説明

極低温冷凍装置及びその運転方法

【課題】冷媒ガスの使用量を低減しつつ、閉ループ内の冷媒ガスの圧力の調整が可能な極低温冷凍装置及びその運転方法を提供する。
【解決手段】冷媒ガスを圧縮、循環させる主圧縮機2と、圧縮した冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器3と、冷却した冷媒ガスを断熱膨張させる膨張タービン4と、膨張タービン4を出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器5と、が設けられ、副熱交換器5で熱交換した後の冷媒ガスを、主熱交換器3を介して主圧縮機2に循環させる循環経路からなる閉ループL1を備えた極低温冷凍装置であって、主圧縮機2の入口側2aで閉ループL1と連通するバッファータンク6と、主圧縮機2の入口側2aの閉ループL1内の圧力とバッファータンク6内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機7と、を備えることを特徴とする極低温冷凍装置1である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷媒ガスを極低温まで冷却する極低温冷凍装置及びその運転方法に関し、詳しくは、冷媒ガスの補充と回収を効率よく行なう系統を備えた極低温冷凍装置及びその運転方法に関する。
【背景技術】
【0002】
高温超電導機器(例えば、超電導送電ケーブル、超電導変圧器、超電導モーター、超電導限流器、超電導電力貯蔵器等)を冷却するためには、極低温冷凍装置(例えば、GM冷凍機、パルス冷凍機、スターリング冷凍機、ブレイトンサイクル冷凍機等)が用いられる。そして、高温超電導機器を冷却する場合、超電導線材の種類や用途によって冷却する温度は異なるが、その冷却温度は、大気圧の液体窒素温度(77K)よりも低い温度(例えば、70K、65K、40K)が用いられる。このような極低温の冷却には、冷媒ガスとしてヘリウム、ネオン、水素及びこれらの混合ガス等が用いられる。
【0003】
ところで、極低温冷凍装置としては、特許文献1及び特許文献2が知られている。具体的には、特許文献1に記載された極低温冷凍装置は、図3に示すように圧縮機102と第1中間熱交換器103、膨張タービン104、極低温熱交換器105を備えたブレイトンサイクル冷凍機である。また、極低温冷凍装置101は、高圧部と低圧部を連通するバイパスラインL106と、該バイパスラインL106の中間に位置し、高圧側と低圧側にそれぞれ圧力調整弁106a,106bを有する貯気タンク106と、該各圧力調整弁106a,106bを制御する圧力制御装置126とをさらに備えている。そして、該圧力制御装置126は、貯気タンク106の圧力が、常温かつ停止時に閉ループL101と同一とするため弁開度が開放となり、極低温を発生する運転時に高圧部の圧力が所定の圧力となるように前記各圧力調整弁106a,106bを制御することを特徴としている。
【0004】
また、特許文献2に記載された従来技術である冷凍装置では、循環圧縮機の吐出側及び吸入側にそれぞれ循環量調整弁を有する経路を介して接続するバッファータンクと、循環圧縮機の吐出圧力を測定して前記循環量調整弁を開閉する圧力調整器とが設けられている。そして、上記循環圧縮機の吸入圧力を一定に保つための経路として、バイパス弁を介して循環圧縮機の吐出側及び吸入側を接続する経路と、循環圧縮機の吸入圧力を測定して前記バイパス弁の開度を調節する圧力調整器とが設けられていることを特徴としている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−121786号公報
【特許文献2】特開平5−223378号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
このような構成の極低温冷凍装置においては、装置の運転により冷凍装置内が極低温になると、冷媒ガスの比容積が小さくなり、冷凍装置内の圧力を所定の圧力に保持することができなくなる。このため、バッファータンク(または貯気タンク)から冷媒ガスを冷凍装置内に補充する必要がある。また、極低温冷凍装置が常温かつ停止状態にある際の、閉ループに充填された冷媒ガスの圧力は、一般に大気圧力よりも高く設定されている。これは、冷媒ガスの圧力を高めることで比容積を小さくし、冷媒ガスの循環流量を増やして冷凍機の冷凍能力を増大するとともに、装置全体の小型化を図るためである。例えば、特許文献1に記載された極低温冷凍装置では、低圧側の圧力が0.5〜0.6MPaであり、高圧側の圧力が1.0〜1.2MPaとなっている。
【0007】
しかしながら、特許文献1及び特許文献2に示された極低温冷凍装置では、バッファータンク(あるいは貯気タンク)内に貯蔵された冷媒ガスを閉ループの低圧側に供給する際、バッファータンク内の圧力が閉ループの低圧側よりも高い圧力の場合は問題ないが、バッファータンク内の圧力が閉ループの低圧側と同じ圧力になると、それ以上、冷媒ガスを補充することができなくなるという問題があった。すなわち、前述した構成の極低温冷凍装置では、冷媒ガスとして使用している高価で希少なへリウムやネオンを大気圧力まで利用できないまま、バッファータンク内に無駄に貯蔵することになるという問題があった。
【0008】
本発明は、上記事情に鑑みてなされたものであり、冷媒ガスの使用量を低減しつつ、閉ループ内の冷媒ガスの圧力の調整が可能な極低温冷凍装置及びその運転方法を提供することを目的としている。
【課題を解決するための手段】
【0009】
かかる課題を解決するため、
請求項1に記載の発明は、冷媒ガスを圧縮、循環させる主圧縮機と、
圧縮した冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器と、
冷却した冷媒ガスを断熱膨張させる膨張タービンと、
前記膨張タービンを出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器と、が設けられ、
前記副熱交換器で熱交換した後の冷媒ガスを、前記主熱交換器を介して前記主圧縮機に循環させる循環経路からなる閉ループを備えた極低温冷凍装置であって、
前記主圧縮機の入口側で前記閉ループと弁を介して連通するバッファータンクと、
前記主圧縮機の入口側の前記閉ループ内の圧力と前記バッファータンク内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機と、を備えることを特徴とする極低温冷凍装置である。
【0010】
請求項2に記載の発明は、前記バッファータンクから前記閉ループの前記主圧縮機の入口側に前記副圧縮機を介して接続する補充経路と、
前記閉ループの前記主圧縮機の入口側から前記バッファータンクに前記副圧縮機を介して接続する回収経路と、を備えることを特徴とする請求項1に記載の極低温冷凍装置である。
【0011】
請求項3に記載の発明は、前記閉ループの前記主圧縮機の入口側と前記バッファータンクとを前記副圧縮機を介さずに接続する補充・回収経路を備えることを特徴とする請求項1又は2に記載の極低温冷凍装置である。
【0012】
請求項4に記載の発明は、前記閉ループ内で、前記主圧縮機の入口側と出口側とを連通するバイパス経路を備え、
前記バイパス経路が当該バイパス経路の中間部にバイパス弁を有することを特徴とする請求項1乃至3のいずれか一項に記載の極低温冷凍装置である。
【0013】
請求項5に記載の発明は、前記副圧縮機の入口側に、減圧弁が設けられていることを特徴とする請求項1乃至4のいずれかに記載の極低温冷凍装置である。
【0014】
請求項6に記載の発明は、前記副圧縮機は、前記主圧縮機より処理量が小さいことを特徴とする請求項1乃至5のいずれか一項に記載の極低温冷凍装置である。
【0015】
請求項7に記載の発明は、前記主圧縮機が、インバーターによって駆動されることを特徴とする請求項1乃至6のいずれか一項に記載の極低温冷凍装置である。
【0016】
請求項8に記載の発明は、前記主圧縮機の出口側に設けられたアフタークーラーと、
前記アフタークーラーの出口側又は前記主圧縮機と前記アフタークーラーとの間に設けられた逆止弁と、を備えることを特徴とする請求項1乃至7のいずれか一項に記載の極低温冷凍装置である。
【0017】
請求項9に記載の発明は、被冷却体と前記冷却液とを収納する断熱容器と、
前記冷却液を前記副熱交換器に循環させる循環ポンプと、をさらに備えることを特徴とする請求項1乃至5のいずれか一項に記載の極低温冷凍装置である。
【0018】
請求項10に記載の発明は、請求項1乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記閉ループ内の冷媒ガスの、前記主圧縮機の入口側の圧力が所定の圧力以下であり、前記バッファータンク内の冷媒ガスの圧力が前記主圧縮機の入口側の前記閉ループ内の圧力よりも低い場合に、前記バッファータンクから前記副圧縮機に冷媒ガスを導入し、当該副圧縮機によって圧送された冷媒ガスを前記閉ループ内に補充し、
前記閉ループ内の冷媒ガスの、前記主圧縮機の入口側及び出口側の少なくともいずれか一方の圧力が所定の圧力以上であり、前記バッファータンク内の冷媒ガスの圧力が前記主圧縮機の入口側の前記閉ループ内の圧力よりも高い場合に、前記閉ループから前記副圧縮機に冷媒ガスを導入し、当該副圧縮機によって圧送された冷媒ガスを前記バッファータンク内に回収することを特徴とする極低温冷凍装置の運転方法である。
【0019】
請求項11に記載の発明は、前記閉ループ内の冷媒ガスを副圧縮機により圧送してバッファータンク内に回収することにより、閉ループ内の冷媒ガスの圧力を大気圧にすることを特徴とする請求項10に記載の極低温冷凍装置の運転方法である。
【0020】
請求項12に記載の発明は、請求項4乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
主圧縮機の運転停止時にバイパス弁を開放することを特徴とする請求項10又は請求項11に記載の極低温冷凍装置の運転方法である。
【0021】
請求項13に記載の発明は、請求項5乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記副圧縮機に冷媒ガスを導入する前に、冷媒ガスの圧力をほぼ大気圧まで減圧することを特徴とする請求項10乃至12のいずれか一項に記載の極低温冷凍装置の運転方法である。
【0022】
請求項14に記載の発明は、請求項7乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記閉ループ内の冷媒ガスの、前記主圧縮機の出口側の圧力が所定の圧力よりも高くなった場合に、前記インバーターの出力周波数を変更して前記主圧縮機の運転回転数を降下させることを特徴とする請求項10乃至13のいずれか一項に記載の極低温冷凍装置の運転方法である。
【発明の効果】
【0023】
本発明の極低温冷凍装置及びその運転方法によれば、主圧縮機の入口側で閉ループと弁を介して連通するバッファータンクと、主圧縮機の入口側の閉ループ内の圧力とバッファータンク内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機と、を備えている。これにより、閉ループ内の主圧縮機の入口側の圧力が所定の圧力以下であって、バッファータンク内の冷媒ガスの圧力が閉ループ内の主圧縮機の入口側の圧力よりも高い場合は、バッファータンクから閉ループ内に直接冷媒ガスを補充し、バッファータンク内の冷媒ガスの圧力が閉ループ内の主圧縮機の入口側の圧力よりも低い場合は、バッファータンク内の冷媒ガスを副圧縮機により圧送して閉ループ内に補充することができる。また、閉ループ内の主圧縮機の入口側及び出口側の少なくともいずれか一方の圧力が所定の圧力以上であって、バッファータンク内の冷媒ガスの圧力が閉ループ内の主圧縮機の入口側の圧力よりも高い場合は、閉ループ内の冷媒ガスを副圧縮機により圧送してバッファータンク内に回収することができる。このように、バッファータンク内に貯蔵された冷媒ガスを副圧縮機により昇圧して閉ループ内に送り出すことができるため、バッファータンク内の圧力が大気圧となるまで冷媒ガスを有効利用して閉ループ内に補充することができる。このため、高価で希少な冷媒ガスを利用できないまま、バッファータンク内に無駄に貯蔵されることがない。したがって、冷媒ガスの使用量を低減しつつ、閉ループ内の冷媒ガスの圧力の調整をすることができる。また、バッファータンクの容積を減らして設置スペースの縮小を図ることができる。
【0024】
また、本発明の極低温冷凍装置の運転方法によれば、閉ループ内の冷媒ガスを副圧縮機によりバッファータンク内へ圧送することにより、閉ループ内の冷媒ガスの圧力が大気圧となるまで冷媒ガスをバッファータンク内に回収することができる。これにより、メンテナンス時や装置の故障時に構成機器を開放点検する際、大気中に放出される冷媒ガスの損失量を低減することができる。
【図面の簡単な説明】
【0025】
【図1】本発明の極低温冷凍装置の一形態例を示す系統図である。
【図2】図1の構成機器の容積と圧力、温度から冷媒ガスの充填量を説明するための系統図である。
【図3】従来の極低温冷凍装置の一例を示す系統図である。
【発明を実施するための形態】
【0026】
以下、本発明を適用した一実施形態である極低温冷凍装置について、運転方法とともに図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
【0027】
図1は、本発明を適用した一実施形態である極低温冷凍装置示す図である。図1に示すように、本実施形態の極低温冷凍装置1は、主圧縮機2、主熱交換器3、膨張タービン4、副熱交換器5が設けられた循環経路からなる閉ループL1と、閉ループL1と連通するバッファータンク6と、閉ループL1と上記バッファータンク6との間で冷媒ガスを圧送する副圧縮機7と、を備えて概略構成されている。より具体的には、極低温冷凍装置1は、被冷却体8aと冷媒液8bとを収納する断熱容器8と、上記冷媒液8bを副熱交換器5に循環させる循環ポンプ9と、を備えている。
【0028】
また、本実施形態の極低温冷凍装置1は、図1に示すように、主圧縮機2で冷媒ガスを圧縮し、主熱交換器3において高圧側の冷媒ガスを低圧側の戻りの冷媒ガスと熱交換することによって冷却し、冷却した冷媒ガスを膨張タービン4で断熱膨張させることにより極低温を発生させ、副熱交換器5において極低温の冷媒ガスによって循環ポンプ9から送液された液体窒素等の冷媒液(冷却液)8bを冷却し、この冷媒液8bで被冷却体8aを冷却するものである。
本実施形態の冷媒ガスとしては、窒素よりも沸点が低いヘリウム、ネオン又は水素及びそれらの混合ガス、あるいは僅かに窒素やアルゴン等の不活性ガスを混合させた混合ガスを用いる。
【0029】
閉ループL1は、冷媒ガスを圧縮、循環させる主圧縮機2と、圧縮した冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器3と、冷却した冷媒ガスを断熱膨張させる膨張タービン4と、上記膨張タービン4を出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器5と、が設けられており、上記副熱交換器5で熱交換した後の冷媒ガスを、主熱交換器3を介して主圧縮機2に循環させる循環経路である。
【0030】
主圧縮機2は、冷媒ガスを圧縮、循環させるために閉ループL1に設けられたターボ圧縮機である。本実施形態では、図1に示すように、主圧縮機2として1段式のターボ圧縮機を例示しているがこれに限定されるものではなく、1段式のターボ圧縮機に替えてインタークーラーを備えた2段式のターボ圧縮機としても良い。
【0031】
閉ループL1内における主圧縮機2の入口側2aの圧力は、例えば0.5〜1MPaとすることが好ましい。また、閉ループL1内における主圧縮機2の出口側2bの圧力は1〜2MPaとすることが好ましい。そして、冷却温度域と冷凍装置のエネルギー効率との点から、主圧縮機2の圧縮比は、1.6〜3程度とすることが好ましい。
【0032】
また、主圧縮機2は、インバーターによって駆動されるものを用いてもよい。主圧縮機2がインバーター制御される場合には、主圧縮機2の出口側2bの圧力が規定値よりも高くなった際に、インバーターの出力周波数を変更して主圧縮機2の運転回転数を降下させることができるため、主圧縮機2の出口側2bの圧力を規定値以下に保持することが可能となる。これにより、閉ループL1内の最高圧力を、極低温冷凍装置1を構成する圧力容器の耐圧強度以下に保持することができる。
【0033】
また、主圧縮機2の出口側(二次側)2bには、図1に示すように、例えば、水冷式のアフタークーラー10を設置することが好ましい。このアフタークーラー10には、図示されない外部のクーリングタワーから冷却水が供給されており、高温の冷媒ガスを大気温度近くまで冷却することができる。
【0034】
さらに、アフタークーラー10の出口側に、逆止弁(チェックバルブ)11を設けてもよい。これにより、極低温冷凍装置1の通常運転停止時や緊急停止時に、圧縮された冷却ガスが主圧縮機2に逆流して逆回転することを防止することができる。なお、逆止弁11は、主圧縮機2とアフタークーラー10との中間位置に設けてもよい。
【0035】
主熱交換器3は、図1に示すように、閉ループL1において主圧縮機2と膨張タービン4との中間に配置されており、主圧縮機2により圧縮された冷媒ガスと副熱交換器5からの戻りの冷媒ガスとを熱交換することにより、上記圧縮された冷媒ガスを冷却するものである。
膨張タービン4は、図1に示すように、閉ループL1において主熱交換器3の二次側に設置されており、上記主熱交換器3により冷却された冷媒ガスを断熱膨張させて極低温の冷媒ガスとするものである。また、膨張タービン4は、主圧縮機2と同軸上に取り付けられて一体構造となっていてもよい。
【0036】
副熱交換器5は、図1に示すように、閉ループL1において膨張タービン4の二次側に設置されており、上記膨張タービン4によって極低温とされた冷媒ガスと被熱交換体である冷媒液8bとを熱交換することにより、上記冷媒液8bを冷却するものである。
極低温まで冷却された冷媒ガスは、この冷媒液8bにより、断熱容器8に収納された被冷却体8aを間接的に冷却する。
ここで、本実施形態における被冷却体8aは、例えば、超電導送電ケーブル、超電導変圧器、超電導モーター、超電導限流器、超電導電力貯蔵器等の高温超電導機器である。
【0037】
バッファータンク6は、冷媒ガスを貯留するための貯留槽であり、図1に示すように、補充・回収経路L2によって、主圧縮機2の入口側2aで閉ループL1と接続されている。このバッファータンク6は、補充・回収経路L2に設けられた開閉弁(弁)12を介して閉ループL1と連通されている。ここで、補充・回収経路L2は、閉ループL1の主圧縮機2の入口側2aとバッファータンク6とを副圧縮機7を介さずに接続する経路である。また、バッファータンク6には、開閉弁13が設けられた経路L3が接続されており、この経路L3から冷媒ガスをバッファータンク6内に供給可能とされている。
【0038】
副圧縮機7は、主圧縮機2の入口側2aの閉ループL1内の圧力と、バッファータンク6内の圧力と、を比較して、圧力の低い側から高い側へ冷媒ガスを圧送するために設けられている。
本実施形態の副圧縮機7は、主圧縮機2よりも処理量が小さいものでよく、例えば、オイルフリーのダイヤフラム式やレシプロ式、スクロール式など安価で容易に入手できる小型圧縮機を使用することができる。
【0039】
ところで、一般的に安価で容易に入手できる上述したような小型圧縮機は、大気圧で吸入するタイプが大多数を占めている。そのような小型圧縮機を副圧縮機7として用いた場合、吸入側に圧力の高い冷媒ガスが入ると、小型圧縮機の負荷が急激に増大するだけでなく、耐圧強度上の問題がある。したがって、副圧縮機7の吸入側(入口側)に減圧弁14を設けることが好ましい。この減圧弁14により、副圧縮機7の吸入側の冷媒ガスの圧力を大気圧付近まで減圧することができるため、市販の安価な小型圧縮機を副圧縮機7として利用することが可能となる。
また、副圧縮機7の吐出側(出口側)には、逆止弁15が設けられている。
さらに、上記減圧弁14と副圧縮機7との間に、小容量、例えば数リットルのバッファータンク(図示せず)を設けることが好ましい。これにより、副圧縮機7の吸入圧力の脈動を防止することができる。
【0040】
本実施形態の極低温冷凍装置1は、バッファータンク6から閉ループL1の主圧縮機2の入口側2aに副圧縮機7を介して接続する補充経路L4と、閉ループL1の主圧縮機2の入口側2aからバッファータンク6に副圧縮機7を介して接続する回収経路L5と、閉ループL1内において主圧縮機2の入口側2aと出口側2bとを連通するバイパス経路L6と、を備えている。
【0041】
ここで、補充経路L4には、バッファータンク6との接続側に開閉弁16が、閉ループL1との接続側に開閉弁17が、それぞれ設けられている。
また、回収経路L5には、閉ループL1との接続側に開閉弁18が、バッファータンク6との接続側に開閉弁19が、それぞれ設けられている。
さらに、バイパス経路L6には、開閉バルブからなるバイパス弁20が設けられている。
【0042】
すなわち、副圧縮機7の吸入側は、主圧縮機2の入口側2aにおいて閉ループL1と開閉弁18を介して連通されると同時に、バッファータンク6と開閉弁16を介して連通されている。
一方、副圧縮機7の吐出側は、バッファータンク6と開閉弁19を介して連通されると同時に、主圧縮機2の入口側2aにおいて閉ループL1と開閉弁17を介して連通されている。
【0043】
次に、本実施形態の極低温冷凍装置1の運転方法について説明する。
先ず、極低温冷凍装置1の閉ループL1において、主圧縮機2によって冷媒ガスが圧縮する。主圧縮機2で圧縮された冷媒ガスは高温となるため、主圧縮機2の出口側(下流側)に設置されたアフタークーラー10により、高温の冷媒ガスは大気温度近くまで冷却する。
【0044】
次に、アフタークーラー10を経た冷媒ガスをコールドボックス内に収納された主熱交換器3に導入し、副熱交換器5からの戻りの冷媒ガスと熱交換する。これにより、冷媒ガスを65〜75Kの温度まで冷却し、膨張タービン4に導入する。そして、膨張タービン4において、冷媒ガスを高圧側の圧力(1〜2MPa)から低圧側の圧力(0.5〜1MPa)まで断熱膨張することにより、冷媒ガスの温度を55〜65Kまで降下させる。
【0045】
次に、膨張タービン4により55〜65Kまで温度を降下させた冷媒ガスを、副熱交換器5に導入する。そして、副熱交換器5において、極低温の冷媒ガスと液体窒素等の冷媒液8bとを熱交換することにより、冷媒液8bをサブクール状態(液体がその飽和温度よりも低い状態をいい、ここでは液体窒素の沸点(約77K)から凝固点(約63K)までの温度をいう)の約65Kまで冷却する。この際、冷媒液8bとの熱交換後の冷媒ガスは、60〜70Kまで温度上昇する。副熱交換器5を経た冷媒ガスは、その後、主熱交換器3に戻る。ここで、主熱交換器3に戻った低圧側の戻り冷媒ガスの温度は、高圧側の冷媒ガスと熱交換することにより、主熱交換器3を出る際にはほぼ常温まで温度上昇する。そして、主熱交換器3を経てほぼ常温となった冷媒ガスは、主圧縮機2の入口側2aに戻る。本実施形態の極冷凍装置1における閉ループL1では、以上のように冷媒ガスが循環する構成となっている。
【0046】
なお、上記の副熱交換器5での熱交換によって、被冷却体8aを冷却する断熱容器8内の冷媒液8bは、約70Kに保持される。
【0047】
ここで、閉ループL1内の冷媒ガスの、主圧縮機2の入口側2aの圧力が所定の圧力以下となった場合であって、バッファータンク6内の冷媒ガスの圧力が主圧縮機2の入口側2aの圧力よりも高い場合は、補充・回収経路L2に設けられた開閉弁12を開放してバッファータンク6から閉ループL1内に冷媒ガスを補充する。
【0048】
これに対して、バッファータンク6内の冷媒ガスの圧力が、主圧縮機2の入口側2aの閉ループL1内の圧力よりも低い場合には、補充経路L4に設けられた開閉弁16を開放してバッファータンク6から副圧縮機7に冷媒ガスを導入する。そして、副圧縮機7によって冷媒ガスを閉ループL1内における主圧縮機2の入口側2aの圧力(冷媒ガスの補充に必要最低限の圧力のことを意味しており、主圧縮機2の入口側2aの圧力よりもわずかに高い圧力)まで昇圧し、補充経路L4に設けられた開閉弁17を開放して閉ループL1内に冷媒ガスを補充する。このように、副圧縮機7によって圧送された冷媒ガスを閉ループL1内に補充することにより、閉ループL1における主圧縮機2の入口側2aの圧力を一定に保持することができる。
【0049】
一方、閉ループL1内の主圧縮機2の入口側2a及び出口側2bの少なくともいずれか一方の圧力が所定の圧力以上であって、バッファータンク6内の冷媒ガスの圧力が閉ループL1内の主圧縮機2の入口側2aの圧力よりも高い場合は、閉ループL1内の冷媒ガスを副圧縮機7により圧送してバッファータンク6内に回収することができる。また、閉ループL1内の冷媒ガスの、主圧縮機2の出口側2bの圧力が所定の圧力以上となった場合であって、バッファータンク6内の冷媒ガスの圧力が主圧縮機2の入口側の圧力よりも低い場合は、主圧縮機2の出口側2b(高圧側)と入口側2a(低圧側)とを連通するバイパス経路L6に設けられたバイパス弁20を開放することにより、主圧縮機2の入口側(低圧側)2bに冷媒ガスが戻されて、閉ループL1における主圧縮機2の入口側2aの圧力が規定値よりも高くなるため、補充・回収経路L2に設けられた開閉弁12を開放して閉ループL1内からバッファータンク6内に冷媒ガスを回収できる。
【0050】
これに対して、バッファータンク6内の冷媒ガスの圧力が、主圧縮機2の入口側2aの閉ループL1内の圧力よりも高い場合には、回収経路L5に設けられた開閉弁18を解放して閉ループL1内から副圧縮機7に冷媒ガスを導入する。そして、副圧縮機7によって冷媒ガスをバッファータンク6内の圧力(冷媒ガスの回収に必要最低限の圧力のことを意味しており、バッファータンク6内の圧力よりもわずかに高い圧力)まで昇圧した後、回収経路L5に設けられた開閉弁19を開放してバッファータンク6内に冷媒ガスを回収する。このように、副圧縮機7によって圧送された冷媒ガスをバッファータンク6内に回収することにより、閉ループL1における主圧縮機2の入口側2aの圧力を一定に保持することができる。
【0051】
また、極低温冷凍装置1の停止時には主圧縮機2を定常運転から停止させるが、主圧縮機2の異常振動を防止するため、装置の停止信号を受けてから主圧縮機2が停止動作に至る間にバイパス弁20を解放して主圧縮機2の高圧側(出口側2b)から低圧側(入口側2a)に冷媒ガスを戻すことにより、主圧縮機2の高圧側の圧力を低下させて閉ループL1内の圧力を均圧化する。この動作によって主圧縮機2の低圧側(入口側2a)の圧力が規定値よりも高くなるため、補充・回収経路L2に設けられた開閉弁12を開放して閉ループL1内の冷媒ガスをバッファータンク6内に回収する。
【0052】
さらに、極低温冷凍装置1のメンテナンスの際や故障の際には、各構成機器を開放点検する必要がある。この場合には、回収経路L5に設けられた開閉弁18を開放し、閉ループL1内の冷媒ガスを副圧縮機7により圧送してバッファータンク6内に回収する。これにより、閉ループL1内の冷媒ガスの圧力を大気圧近くまで回収にすることができる。
【0053】
次に、本実施形態の極低温冷凍装置1の常温停止状態から常温で起動した状態、および冷凍運転時の圧力、温度変化からバッファータンク6からの冷媒ガス補充量がどれくらい必要となるかについて、図2を用いて説明する。
【0054】
図2に示すように、極低温冷凍装置1の閉ループL1内の容積を(A)〜(E)に区分し、バッファータンク6の容積を(F)とする。ここで、簡単のために(A)〜(E)の容積はすべて等しく、大気圧(0.1MPa)、常温状態(300K)で(A)〜(E)の各容積を占める冷媒ガスの量(質量)を「Wt」とする。
【0055】
また、極低温冷凍装置1が常温停止状態である時の閉ループL1内((A)〜(E))の圧力と温度はすべて等しく、0.7MPa、300Kとする。この時の(A)〜(E)までの各容積の冷媒ガス量はそれぞれ、7(Wt)となる。したがって、閉ループL1内の全冷媒ガス量は5×7(Wt)=35(Wt)となる。
【0056】
主圧縮機2を常温停止状態から起動すると、主圧縮機2から膨張タービン4までの(B)、(C)の高圧側は1.0MPa、膨張タービン4から主圧縮機2までの(D)、(E)、(A)の低圧側は0.5MPaとなる。起動直後では、(A)〜(E)の温度がすべて300Kであるから、この時の(A)〜(E)の冷媒ガス量は圧力の増減によって、(B)と(C)はそれぞれ10(Wt)、(D)、(E)、(A)はそれぞれ5(Wt)となり、合計すると全体では2×10(Wt)+3×5(Wt)=35(Wt)となる。
【0057】
極低温冷凍装置1の運転を継続すると、膨張タービン4での断熱膨張によって(C)〜(E)の温度は降下し、最終的には、(D)の副熱交換器5の温度は60Kとなる。一方、主熱交換器2の高圧側の入口および低圧側の出口は常温のままであるから、(C)と(E)の温度は300Kと60Kの単純平均とし、(300+60)/2=180Kとする。
【0058】
最終的な閉ループL1内の冷媒ガス量は、(A)が5(Wt)、(B)が10(Wt)、(C)は温度が低下した分、冷媒ガスが増加するため、10(Wt)×300/180=16.67(Wt)となる。(D)は5(Wt)×300/60=25(Wt)、(E)は5(Wt)×300/180=8.33(Wt)となる。
【0059】
したがって、(A)〜(E)を合計すると全体では5(Wt)+10(Wt)+16.67(Wt)+25(Wt)+8.33(Wt)=65(Wt)となる。極低温冷凍装置1の運転開始前の閉ループL1内の冷媒ガス量は35(Wt)であるから、運転と冷却の進行によって30(Wt)の冷媒ガスをバッファータンク6から閉ループL1内に補充しなければならないことになる。
【0060】
ここで、バッファータンク6の常温停止時の圧力を0.7MPaとし、その容積(F)を(A)〜(E)の容積の5倍と仮定すると、バッファータンク6には、大気圧、常温で5(Wt)だけ冷媒ガスを収納することができ、0.7MPaの時は7×5(Wt)=35(Wt)となる。本発明に基づきバッファータンク6から副圧縮機7(図2中では省略)を用いて冷媒ガスを昇圧して閉ループL1内に30(Wt)だけ補充すると、バッファータンク6内の冷媒ガス残量は5(Wt)となる。すなわち、バッファータンク6の圧力はほぼ大気圧となり、バッファータンク6内の冷媒ガスを有効活用できることになる。
【0061】
本発明によれば、副圧縮機7を設けることにより、バッファータンク6内の冷媒ガスをほぼ大気圧まで閉ループL1内に補充できるが、従来技術ではバッファータンク内の冷媒ガスは閉ループの最低圧力(上記特許文献1の例では0.5MPa)までしか補充できない。
【0062】
すなわち、従来技術の極低温冷凍装置において冷媒ガス30(Wt)分をバッファータンクから閉ループ内に補充するためには、補充のために使用できる量は0.7MPaから0.5MPaまでであるから、バッファータンクの必要容積は、30(Wt)÷(7−5)=15(Wt)となり、大気圧、常温で15(Wt)の冷媒ガスを収納する容積が必要となる。
【0063】
したがって、従来技術に対して本発明では、バッファータンク6の容積は1/3で済み、装置全体の占有スペースが小さくなる。また、バッファータンク6内に貯蔵する冷媒ガス量は、従来技術では7×15(Wt)=105(Wt)となり、本発明では105(Wt)から35(Wt)に減少するから、高価で希少な冷媒ガス量も1/3で済む。すなわち、使用されないままバッファータンクに貯蔵される冷媒ガス量は従来と比較して2/3程度削減することができる。
【0064】
以上説明したように、本実施形態の極低温冷凍装置1及びその運転方法によれば、主圧縮機2の入口側2aで閉ループL1と弁を介して連通するバッファータンク6と、主圧縮機2の入口側2aの閉ループL1内の圧力とバッファータンク6内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機7と、を備えている。これにより、閉ループL1内の主圧縮機2の入口側2aの圧力が所定の圧力以下であって、バッファータンク6内の冷媒ガスの圧力が閉ループL1内の主圧縮機2の入口側2aの圧力よりも高い場合は、バッファータンク6から閉ループL1内に直接冷媒ガスを補充し、バッファータンク6内の冷媒ガスの圧力が閉ループL1内の主圧縮機2の入口側2aの圧力よりも低い場合は、バッファータンク6内の冷媒ガスを副圧縮機7により圧送して閉ループL1内に補充することができる。また、閉ループL1内の主圧縮機2の入口側2a及び出口側2bの少なくともいずれか一方の圧力が所定の圧力以上であって、バッファータンク6内の冷媒ガスの圧力が閉ループL1内の主圧縮機2の入口側2aの圧力よりも高い場合は、閉ループL1内の冷媒ガスを副圧縮機7により圧送してバッファータンク6内に回収することができる。このように、バッファータンク6内に貯蔵された冷媒ガスを副圧縮機7により昇圧して閉ループL1内に送り出すことができるため、バッファータンク6内の圧力が大気圧となるまで冷媒ガスを有効利用して閉ループL1内に補充することができる。このため、高価で希少な冷媒ガスを利用できないまま、バッファータンク6内に無駄に貯蔵されることがない。したがって、冷媒ガスの使用量を低減しつつ、閉ループL1内の冷媒ガスの圧力の調整をすることができる。また、バッファータンク6の容積を減らして設置スペースの縮小を図ることができる。
【0065】
また、本実施形態の極低温冷凍装置1の運転方法によれば、閉ループL1内の冷媒ガスを副圧縮機7によりバッファータンク6内へ圧送することにより、閉ループL1内の冷媒ガスの圧力が大気圧となるまで冷媒ガスをバッファータンク6内に回収することができる。これにより、メンテナンス時や装置の故障時に構成機器を開放点検する際、大気中に放出される冷媒ガスの損失量を低減することができる。
【0066】
さらに、主圧縮機2の出口側(高圧側)2bと入口側(低圧側)2aとを連通するバイパス経路L6と、該経路L6の中間部にバイパス弁20を設け、主圧縮機2の出口側2bの圧力が規定値よりも高くなった場合に、バイパス弁20を開くことで主圧縮機2の出口側2bの圧力を規定値以下に保持することができる。これにより、閉ループL1内の最高圧力を、極低温冷凍装置1を構成する圧力容器の耐圧強度以下に保持することができる。
【0067】
また、主圧縮機2をインバーターによって駆動し、主圧縮機2の出口側2bの圧力が規定値よりも高くなった場合に、インバーターの出力周波数を変更することで主圧縮機2の運転回転数を降下させ、主圧縮機2の出口側の圧力を規定値以下に保持することができる。これにより、閉ループL1内の最高圧力を、極低温冷凍装置1を構成する圧力容器の耐圧強度以下に保持することができる。
【0068】
また、主圧縮機2の二次側(出口側)に設置されたアフタークーラー10の出口、あるいは主圧縮機2とアフタークーラー10との中間位置に逆止弁(チェックバルブ)11を設置することにより、極低温冷凍装置1の通常運転停止時あるいは緊急停止時に圧縮された冷却ガスが主圧縮機2に逆流して逆回転することを防止することができる。
【0069】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、本実施形態では、主圧縮機2をターボ圧縮機としたが、レシプロ圧縮機やスクリュー圧縮機としてもよく、また主圧縮機2の出口側2bおよび入口側2aにそれぞれ圧力調節弁を有する経路を設けて、バッファータンク6に接続してもよい。
【0070】
また、本実施形態の極低温冷凍装置1では、副熱交換器5で熱交換(冷却)する被熱交換体として被冷却体8aを冷却するための冷媒液8bを用いている構成としているが、副熱交換器5や循環ポンプ9を設置することなく、極低温冷凍装置1により極低温に冷却された冷媒ガスを断熱容器8内に導入し、冷媒液8bを冷却する、或いは被冷却体8aに供給することにより被冷却体8aを直接冷却する構成としても良い。
【符号の説明】
【0071】
1…極低温冷凍装置
2…主圧縮機
2a…入口側
2b…出口側
3…主熱交換器
4…膨張タービン
5…副熱交換器
6…バッファータンク
7…副圧縮機
8…断熱容器
8a…被冷却体
8b…冷媒液(冷却液)
9…循環ポンプ
10…アフタークーラー
11…逆止弁(チェックバルブ)
12,13,16,17,18,19…開閉弁(弁)
14…減圧弁
15…逆止弁
20…バイパス弁
L1…閉ループ
L2…補充・回収経路
L3…経路
L4…補充経路
L5…回収経路
L6…バイパス経路

【特許請求の範囲】
【請求項1】
冷媒ガスを圧縮、循環させる主圧縮機と、
圧縮した冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器と、
冷却した冷媒ガスを断熱膨張させる膨張タービンと、
前記膨張タービンを出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器と、が設けられ、
前記副熱交換器で熱交換した後の冷媒ガスを、前記主熱交換器を介して前記主圧縮機に循環させる循環経路からなる閉ループを備えた極低温冷凍装置であって、
前記主圧縮機の入口側で前記閉ループと弁を介して連通するバッファータンクと、
前記主圧縮機の入口側の前記閉ループ内の圧力と前記バッファータンク内の圧力とを比較して、圧力の低い側から高い側へ冷媒ガスを圧送する副圧縮機と、を備えることを特徴とする極低温冷凍装置。
【請求項2】
前記バッファータンクから前記閉ループの前記主圧縮機の入口側に前記副圧縮機を介して接続する補充経路と、
前記閉ループの前記主圧縮機の入口側から前記バッファータンクに前記副圧縮機を介して接続する回収経路と、を備えることを特徴とする請求項1に記載の極低温冷凍装置。
【請求項3】
前記閉ループの前記主圧縮機の入口側と前記バッファータンクとを前記副圧縮機を介さずに接続する補充・回収経路を備えることを特徴とする請求項1又は2に記載の極低温冷凍装置。
【請求項4】
前記閉ループ内で、前記主圧縮機の入口側と出口側とを連通するバイパス経路を備え、
前記バイパス経路が当該バイパス経路の中間部にバイパス弁を有することを特徴とする請求項1乃至3のいずれか一項に記載の極低温冷凍装置。
【請求項5】
前記副圧縮機の入口側に、減圧弁が設けられていることを特徴とする請求項1乃至4のいずれかに記載の極低温冷凍装置。
【請求項6】
前記副圧縮機は、前記主圧縮機より処理量が小さいことを特徴とする請求項1乃至5のいずれか一項に記載の極低温冷凍装置。
【請求項7】
前記主圧縮機が、インバーターによって駆動されることを特徴とする請求項1乃至6のいずれか一項に記載の極低温冷凍装置。
【請求項8】
前記主圧縮機の出口側に設けられたアフタークーラーと、
前記アフタークーラーの出口側又は前記主圧縮機と前記アフタークーラーとの間に設けられた逆止弁と、を備えることを特徴とする請求項1乃至7のいずれか一項に記載の極低温冷凍装置。
【請求項9】
被冷却体と前記冷却液とを収納する断熱容器と、
前記冷却液を前記副熱交換器に循環させる循環ポンプと、をさらに備えることを特徴とする請求項1乃至8のいずれか一項に記載の極低温冷凍装置。
【請求項10】
請求項1乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記閉ループ内の冷媒ガスの、前記主圧縮機の入口側の圧力が所定の圧力以下であり、前記バッファータンク内の冷媒ガスの圧力が前記主圧縮機の入口側の前記閉ループ内の圧力よりも低い場合に、前記バッファータンクから前記副圧縮機に冷媒ガスを導入し、当該副圧縮機によって圧送された冷媒ガスを前記閉ループ内に補充し、
前記閉ループ内の冷媒ガスの、前記主圧縮機の入口側及び出口側の少なくともいずれか一方の圧力が所定の圧力以上であり、前記バッファータンク内の冷媒ガスの圧力が前記主圧縮機の入口側の前記閉ループ内の圧力よりも高い場合に、前記閉ループから前記副圧縮機に冷媒ガスを導入し、当該副圧縮機によって圧送された冷媒ガスを前記バッファータンク内に回収することを特徴とする極低温冷凍装置の運転方法。
【請求項11】
前記閉ループ内の冷媒ガスを副圧縮機により圧送してバッファータンク内に回収することにより、閉ループ内の冷媒ガスの圧力を大気圧にすることを特徴とする請求項10に記載の極低温冷凍装置の運転方法。
【請求項12】
請求項4乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
主圧縮機の運転停止時にバイパス弁を開放することを特徴とする請求項10又は請求項11に記載の極低温冷凍装置の運転方法。
【請求項13】
請求項5乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記副圧縮機に冷媒ガスを導入する前に、冷媒ガスの圧力をほぼ大気圧まで減圧することを特徴とする請求項10乃至12のいずれか一項に記載の極低温冷凍装置の運転方法。
【請求項14】
請求項7乃至9のいずれか一項に記載の極低温冷凍装置の運転方法であって、
前記閉ループ内の冷媒ガスの、前記主圧縮機の出口側の圧力が所定の圧力よりも高くなった場合に、前記インバーターの出力周波数を変更して前記主圧縮機の運転回転数を降下させることを特徴とする請求項10乃至13のいずれか一項に記載の極低温冷凍装置の運転方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−106755(P2011−106755A)
【公開日】平成23年6月2日(2011.6.2)
【国際特許分類】
【出願番号】特願2009−262896(P2009−262896)
【出願日】平成21年11月18日(2009.11.18)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成21年度、独立行政法人新エネルギー・産業技術総合開発機構、「イットリウム系超電導電力機器技術開発」に関する委託研究、産業技術力強化法第19条の適用を受ける特許出願)
【出願人】(000231235)大陽日酸株式会社 (642)