載置台
103 支持柱
104 押板
201 光ファイバ支え台
301 支持筐体
302 支持柱
303 基礎台座
304、304′ 回転治具
305 レバー
306 移動台座
308 コ字型ブラケット
401 制御コンピュータ
402 移動手段駆動回路
403 非接触加熱手段駆動回路
404 回転治具駆動回路
405 リフト機構駆動回路
A アーク放電電極
G 溝
a 光ファイバ幅
b 電極間隔
x 高温域
y 中温域
z 低温域

【特許請求の範囲】
【請求項1】
光伝送媒体の一部を加熱する放電電極と、
該光伝送媒体または該放電電極を移動させる移動手段とを備え、
光伝送媒体または放電電極を移動させながら、該光伝送媒体の一部を加熱する屈曲光伝送媒体製造装置であって、
前記放電電極の近傍に導体または絶縁体を配置したことを特徴とする屈曲光伝送媒体製造装置。
【請求項2】
前記光伝送媒体は多数本の光ファイバであることを特徴とする請求項1記載の屈曲光伝送媒体製造装置。
【請求項3】
多数本の光ファイバ幅/電極間隔が0.5以上0.95以下であることを特徴とする請求項2記載の屈曲光伝送媒体製造装置。
【請求項4】
前記放電電極はアーク放電電極であることを特徴とする請求項1記載の屈曲光伝送媒体製造装置。
【請求項5】
前記導体は金属であることを特徴とする請求項1記載の屈曲光伝送媒体製造装置。
【請求項6】
前記絶縁体はセラミックであることを特徴とする請求項1記載の屈曲光伝送媒体製造装置。
【請求項7】
さらに、前記移動手段の動作を制御する制御手段を備えることを特徴とする請求項1記載の屈曲光伝送媒体製造装置。
【請求項8】
移動手段および放電電極を用いて光伝送媒体を屈曲させる屈曲光伝送媒体製造方法であって、
移動手段により光伝送媒体または放電電極を移動させながら、該放電電極により該光伝送媒体の一部を加熱する移動加熱工程と、
該光伝送媒体を曲げる屈曲工程とを有し、
前記放電電極の近傍に導体または絶縁体を配置したことを特徴とする屈曲光伝送媒体製造方法。
【請求項9】
前記光伝送媒体は多数本の光ファイバであることを特徴とする請求項8記載の屈曲光伝送媒体製造方法。
【請求項10】
多数本の光ファイバ幅/電極間隔が0.5以上0.95以下であることを特徴とする請求項9記載の屈曲光伝送媒体製造方法。
【請求項11】
前記放電電極はアーク放電電極であることを特徴とする請求項8記載の屈曲光伝送媒体製造方法。
【請求項12】
前記導体は金属であることを特徴とする請求項8記載の屈曲光伝送媒体製造方法。
【請求項13】
前記絶縁体はセラミックであることを特徴とする請求項8記載の屈曲光伝送媒体製造方法。
【請求項14】
さらに、前記移動手段の動作を制御する制御手段を備えることを特徴とする請求項8記載の屈曲光伝送媒体製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2010−262144(P2010−262144A)
【公開日】平成22年11月18日(2010.11.18)
【国際特許分類】
【出願番号】特願2009−113174(P2009−113174)
【出願日】平成21年5月8日(2009.5.8)
【出願人】(000153591)株式会社巴川製紙所 (457)
【Fターム(参考)】