説明

放射線画像変換パネルの製造方法及び放射線画像変換パネル

【課題】輝尽発光量を飛躍的に向上させる。
【解決手段】本発明に係る放射線画像変換パネル1の製造方法は、所定の基板2上に気相堆積法で輝尽性蛍光体層3が形成された蛍光体パネル4をハロゲン化溶剤に浸漬する浸漬工程と、前記浸漬工程の後に蛍光体パネル4を真空、空気又は不活性ガスの雰囲気下で60〜200℃に加熱する加熱工程とを、有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被写体の放射線画像を形成する際に用いられる放射線画像変換パネルの製造方法に関する。
【背景技術】
【0002】
従来から、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に、増感紙−フィルム系による放射線画像は、長い歴史のなかで高感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ持った撮像システムとして、いまなお、世界中の医療現場で用いられている。近年では、輝尽性蛍光体パネルを放射線画像変換パネルとして用いたコンピューテッドラジオグラフィー(CR(computed radiography))も商品化され、高感度化及び画質の改善が日夜続けられている。
【0003】
上記「輝尽性蛍光体パネル」というのは、被写体を透過した放射線を蓄積して、励起光の照射等により、蓄積した放射線をその線量に応じた強度で輝尽発光するものであり、所定の基板上に輝尽性蛍光体が層状に形成された構成を有している。そのような輝尽性蛍光体パネルの製造方法の一例が特許文献1に開示されている。特許文献1に記載の製造方法では、周知の気相堆積法により所定の基板上に輝尽性蛍光体層を形成して輝尽性蛍光体パネルを製造し、その輝尽性蛍光体パネルを熱処理している(段落番号0034,0035参照)。
【特許文献1】特開2003−279696号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ここで、特許文献1に記載の製造方法のように、輝尽性蛍光体パネルを熱処理すると、輝尽性蛍光体の結晶中から水成分が除去され、輝尽性蛍光体層の輝尽発光量は増加するが、輝尽性蛍光体パネルを単に熱処理しただけでは、輝尽発光量をある一定レベルまでしか増加させることができず、その輝尽発光量に比例する放射線画像に画像ムラや線状ノイズが発生する可能性がある。
本発明の目的は輝尽発光量を飛躍的に向上させることである。
【課題を解決するための手段】
【0005】
上記課題を解決するため請求項1に記載の発明の放射線画像変換パネルの製造方法は、
所定の基板上に気相堆積法で輝尽性蛍光体層が形成された蛍光体パネルをハロゲン化溶剤に浸漬する浸漬工程と、
前記浸漬工程の後に前記蛍光体パネルを真空、空気又は不活性ガスの雰囲気下で60〜200℃に加熱する加熱工程と、
を備えることを特徴としている。
【0006】
請求項2に記載の発明は、
所定の基板上に気相堆積法で輝尽性蛍光体層が形成された蛍光体パネルをハロゲン化溶剤に浸漬した状態で、前記ハロゲン化溶剤を60〜200℃で煮沸して前記蛍光体パネルを加熱することを特徴としている。
【0007】
請求項3に記載の発明は、
請求項1又は2に記載の放射線画像変換パネルの製造方法において、
前記ハロゲン化溶剤が引火点をもたない不燃性溶剤であることを特徴としている。
【0008】
請求項4に記載の発明は、
請求項1〜3のいずれか一項に記載の放射線画像変換パネルの製造方法において、
前記ハロゲン化溶剤がHFEであることを特徴としている。
【0009】
請求項5に記載の発明は、
請求項1〜4のいずれか一項に記載の放射線画像変換パネルの製造方法において、
前記ハロゲン化溶剤が、励起光を吸収する色材を含有していることを特徴としている。
【0010】
請求項6に記載の発明の放射線画像変換パネルは、
請求項1〜5のいずれか一項に記載の放射線画像変換パネルの製造方法に従って製造された蛍光体パネルと、
前記輝尽性蛍光体層上に配置され、かつ、周縁部が前記蛍光体パネルの周縁部の外側に延出した第1の保護フィルムと、
前記基板下に配置され、かつ、周縁部が前記蛍光体パネルの周縁部の外側に延出した第2の保護フィルムと、
を備え、
前記第1の保護フィルムと前記第2の保護フィルムとの各周縁部が互いに融着されていることを特徴としている。
【発明の効果】
【0011】
請求項1に記載の発明では、蛍光体パネルを単に加熱するのではなく、蛍光体パネルをハロゲン化溶剤に浸漬してその後に蛍光体パネルを加熱するため、製造後の放射線画像変換パネルの輝尽発光量を飛躍的に向上させることができる。そのため、放射線画像における画像ムラや線状ノイズの発生を防止することができる。
【0012】
請求項2に記載の発明では、蛍光体パネルを単に加熱するのではなく、蛍光体パネルをハロゲン化溶剤に浸漬した状態でハロゲン化溶剤を煮沸して蛍光体パネルを加熱するため、製造後の放射線画像変換パネルの輝尽発光量を飛躍的に向上させることができる。そのため、放射線画像における画像ムラや線状ノイズの発生を防止することができる。
【0013】
請求項3,4に記載の発明では、ハロゲン化溶剤が引火点をもたない不燃性溶剤であるため、蛍光体パネルの加熱時において、使用しようとするハロゲン化溶剤の種類を考慮せずに加熱温度を任意に設定することができる。
【0014】
請求項5に記載の発明では、ハロゲン化溶剤が励起光吸収性の色材を含有しているため、当該色材が輝尽性蛍光体層中に浸透し、輝尽性蛍光体層に入射した励起光の散乱を防止することができる。
【0015】
請求項6に記載の発明では、第1,第2の保護フィルムが互いに周縁部同士で融着されているため、蛍光体パネルが第1,第2の保護フィルムで封止され、蛍光体パネルの輝尽性蛍光体層への水分の浸入を確実に防止することができる。
【発明を実施するための最良の形態】
【0016】
以下、図面を参照しながら本発明を実施するための最良の形態について説明する。ただし、発明の範囲は図示例に限定されない。
【0017】
[第1の実施形態]
図1は本発明に係る放射線画像変換パネル1の断面図である。
図1に示す通り、放射線画像変換パネル1は、所定の基板2上に輝尽性蛍光体層3が形成された蛍光体パネル4を有しており、当該蛍光体パネル4を2枚の第1,第2の保護フィルム5,6で完全に封止した構成を有している。
【0018】
基板2は矩形状を呈している。基板2は、高分子材料,ガラス,金属等で構成されており、特に、セルロースアセテートフィルム,ポリエステルフィルム,ポリエチレンテレフタレート,ポリアミドフィルム,ポリイミドフィルム,トリアセテートフィルム,ポリカーボネートフィルム等のプラスチックフィルム、石英,ホウ珪酸ガラス,化学的強化ガラス等の板ガラス、又はアルミニウム,鉄,銅,クロム等の金属シート若しくはそれら金属酸化物の被覆層を有する金属シートで構成されているのがよい。
【0019】
基板2の表面2a(図1中上面)は滑面であってもよいし、輝尽性蛍光体層3との接着性を向上させる目的でマット面であってもよく、その表面2a上には輝尽性蛍光体層3との接着性を向上させる目的で下引層が設けられてもよいし、その表面2a上には基板2を透過して輝尽性蛍光体層3に励起光が入射するのを防止する目的で光反射層が設けられてもよい。
【0020】
輝尽性蛍光体層3はCsBr:Eu等の周知の輝尽性蛍光体から構成されており、蒸着法,スパッタリング法,CVD(Chemical Vapor Deposition)法,PVD(Physical Vapor Deposition)法,イオンプレーティング法等の周知の気相堆積法で形成されている。輝尽性蛍光体層3は1層で構成されていてもよいし、2以上の層で構成されていてもよい。
【0021】
図2は蛍光体パネル4の拡大断面図であって輝尽性蛍光体層3を巨視的にみた断面図である。
図2に示す通り、輝尽性蛍光体層3は、輝尽性蛍光体から構成された多数の柱状結晶3a,3a,…が互いに間隔をあけて並んだ柱状構造を有している。各柱状結晶3aは、基板2の表面2aの法線Rに対し所定角度で傾斜している。
【0022】
上記構成を具備する蛍光体パネル4は、図1に示す通り、輝尽性蛍光体層3上に配置された第1の保護フィルム5と、基板2下に配置された第2の保護フィルム6との間に介在している。
【0023】
第1の保護フィルム5は蛍光体パネル4よりやや大きな面積を有しており、蛍光体パネル4の輝尽性蛍光体層3と実質的に接着していない状態で周縁部が蛍光体パネル4の周縁部より外側に延出している。「第1の保護フィルム5が輝尽性蛍光体層3と実質的に接着していない状態」とは、第1の保護フィルム5と輝尽性蛍光体層3とが光学的に一体化していない状態をいい、具体的には、第1の保護フィルム5と輝尽性蛍光体層3との接触面積が輝尽性蛍光体層3の表面(第1の保護フィルム5に対向する面)の面積の10%以下である状態をいう。
【0024】
他方、第2の保護フィルム6も蛍光体パネル4よりやや大きな面積を有しており、周縁部が蛍光体パネル4の周縁部より外側に延出している。
【0025】
放射線画像変換パネル1では、第1,第2の保護フィルム5,6の各周縁部同士が全周にわたって融着されている。これにより、蛍光体パネル4が保護フィルム5,6で完全に封止され、蛍光体パネル4の輝尽性蛍光体層3への水分の浸入が確実に防止されている。
【0026】
第1,第2の保護フィルム5,6としては、酢酸セルロース、ニトロセルロース、ポリメチルメタクリレート、ポリビニルブチラール、ポリビニルホルマール、ポリカーボネート、ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリ塩化ビニリデン、ナイロン、ポリ四フッ化エチレン、ポリ三フッ化−塩化エチレン、四フッ化エチレン−六フッ化プロピレン共重合体、塩化ビニリデン−塩化ビニル共重合体、塩化ビニリデン−アクリロニトリル共重合体などの樹脂フィルムを用いることができる。樹脂フィルムは加工が容易で厚みを100μm以下と薄くしても製造工程中の強度には問題がなく、薄層であるため初期画質の点で好ましい。
【0027】
また、第1,第2の保護フィルム5,6には、透湿度及び酸素透過性が低い無機物質の層が積層されていてもよい。そのような無機物質としては、SiOx(SiO、SiO2)、Al23、ZnO2、SnO2,SiC、SiN等があるが、このうち特にAl23やSiOxは光透過率が高くかつ透湿度及び酸素透過性が高い、すなわちクラックやマイクロポアが少なく緻密な膜を形成することができるので特に好ましい。SiOx、Al23は単独で積層されてもよいが、両方を積層すると透湿度及び酸素透過性をより向上させることができるので、SiOx、Al23の両方を積層するのがよい。
【0028】
無機物質の第1,第2の保護フィルム5,6への積層は、PVD法、スパッタリング法、CVD法、PE−CVD(Plasma enhanced CVD)等の方法が使用できる。当該積層処理は、輝尽性蛍光体層3を樹脂フィルムで被覆した後におこなってもよいし、輝尽性蛍光体層3を被覆する前におこなってもよく、その積層厚を0.01〜1μm程度とするのが好ましい。
【0029】
また、第1,第2の保護フィルム5,6として、アルミフィルム等の金属フィルムをラミネートしてなる積層フィルムを使用してもよいし、あらかじめ蒸着層が形成された市販の防湿性の樹脂フィルムを用いてもよい。このような防湿性の樹脂フィルムとしては、例えば、凸版印刷(株)GL−AE等がある。上記のフィルムを複数枚積層して第1,第2の保護フィルム5,6としてもよい。
【0030】
第1,第2の保護フィルム5,6による輝尽性蛍光体層3の封止方法としては、周知のどのような方法でも適用可能であり、例えば、最外層を熱融着性の樹脂で構成した防湿性の第1,第2の保護フィルム5,6を蛍光体パネル4の上下に配置し、蛍光体パネル4の周縁部より外側の位置で第1,第2の保護フィルム5,6の周縁部同士をインパルスシーラにより加熱・融着することで、輝尽性蛍光体層3を封止することができる。
【0031】
続いて、本発明に係る放射線画像変換パネル1の製造方法について説明する。
【0032】
図3は、放射線画像変換パネル1の製造方法の各工程を経時的に表現した概略図面である。
始めに、所定の基板2を準備してその基板2上に周知の気相堆積法で輝尽性蛍光体層3を形成する(輝尽性蛍光体層形成工程)。
【0033】
例えば、複数存在する周知の気相堆積法のうち、蒸着法で輝尽性蛍光体層3を形成する場合について簡単に説明すると、図3(a)に示す通り、基板2を蒸着装置内の基板ホルダに固定・設置し、当該蒸着装置内を排気して真空状態とする。その後、抵抗加熱法,エレクトロンビーム法等の方法により輝尽性蛍光体を蒸着源として当該輝尽性蛍光体を加熱・蒸発させ、基板2の表面2a上に輝尽性蛍光体を所望の厚さになるまで成長させ、輝尽性蛍光体層3を基板2上に形成する。
【0034】
ここで、図2に示す通り、蒸着装置内の基板ホルダに固定した基板2の表面2aの法線Rに対し、輝尽性蛍光体の蒸気流の入射角度をθ2とし、形成しようとする柱状結晶3aの傾斜角度をθ1とすると、経験的に傾斜角度θ1は入射角度θ2の約半分となり、入射角度θ2に応じた傾斜角度θ1で多数の柱状結晶3a,3a,…が形成される。すなわち、入射角度θ2=60°で輝尽性蛍光体の蒸気流を基板2の表面2aに入射させれば、当該基板2の表面2aには傾斜角度θ1=30°の多数の柱状結晶3a,3a,…を形成することができる。
【0035】
基板2の表面2aに対し輝尽性蛍光体の蒸気流を所定の入射角度で供給する方法としては、蒸着源に対し基板2を傾斜させるように配置する方法や、基板2と蒸着源とを互いに平行に設置して、スリット等により輝尽性蛍光体の蒸気流の斜め成分のみを蒸着面から蒸発させる方法等がある。
【0036】
輝尽性蛍光体層形成工程を終えたら、図3(b)に示す通り、基板2上に輝尽性蛍光体層3が形成された蛍光体パネル4を、ハロゲン化溶剤中に所定時間浸漬する(浸漬工程)。
【0037】
浸漬工程で使用可能な「ハロゲン化溶剤」とは、炭素原子と水素原子からなる炭化水素化合物において水素原子の少なくとも1つをハロゲン族元素に属するフッ素原子,塩素原子,臭素原子又はヨウ素原子で置換した化合物であって、常温・常圧において液体であるものをいう。当該ハロゲン化溶剤は構造的には各元素同士の結合が飽和結合だけで構成された化合物であってもよいし、不飽和結合を含む化合物であってもよいし、環状の化合物であってもよいし、鎖状の化合物であってもよいし、化合物中の原子又は分子が水酸基,エーテル基,カルボニル基,カルボキシル基等で置換された化合物であってもよい。
【0038】
当該ハロゲン化溶剤として好ましい化合物としては、
(1)加熱処理(後述参照)に供される点(引火性や爆発性等に関わる消防法的な観点から引火点をもたない等の特性が要求される点)
の観点から、引火点をもたない不燃性溶剤を適用するのがよい。この場合、後述の加熱工程において、使用しようとするハロゲン化溶剤の種類を考慮せずに加熱温度を任意に設定することができる。
【0039】
さらに上記(1)の観点を含めて、
(2)環境適性
(3)生体への有害性
等の観点から、昨今話題にのぼるフロン代替素材が有用であると考えられている。その中でも上記(2),(3)に優れた最新のフロン代替素材である「HFE(ハイドロフルオロエーテル)」を当該ハロゲン化溶剤として好適に用いることができる。
【0040】
HFEは、炭素、フッ素、水素、1つ以上のエーテル酸素原子からなり、さらに炭素主鎖中に組み込まれた1つ以上のさらなるヘテロ原子、例えば、硫黄又は三価窒素原子を含んでいてもよい。HFEは直鎖状を呈していてもよいし、枝分かれ状を呈していてもよいし、環状を呈していてもよいし、又はそれらの組み合わせで構成された構造を有していてもよく、例えば、アルキル脂環式であってもよい。ただし、HFEは不飽和結合を含まないことが好ましい。
【0041】
具体的なHFEとして、下記一般式(4)によって示される化合物をその一例として用いることができる。
【0042】
(R4−O)a−R5 … (4)
【0043】
上記一般式(4)中、「a」は1〜3の数であり、「R4」及び「R5」はアルキル基及びアリール基からなる群より選択される基であり、互いに同一であってもよいし異なっていてもよい。「R4」及び「R5」のうち少なくとも1つは、少なくとも1個のフッ素原子と、少なくとも1個の水素原子とを含むものであり、「R4」及び「R5」のいずれか一方又は両方が1個以上の鎖中ヘテロ原子を含んでもよく、HFEは当該HFE中のフッ素原子の総数が水素原子の総数以上であるのが好ましい。「R4」及び「R5」は直鎖状を呈していてもよいし、枝分かれ状を呈していてもよいし、環状を呈してもいてもよく、さらに言えば1個以上の不飽和の炭素−炭素結合を含んでいてもよいが、「R4」及び「R5」が両方とも各元素同士で飽和結合した原子団であるのが好ましい。
【0044】
このような性質を有するHFEとしては、例えば住友スリーエム株式会社製のノベック(登録商標)HFE−7100,7100DL,7200やダイキン工業株式会社製のHFE−S7(商品名)等があり、これら市販のHFEを浸漬工程に使用可能なハロゲン化溶剤として好適に用いることができる。
【0045】
なお、上記ハロゲン化溶剤には励起光を吸収する「色材」を含有させてもよい。ハロゲン化溶剤中に色材が含有されることで、浸漬工程において当該色材が各柱状結晶3aの間隙の隅々にまで浸透し、各柱状結晶3aの間隙に入射した励起光の散乱を防止することができる。
【0046】
使用する色材は輝尽性蛍光体の種類によって決定するのがよい。放射線画像変換パネル1には、通常、波長400〜900nmの励起光により波長300〜500nmの輝尽発光を示す輝尽性蛍光体が用いられるため、色材としては、青色〜緑色の有機系色材又は無機系色材を用いるのがよい。
【0047】
青色〜緑色の有機系色材としては、Neozapon Blau 807(BASF社製)、ザボンファーストブルー3G(ヘキスト社製)、エストロールブリルブルーN−3RL(住友化学(株)製)、スミアクリルブルーN−3RL(住友化学(株)製)、D&CブルーNo.1(ナショナル・アニリン社製)、スピリットブルー(保土谷化学(株)社製)、オイルブルーNo.603(オリエント(株)製)、キトンブルーA(チバ・ガイギー社製)、アイゼンカチロンブルーGLH(保土ヶ谷化学(株)製)、レイクブルーAFH(協和産業製)、プリモシアニン6GX(稲畑産業(株)製)、ブリルアシッドグリーン6BH(保土谷化学(株)製)、シアニンブルーBNRS(東洋インキ(株)製)、ライオノルブルーSL(東洋インキ(株)製)等が挙げられる。他方、青色〜緑色の無機系色材としては群青、コバルトブルー、セルリアンブルー、酸化クロム、TiO2−ZnO−CoO−NiO系顔料等が挙げられる。
【0048】
上記ハロゲン化溶剤には、色材以外にも、高光吸収の物質、高光反射の物質等の充填材を含有させてもよい。高光吸収の物質、高光反射の物質等の充填材を各柱状結晶3aの間隙に充填すれば、輝尽性蛍光体層3に入射した輝尽励起光の横方向への光拡散の低減に有効である。
【0049】
浸漬工程を終えたら、図3(c)に示す通り、ハロゲン化溶剤中に浸漬済みの蛍光体パネル4を周知の恒温槽10の内部に設置して当該恒温槽10の内部を真空、空気又は不活性ガス(窒素、アルゴン等)の雰囲気とし、その状態で蛍光体パネル4を60〜200℃で所定時間加熱し、蛍光体パネル4の輝尽性蛍光体層3の各柱状結晶3a中から水成分を除去する(加熱工程)。
【0050】
加熱工程においては、60〜200℃の温度範囲内で加熱温度を高く設定すればするほど、より短時間で加熱処理を終了することができ、輝尽性蛍光体層3の感度(輝度)や製造される放射線画像変換パネル1の画質を向上させることができる。加熱工程における加熱温度が60℃を下回ると、上記のような効果を発揮させることは可能であるが、そのような効果を十分に得るには加熱時間を長く設定しなければならず、放射線画像変換パネル1の生産性に劣る。そのため、当該加熱温度を60℃以上で設定するのがよい。他方、加熱工程における加熱温度が200℃を上回ると、ハロゲン化溶剤から有害なハロゲン化水素が発生する可能性があるため、当該加熱温度を200℃以下で設定するのがよい。
【0051】
なお、加熱工程の処理は、上記の通り、同一の加熱条件で継続的におこなう1回の処理としてもよいが、加熱工程を2回以上の処理に分けてその各回の処理で互いに加熱条件(恒温槽10中の雰囲気や加熱温度、加熱時間等)を変えてもよい。例えば、加熱工程の処理を2回の処理に分けて、1回目の加熱処理で、窒素雰囲気下において100℃で1時間蛍光体パネル4を加熱し、2回目の加熱処理で、空気雰囲気下において140℃で2時間蛍光体パネル4を加熱するような構成としてもよい。
【0052】
また浸漬工程と加熱工程との間で、ハロゲン化溶剤中に浸漬済みの蛍光体パネル4を乾燥させる目的で、当該蛍光体パネル4を恒温槽10に設置して所定温度で短時間加熱してもよい(乾燥工程)。例えば、乾燥工程は、蛍光体パネル4を恒温槽10の内部で100℃で2分間加熱することで実現することができる。
【0053】
加熱工程を終えたら、蛍光体パネル4をそのまま恒温槽10の内部に所定時間放置して、蛍光体パネル4が所定温度に下降するまで蛍光体パネル4を冷却する(放置冷却工程)。例えば、蛍光体パネル4を恒温槽10の内部に1時間以上放置して蛍光体パネル4が50℃近傍に下降するまで蛍光体パネル4を冷却する。
【0054】
放置冷却工程を終えたら、蛍光体パネル4を恒温槽10から取り出し、図3(d)に示す通り、取り出した蛍光体パネル4を2枚の第1,第2の保護フィルム5,6間に挟んで第1,第2の保護フィルム5,6の各周縁部をインパルスシーラで加熱・融着し、蛍光体パネル4を第1,第2の保護フィルム5,6で封止する(封止工程)。これにより、放射線画像変換パネル1の製造が完了する。
【0055】
なお、封止工程では、輝尽性蛍光体層3を被覆するように第1の保護フィルム5を単に基板2に貼り付けて放射線画像変換パネル1の製造を完了してもよい。
【0056】
以上の第1の実施形態に係る放射線画像変換パネル1の製造方法では、蛍光体パネル4を単に加熱するのではなく、浸漬工程において蛍光体パネル4をハロゲン化溶剤に浸漬し、その後の加熱工程において蛍光体パネル4を加熱するため、製造後の放射線画像変換パネル1の輝尽発光量を飛躍的に向上させることができる。そのため、放射線画像における画像ムラや線状ノイズの発生を防止することができる。
【0057】
[第2の実施形態]
第2の実施形態に係る放射線画像変換パネル1は、上記第1の実施形態に係る放射線画像変換パネル1と同様の構成を有しているが、その製造方法の一部の工程において上記第1の実施形態で説明した製造方法と異なっている。下記では、上記第1の実施形態で説明した製造方法と異なる工程を中心にして放射線画像変換パネル1の製造方法を説明する。
【0058】
図4は第2の実施形態に係る放射線画像変換パネル1の製造方法を示す図面であって、当該製造方法の各工程を経時的に表現した概略図面である。
始めに、図4(a)に示す通り、上記と同様の輝尽性蛍光体層形成工程による処理をおこない、その輝尽性蛍光体層形成工程を終えたら、図4(b)を示す通り、基板2上に輝尽性蛍光体層3が形成された蛍光体パネル4を、ハロゲン化溶剤が入った容器20の当該ハロゲン化溶剤中に浸漬させ、その状態で当該ハロゲン化溶剤を60〜200℃で煮沸して蛍光体パネル4を加熱する(煮沸工程)。
【0059】
煮沸用の容器20としては、例えばステンレス製の密閉容器を適用することができる。
なお、煮沸工程において、使用可能なハロゲン化溶剤は上記第1の実施形態で説明したものであって上記で説明済みの色材や充填剤等が含有されてもよく、その煮沸温度も上記第1の実施形態で説明した加熱工程の加熱温度と同様の理由から60〜200℃の温度範囲内で設定するのがよい。
【0060】
煮沸工程を終えたら、図4(c)に示す通り、上記と同様の乾燥工程による処理をおこない、その乾燥工程を終えたら、上記と同様の放置冷却工程による処理をおこない、その放置冷却工程を終えたら、図4(d)に示す通り、上記と同様の封止工程による処理をおこない、第2の実施形態に係る放射線画像変換パネル1の製造が完了する。
【0061】
以上の第2の実施形態に係る放射線画像変換パネル1に製造方法では、蛍光体パネル4を単に加熱するのではなく、煮沸工程において蛍光体パネル4をハロゲン化溶剤に浸漬した状態でハロゲン化溶剤を煮沸して蛍光体パネル4を加熱するため、製造後の放射線画像変換パネル1の輝尽発光量を飛躍的に向上させることができる。そのため、放射線画像における画像ムラや線状ノイズの発生を防止することができる。
【実施例】
【0062】
本実施例では、放射線画像変換パネルを想定した複数種類の試料を作製し、それら各試料について感度(輝度)や画質(画像ムラ,線状ノイズの有無)を測定・評価した。
【0063】
(1)試料の作製
基板として大きさが10cm×10cmで厚さが500μmの透明結晶化ガラスを17枚準備し、各基板の一方の面に光反射層を形成した。光反射層の形成は、周知の蒸着装置を用いて酸化チタン(フルウチ化学社製)と酸化ジルコニウム(フルウチ化学社製)とを基板上に蒸着することでおこなった。当該光反射層は波長400nmの光に対する反射率が85%、波長660nmの光に対する反射率が20%となるように膜厚を調整した。
【0064】
その後、各基板の光反射層上にCsBr:Euからなる輝尽性蛍光体を蒸着し、各基板の光反射層上に輝尽性蛍光体層を形成した。具体的には、始めに、各基板の光反射層を形成した面を蒸着装置の蒸着源に向けた状態で蒸着装置内の真空チャンバー内に各基板を固定して真空チャンバー内を240℃に加温し、その状態で真空チャンバー内に窒素ガスを導入して真空チャンバー内を真空度0.1Paとした。このとき、蒸着源と基板との距離を60cmとした。その後、基板の光反射層を形成した面の法線方向に対して30°の角度で輝尽性蛍光体の蒸気が入射するように、蒸着源と基板との間にアルミニウム製のスリットを配置した。その後、基板を面方向に搬送しながら蒸着をおこない、300μm厚の柱状構造を有する輝尽性蛍光体層を各基板の光反射層上に形成し、17枚の蛍光体パネルを製造した。
【0065】
(1−1)試料1の作製
各種マット加工の施された膜厚12μmのポリエチレンテレフタレート(PET12)と、アルミナを蒸着した膜厚12μmのPET(VMPET12、東洋メタライジング社製)とを、2液反応型のウレタン系接着材を使用してドライラミネーションで貼り合わせて保護フィルムを作製した。その後、製造済みの17枚の蛍光体パネル中から1枚の蛍光体パネルを選択し、作製済みの保護フィルムで輝尽性蛍光体層を被覆するようにその蛍光体パネル上に保護フィルムを配置し、保護フィルムを蛍光体パネルの基板に貼り付けてこれを「試料1」とした。当該試料1の製造工程等の詳細は下記表1に示す通りである。
【0066】
(1−2)試料2の作製
製造済みの17枚の蛍光体パネル中から1枚の蛍光体パネルを選択し、その蛍光体パネルを周知の恒温槽中に設置して空気雰囲気下において100℃で2時間加熱した。その後、加熱済みの蛍光体パネルに対し、上記(1−1)と同様にして保護フィルムを貼り付けてこれを「試料2」とした。当該試料2の製造工程等の詳細は下記表1に示す通りである。
【0067】
(1−3)試料10の作製
製造済みの17枚の蛍光体パネル中から1枚の蛍光体パネルを選択し、その蛍光体パネルを10ccのハロゲン化溶剤中に3分間浸漬させた。その後、浸漬済みの蛍光体パネルを周知の恒温槽中に設置して100℃で2分間乾燥させ、さらにその後空気雰囲気下において100℃で2時間加熱した。なお、ここでの加熱工程では、浸漬工程で用いたハロゲン化溶剤が蛍光体パネルに付着したまま残っている可能性があり、そのハロゲン化溶剤雰囲気下で蛍光体パネルを加熱したとも言える。その後、加熱済みの蛍光体パネルに対し、上記(1−1)と同様にして保護フィルムを貼り付けてこれを「試料10」とした。当該試料10の製造工程等の詳細は下記表1に示す通りである。
【0068】
(1−4)試料11〜15の作製
製造済みの17枚の蛍光体パネル中から5枚の蛍光体パネルを選択し、それら各蛍光体パネルを、0.03重量%の色材(BASF社製Neozapon Blau 807)が含有された10ccのハロゲン化溶剤中に3分間浸漬させた。その後、浸漬済みの各蛍光体パネルを周知の恒温槽中に設置して100℃で2分間乾燥させ、さらにその後蛍光体パネルごとに異なる条件で各蛍光体パネルを加熱した。各蛍光体パネルの加熱条件は下記表1に記載の通りとした。なお、ここでの加熱工程では、浸漬工程で用いたハロゲン化溶剤が蛍光体パネルに付着したまま残っている可能性があり、そのハロゲン化溶剤雰囲気下で蛍光体パネルを加熱したとも言える。
【0069】
上記加熱工程とは別に、各種マット加工の施された膜厚12μmのポリエチレンテレフタレート(PET12)と、アルミナを蒸着した膜厚12μmのPET(VMPET12、東洋メタライジング社製)とを、2液反応型のウレタン系接着材を使用してドライラミネーションで貼り合わせて第1の保護フィルムを作製し、さらに9μm厚のアルミ箔と100μm厚のPETとをドライラミネーションで貼り合わせ、アルミ箔側に熱融着性ラッカーを塗布して第2の保護フィルムを作製した。
【0070】
第1,第2の保護フィルムを作製したら、第1の保護フィルムを各蛍光体パネルの輝尽性蛍光体層の上方に、第2の保護フィルムを各蛍光体パネルの基板の下方に配置させた状態で、これらを真空チャンバー内に設置して真空チャンバー内の圧力を200Paまで減圧しながら真空チャンバー内にヘリウムガスを流入して真空チャンバー内をガス置換した。その後、真空チャンバー内の気圧を7000Paに再調節し、この減圧下においてインパルスシーラ(ヒータの幅が8mmのもの)で第1,第2の保護フィルムの周縁部同士を互いに融着し、各蛍光体パネルを2枚の第1,第2の保護フィルム間に封止し、これらをそれぞれ「試料11〜15」とした。当該試料11〜15の製造工程等の詳細は下記表1に示す通りである。
【0071】
【表1】

【0072】
表1中、「ハロゲン化溶剤」は浸漬工程で用いたハロゲン化溶剤の種類を示すものであり、具体的に「(A)〜(E),(H)」は下記の化合物である。
(A)…住友スリーエム(株)製ノベックHFE−7100(C4F9OCH3
(B)…住友スリーエム(株)製ノベックHFE−7100DL(C4F9OCH3
(C)…住友スリーエム(株)製ノベックHFE−7200(C4F9OC2H5
(D)…ダイキン工業(株)製HFE−S7(CHF2CF2OCH2CF3
(E)…旭硝子社製アサヒクリンAK−225(CF3CF2CHCl2/CClF2CF2CHClF)
(H)…ディップソール(株)製SC52S(HCBr系)
【0073】
(1−5)試料20の作製
製造済みの17枚の蛍光体パネル中から1枚の蛍光体パネルを選択し、その蛍光体パネルを100ccのハロゲン化溶剤中に浸漬させ、その状態でハロゲン化溶剤を60℃で24時間煮沸した。当該煮沸処理では、煮沸用容器としてステンレス製の密閉容器を使用し、その密閉容器中に100ccのハロゲン化溶剤を入れてそのハロゲン化溶剤を煮沸した。その後、煮沸済みの蛍光体パネルを周知の恒温槽中に設置して100℃で2分間乾燥させた。その後、乾燥済みの蛍光体パネルに対し、上記(1−1)と同様にして保護フィルムを貼り付けてこれを「試料20」とした。当該試料20の製造工程等の詳細は下記表2に示す通りである。
【0074】
(1−6)試料21〜28の作製
製造済みの17枚の蛍光体パネル中から8枚の蛍光体パネルを選択し、それら各蛍光体パネルを0.03重量%の色材(BASF社製Neozapon Blau 807)が含有された100ccのハロゲン化溶剤中に浸漬させ、その状態で蛍光体パネルごとに異なる条件でハロゲン化溶剤を煮沸した。各蛍光体パネルの煮沸条件は下記表2に記載の通りとした。当該煮沸処理では、煮沸用容器としてステンレス製の密閉容器を使用し、その密閉容器中に100ccのハロゲン化溶剤を入れて当該ハロゲン化溶剤を煮沸した。その後、煮沸済みの各蛍光体パネルを周知の恒温槽中に設置して100℃で2分間乾燥させた。その後、乾燥済みの各蛍光体パネルに対し、上記(1−4)と同様にして各蛍光体パネルを2枚の第1,第2の保護フィルム間に封止し、これらをそれぞれ「試料21〜28」とした。当該試料21〜28の製造工程等の詳細は下記表2に示す通りである。
【0075】
【表2】

【0076】
表2中、「ハロゲン化溶剤」は煮沸工程で用いたハロゲン化溶剤の種類を示すものであり、具体的に「(A)〜(H)」は下記の化合物である。
(A)〜(E),(H)…上記と同様
(F)…日本ゼオン(株)製ゼオローラH(環状C5H3F7
(G)…カネコ化学社製eクリーン−21F(C4H5F5
【0077】
(2)感度(輝度)の測定
管電圧80kVpのX線を各試料1,2,10〜15,20〜28の裏面(輝尽性蛍光体層が形成されていない面)から照射した。その後、半導体レーザを各試料1,2,10〜15,20〜28の表面(輝尽性蛍光体層が形成された面)上で走査して当該輝尽性蛍光体層を励起させ、当該輝尽性蛍光体層から放射される輝尽発光の光量(光強度)を試料ごとに受光器(分光感度S−5の光電子像倍管)で測定してその測定値を「感度(輝度)」とした。測定結果を下記表3に示す。ただし、表3中、各試料1,2,10〜15,20〜28の感度を示す値は、試料1の感度を1.00とした相対値である。
【0078】
(3)画質(画像ムラ,線状ノイズの有無)の評価
管電圧80kVpのX線を各試料1,2,10〜15,20〜28の裏面(輝尽性蛍光体層が形成されていない面)から照射した。その後、半導体レーザを各試料1,2,10〜15,20〜28の表面(輝尽性蛍光体層が形成された面)上で走査して当該輝尽性蛍光体層を励起させ、当該輝尽性蛍光体層から放射される輝尽発光の光量(光強度)を試料ごとに受光器(分光感度S−5の光電子像倍管)で受光して電気信号に変換した。その後、変換後の電気信号に基づく画像を2倍に拡大した状態で周知のプリンタからプリントアウトし、そのプリントアウト後の画像を目視により観察して画質(画像ムラ,線状ノイズの有無)を評価した。
【0079】
上記した画質の評価は、各試料に対し、製造直後(初期)と、製造後80℃の温度環境下に2日間保持した後と、の合計2回おこなった。画質の評価で各試料を製造後80℃の温度環境下に2日間保持したのは、各試料の経時的な劣化(変動)を短期間で評価しようとしたからである。評価結果を下記表3に示す。ただし、表3中、「◎」,「○」,「△」の評価基準は下記の基準に従っている。
◎…画像ムラ,線状ノイズが全くない
○…画像の1,2箇所で淡い画像ムラ,線状ノイズが認められる
△…画像の3,4箇所で淡い画像ムラ,線状ノイズが認められる
【0080】
【表3】

【図面の簡単な説明】
【0081】
【図1】放射線画像変換パネルの断面図である。
【図2】蛍光体パネルの拡大断面図である。
【図3】放射線画像変換パネルの製造方法を経時的に表現した概略図面である。
【図4】第2の実施形態に係る放射線画像変換パネルの製造方法を経時的に表現した概略図面である。
【符号の説明】
【0082】
1 放射線画像変換パネル
2 基板
3 輝尽性蛍光体層
4 蛍光体パネル
5 第1の保護フィルム
6 第2の保護フィルム

【特許請求の範囲】
【請求項1】
所定の基板上に気相堆積法で輝尽性蛍光体層が形成された蛍光体パネルをハロゲン化溶剤に浸漬する浸漬工程と、
前記浸漬工程の後に前記蛍光体パネルを真空、空気又は不活性ガスの雰囲気下で60〜200℃に加熱する加熱工程と、
を備える放射線画像変換パネルの製造方法。
【請求項2】
所定の基板上に気相堆積法で輝尽性蛍光体層が形成された蛍光体パネルをハロゲン化溶剤に浸漬した状態で、前記ハロゲン化溶剤を60〜200℃で煮沸して前記蛍光体パネルを加熱することを特徴とする放射線画像変換パネルの製造方法。
【請求項3】
請求項1又は2に記載の放射線画像変換パネルの製造方法において、
前記ハロゲン化溶剤が引火点をもたない不燃性溶剤であることを特徴とする放射線画像変換パネルの製造方法。
【請求項4】
請求項1〜3のいずれか一項に記載の放射線画像変換パネルの製造方法において、
前記ハロゲン化溶剤がHFEであることを特徴とする放射線画像変換パネルの製造方法。
【請求項5】
請求項1〜4のいずれか一項に記載の放射線画像変換パネルの製造方法において、
前記ハロゲン化溶剤が、励起光を吸収する色材を含有していることを特徴とする放射線画像変換パネルの製造方法。
【請求項6】
請求項1〜5のいずれか一項に記載の放射線画像変換パネルの製造方法に従って製造された蛍光体パネルと、
前記輝尽性蛍光体層上に配置され、かつ、周縁部が前記蛍光体パネルの周縁部の外側に延出した第1の保護フィルムと、
前記基板下に配置され、かつ、周縁部が前記蛍光体パネルの周縁部の外側に延出した第2の保護フィルムと、
を備え、
前記第1の保護フィルムと前記第2の保護フィルムとの各周縁部が互いに融着されていることを特徴とする放射線画像変換パネル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate