説明

樹脂組成物

【課題】耐熱性を維持しつつ、耐衝撃性を向上し得る樹脂組成物を提供する。
【解決手段】樹脂組成物は、オレフィン系樹脂と、共役ジエン化合物と非共役オレフィンとの共重合体を含む樹脂組成物であって、オレフィン系樹脂の融解温度が前記共重合体の非共役オレフィンの融解温度以上である。前記共重合体において、共役ジエンの割合が30mmol%〜98mmol%であり、前記オレフィン系樹脂100重量部に対して、共重合体の含有量が1〜100重量部である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐衝撃性及び耐熱性の良好な樹脂組成物に関する。
【背景技術】
【0002】
高融点のオレフィン系樹脂は、耐熱性が要求される家庭用品や工業資材等に使用されている。高融点オレフィン系樹脂は、耐熱性には優れるものの、耐衝撃性が充分ではないという問題点がある。
この耐衝撃性を改良するために高融点オレフィン系樹脂にジエン系ゴムを配合することは知られている(例えば、特許文献1〜3参照)。
しかしながら、オレフィン系樹脂にジエン系ゴムを配合すると、お互いが相溶しないために破壊強度が低下してしまうという問題点がある。
一方、一般的に脆性的な熱可塑性樹脂の耐衝撃性を改良する方法として、熱可塑性樹脂をこれと非相溶のゴム成分とアロイ化することが知られており、この方法は、オレフィン系樹脂に対しても有効である。これらの技術としては、例えばコアシェルエラストマーを配合することによって非晶性ポリオレフィンの耐衝撃性を改善することが提案されている(例えば、特許文献4〜7参照)。
しかしながら、このような組成物では、十分な耐衝撃性が得られないばかりでなく、製造法としても簡便な方法とは言えないという問題があった。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平06−157836号公報
【特許文献2】特開平08−120129号公報
【特許文献3】特開2003−020369号公報
【特許文献4】特開平7−233301号公報
【特許文献5】特開平7−233302号公報
【特許文献6】特開平7−300540号公報
【特許文献7】国際公開2001/81461号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、このような状況下で、耐熱性を維持しつつ、耐衝撃性を向上し得る樹脂組成物を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明者は、オレフィン系樹脂に特定の共重合体を配合することにより、本発明の課題を解決し得ることを見出して、本発明を完成させるに至った。
即ち、本発明は、オレフィン系樹脂と、共役ジエン化合物と非共役オレフィンとの共重合体を含む樹脂組成物であって、オレフィン系樹脂の融解温度が前記共重合体の非共役オレフィンの融解温度以上である樹脂組成物である。
また、本発明は、前記樹脂組成物を用いた自動車用部材である。
さらに、本発明は、前記樹脂組成物を用いた電気部品である。
【発明の効果】
【0006】
本発明によれば、耐熱性を維持しつつ、耐衝撃性を向上し得る樹脂組成物を提供することができる。
【発明を実施するための形態】
【0007】
以下、本発明について、詳細に説明する。本発明に係る樹脂組成物は、オレフィン系樹脂と、共役ジエン化合物と非共役オレフィンとの共重合体を含む樹脂組成物であって、オレフィン系樹脂の融解温度が前記共重合体の非共役オレフィンの融解温度以上である樹脂組成物である。
共役ジエン化合物と非共役オレフィンとの共重合体の含有量は、オレフィン系樹脂100質量部に対して、1〜100質量部であることが好ましい。この範囲であれば、耐熱性を維持しつつ、耐衝撃性を好適に向上することができる。
本発明において、共役ジエン化合物と非共役オレフィンとの共重合体は、ランダム共重合体であることが好ましい。共役ジエン化合物と非共役オレフィンとの共重合体がランダム共重合体である場合、オレフィン系樹脂の耐熱性を低下させることなく、耐衝撃性を更に向上させることができる。
【0008】
<融解温度>
本発明において、融解温度(Tm)は、以下の方法に従って測定された融解吸熱カーブにおいて、吸熱量が最大であるピークのピーク温度である。
具体的には、示差走査熱量計(パーキンエルマー社製、DSC−7型、急冷対応タイプ)を用いて、あらかじめ試片10mgを窒素雰囲気下220℃で5分間加熱して試片を融解させた後、5℃/分の降温速度で40℃まで降温させる。その後、5℃/分で昇温させて、得られた融解吸熱カーブにおいて、吸熱量が最大であるピークのピーク温度を融解温度(Tm)とする。
なお、共役ジエン化合物と非共役オレフィンとの共重合体のランダム性が高い場合、非共役オレフィンの単量体単位の配列が不規則であるため、共重合体が相分離を起こすことがなく、ブロック部分に由来する融解温度が観測されない。
そこで、ランダム共重合体である場合には、ランダム共重合体の非共役オレフィン部分を取り出し、取り出した非共役オレフィン部分を、このランダム共重合体を合成したときと同様の条件で単独重合して得られる仮想の重合体の融解温度を、ランダム共重合体の非共役オレフィン部分の融解温度と定義する。
【0009】
<オレフィン系樹脂>
次に、本発明に係る樹脂組成物に含まれるオレフィン系樹脂について説明する。本発明において、オレフィン系樹脂の融解温度は、共役ジエン化合物と非共役オレフィンとの共重合体の非共役オレフィンの融解温度以上である。
また、オレフィン系樹脂の融解温度(Tm)は、100℃以上400℃以下であることが好ましい。融解温度が100℃以上400℃以下であると、剛性等の機械強度特性が向上し、耐熱性を維持しつつ耐衝撃性を向上させることができる。
上記融解温度は、100℃以上300℃以下であることがより好ましく、100℃以上250℃以下であることが特に好ましい。
【0010】
本発明で用いられるオレフィン系樹脂としては、例えば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)等のエチレン単独重合体(ポリエチレン)、あるいはエチレンと炭素原子数3〜20、好ましくは3〜8のα−オレフィンとからなる結晶性エチレン・α−オレフィン共重合体;プロピレン単独重合体、プロピレンブロック共重合体、プロピレンランダム共重合体等のポリプロピレン;プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等の炭素原子数3〜20、好ましくは3〜8のα−オレフィンの結晶性単独重合体ないし共重合体などが挙げられる。
これらの中でも、ポリエチレン、ポリプロピレン、ポリ1−ブテンが好ましく、特にポリプロピレンが好ましい。
本発明におけるオレフィン系樹脂の溶解性パラメーターδ(SP値)については、好ましくは、7〜9(cal・cc-11/2の範囲のものが用いられる。
オレフィン系樹脂の溶解性パラメーターδ(SP値)がこの範囲にあることにより、前記共重合体との相溶性が良好となり、樹脂組成物の耐衝撃性、耐熱性をより良好にすることができる。
本発明における溶解性パラメーターδ(SP値)は、Fedors 法にしたがって算出した値である。
【0011】
<共役ジエン化合物と非共役オレフィンとの共重合体>
次に、共役ジエン化合物と非共役オレフィンとの共重合体について説明する。
・共役ジエン化合物と非共役オレフィンとの共重合体の構成
本発明において使用する共役ジエン化合物と非共役オレフィンとの共重合体の共役ジエン化合物由来部分(共役ジエン部分)のシス−1,4−結合量は、50%以上であることが好ましい。さらに、共役ジエン化合物由来部分(共役ジエン部分)のシス−1,4−結合量は、好ましくは、92%超であり、さらに好ましくは95%以上である。共役ジエン化合物部分(共役ジエン化合物由来部分)のシス−1,4結合量が50%以上であれば、低いガラス転移点(Tg)を保持することができ、これにより、低温における耐衝撃性がより好適に改良される。
シス−1,4結合量は、共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
【0012】
共役ジエン化合物と非共役オレフィンとの共重合体における共役ジエン化合物の割合は、30mol%〜98mol%であることが好ましく、50mol%〜98mol%であることがより好ましく、60mol%〜98mol%であることがさらに好ましく、70mol%〜96mol%であることが特に好ましい。共役ジエン化合物の割合が30mol%以上98mol%以下であれば、耐衝撃性を向上させる効果がより良好となるとともに、オレフィン系樹脂との相溶性がより良好となるので好ましい。
【0013】
非共役オレフィンとしては、非環状オレフィンであることが好ましい。また、非共役オレフィンの炭素数は、2〜10のα−オレフィンであることが好ましい。α−オレフィンは、オレフィンのα位に二重結合を有するため、共役ジエン化合物との共重合を効率よく行うことができる。従って、非共役オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィンが好適に挙げられ、これらの中でも、エチレン、プロピレン及び1−ブテンが好ましく、エチレンが更に好ましい。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。
【0014】
共役ジエン化合物は、炭素数が4〜12であることが好ましい。この共役ジエン化合物として、具体的には、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン等が挙げられ、これらの中でも、1,3−ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0015】
上述した共役ジエン化合物の具体例のいずれを用いても、同様のメカニズムで本発明の共重合体を調製することができる。
【0016】
共役ジエン化合物と非共役オレフィンとの共重合体は、低分子量化の問題が起こることも無く、その重量平均分子量(Mw)は特に限定されるものでもない。高分子構造材料への適用の観点から、共役ジエン化合物と非共役オレフィンとの共重合体のポリスチレン換算重量平均分子量(Mw)は、10,000〜10,000,000が好ましく、10,000〜1,000,000がより好ましく、50,000〜600,000が更に好ましい。Mwが10,000,000を超えると成形加工性が悪化するおそれがある。
【0017】
本発明に係る共重合体は、共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が5%以下であることが好ましい。更に好ましくは3%以下、より好ましくは2.5%以下である。
【0018】
共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が5%以下であると、本発明に係る共重合体の耐侯性や耐オゾン性をさらに向上させることができる。さらには、共役ジエン化合物部分の1,2付加体(3,4付加体を含む)含量が2.5%以下であると、本発明の共重合体は、耐オゾン性や耐疲労性をさらに向上させることができる。
【0019】
共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量は、共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
【0020】
なお、前記共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量(共役ジエン化合物由来部分の共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量)は、共役ジエン化合物がブタジエンの場合、1,2−ビニル結合量と同じ意味である。
【0021】
また、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、10以下が好ましく、6以下が更に好ましい。分子量分布が10を超えると物性が均質でなくなるためである。
【0022】
ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求めることができる。
【0023】
本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体は、ランダム共重合体であっても、ブロック共重合体であってもよい。あるいは、テーパー共重合体であっても、交互共重合体であってもよい。
ランダム共重合体とは、共役ジエン化合物をAと、非共役オレフィンをBとした場合、AとBとの配列の順序がランダム(不規則)に配置される共重合体である。
ブロック共重合体の構造は、(A−B)x、A−(B−A)x及びB−(A−B)x(ここで、Aは、共役ジエン化合物の単量体単位からなるブロック部分であり、Bは、非共役オレフィンの単量体単位からなるブロック部分であり、xは1以上の整数である)のいずれかである。なお、(A−B)又は(B−A)の構造を複数備えるブロック共重合体をマルチブロック共重合体と称する。
【0024】
テーパー共重合体とは、ランダム共重合体とブロック共重合体とが混在してなる共重合体であり、共役ジエン化合物の単量体単位からなるブロック部分及び非共役オレフィンの単量体単位からなるブロック部分のうち少なくとも一方のブロック部分(ブロック構造ともいう)と、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム部分(ランダム構造ともいう)とから構成される共重合体である。
また、交互共重合体とは、共役ジエン化合物と非共役オレフィンとが交互に配列する交互共重合体(共役ジエン化合物をAと、非共役オレフィンをBとした場合の、−ABABABAB−の分子鎖構造)である。
【0025】
本発明では、共役ジエン化合物と非共役オレフィンとの共重合体は、ランダム共重合体であることが好ましい。共役ジエン化合物と非共役オレフィンとの共重合体がランダム共重合体である場合、非共役オレフィンの単量体単位の配列が不規則であるため、共重合体が相分離を起こすことがなく、ブロック部分に由来する融解温度が観測されない。すなわち、耐熱性などの性質を有する非共役オレフィンを共重合体の主鎖中に導入することが可能になる。
【0026】
・共役ジエン化合物と非共役オレフィンとの共重合体の製造方法
次に、本発明に係る共重合体の製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。本発明に係る共重合体は、重合触媒または重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させることができる。
【0027】
次に、本発明の共重合体の製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。
共役ジエン化合物と非共役オレフィンとの共重合体の製造方法においては、後述する第一の製造方法における重合触媒もしくは重合触媒組成物、または第二の製造方法における第一、第二、第三重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、重合を行うことができる。
また、後述する第一の製造方法における重合触媒もしくは重合触媒組成物、または第二の製造方法における第一、第二、第三重合触媒組成物を用いることにより、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体において、ランダム共重合体、ブロック共重合体、テーパー共重合体、交互共重合体など重合することができる。
【0028】
重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン、またそれらの混合物等が挙げられる。
【0029】
共役ジエン化合物と非共役オレフィンとの共重合体の製造方法は、例えば、(1)単量体として共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンを含む重合反応系中に、重合触媒組成物の構成成分を別個に提供し、該反応系中において重合触媒組成物としてもよいし、(2)予め調製された重合触媒組成物を重合反応系中に提供してもよい。また、(2)においては、助触媒によって活性化されたメタロセン錯体(活性種)を提供することも含まれる。なお、重合触媒組成物に含まれるメタロセン錯体の使用量は、共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンの合計に対して、0.00001〜0.01倍モルの範囲が好ましい。
【0030】
また、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
【0031】
本発明に係る製造方法において、共役ジエン化合物及び非共役オレフィンの重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物及び非共役オレフィンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限されず、例えば1秒〜10日の範囲が好ましいが、重合される単量体の種類、触媒の種類、重合温度等の条件によって適宜選択することができる。
【0032】
本発明に係る製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、該非共役オレフィンの圧力は、0.1MPa〜10MPaであることが好ましい。該非共役オレフィンの圧力が0.1MPa以上であれば、反応混合物中に非共役オレフィンを効率的に導入することができる。また、非共役オレフィンの圧力を高くし過ぎても、非共役オレフィンを効率的に導入する効果が頭打ちとなるため、非共役オレフィンの圧力を10MPa以下とするのが好ましい。
【0033】
前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、重合開始時における該共役ジエン化合物の濃度(mol/l)と該非共役オレフィンの濃度(mol/l)とは、下記式の関係を満たすことが好ましい。非共役オレフィンの濃度/共役ジエン化合物の濃度の値を1以上とすることで、反応混合物中に非共役オレフィンを効率的に導入することができる。
【0034】
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.0
更に好ましくは、下記式の関係を満たすことが好ましい。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.3
さらに好ましくは、下記式の関係を満たすことが好ましい。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.7
【0035】
<本発明の共重合体の第一の製造方法>
本発明の共役ジエン化合物と非共役オレフィンとの共重合体の第一の製造方法は、下記式(A):
aMXbQYb ・・・ (A)
[式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である]で表されるメタロセン系複合触媒、好ましくは下記式(I):
【0036】
【化1】

[式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位しており、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示す]で表されるメタロセン系複合触媒、又は該メタロセン系複合触媒とホウ素アニオンとを含む重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させることを特徴とする。
【0037】
上記第一製造方法によれば、上記メタロセン系複合触媒又は上記重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができ、更に、このようにして得られる共役ジエン化合物−非共役オレフィン共重合体は、非共役オレフィンの単量体単位が完全に不規則に配列してなるランダム部分を有する。なお、重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、ヘキサン、シクロヘキサン、またそれらの混合物等が挙げられる。
【0038】
上記メタロセン系複合触媒とは、ランタノイド元素、スカンジウム又はイットリウムの希土類元素と周期律表第13族元素とを有する化合物であり、上記式(A)、好ましくは上記式(I)で表されることを特徴とする。なお、μ配位とは、架橋構造をとる配位様式のことである。
【0039】
上記メタロセン系複合触媒において、上記式(A)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
【0040】
上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。
【0041】
上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
【0042】
上記式(A)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
【0043】
上記式(A)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
【0044】
一方、上記メタロセン系複合触媒において、上記式(I)中の金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
【0045】
上記式(I)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-XX又はC911XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(I)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
【0046】
上記式(I)において、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
【0047】
上記式(I)において、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(II):
【0048】
【化2】

(式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RE〜RJは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体を、AlRKLMで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、1H−NMRにより決定することが好ましい。
【0049】
上記式(II)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記式(I)中のCpRと同義である。また、上記式(II)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(I)中の金属M1と同義である。
【0050】
上記式(II)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(RE〜RJ基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、RE〜RJのうち少なくとも一つが水素原子であることが好ましい。RE〜RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
【0051】
上記式(II)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
【0052】
また、上記式(II)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
【0053】
一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKLMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1〜20の1価の炭化水素基又は水素原子で、RMは炭素数1〜20の1価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
【0054】
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して2〜50倍モルであることが好ましく、約3〜5倍モルであることが更に好ましい。
【0055】
また、上記重合触媒組成物(以下、第一重合触媒組成物ともいう)は、上記メタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。上記第一重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、非共役オレフィンの単量体単位が完全に不規則に配列してなるランダム部分を有する共役ジエン化合物−非共役オレフィン共重合体を製造することが可能であるが、更にホウ素アニオンを含有するため、各単量体成分の共重合体中での含有量を任意に制御することが可能となる。
【0056】
上記第一重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
【0057】
なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。
【0058】
上記第一重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRKLMで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0059】
<本発明の共重合体の第二の製造方法>
また、上記メタロセン系複合触媒又は上記第一重合触媒組成物を使用しなくても、重合反応系中への単量体の仕込み方を調整することで、本発明の共役ジエン化合物−非共役オレフィン共重合体を製造することができる。即ち、本発明の共重合体の第二の製造方法は、非共役オレフィンの存在下において、共役ジエン化合物の投入を制御することで、共重合体の連鎖構造を制御することを特徴とし、これによって、共重合体中の単量体単位の配列を制御することができる。なお、本発明において、重合反応系とは、共役ジエン化合物と非共役オレフィンとの重合が行われる場所を意味し、具体例としては、反応容器等が挙げられる。
【0060】
ここで、共役ジエン化合物の投入方法は、連続投入、分割投入のいずれであってもよく、更には、連続投入及び分割投入を組み合わせてもよい。また、連続投入とは、例えば、一定の添加速度で一定の時間添加することをいう。
【0061】
具体的には、共役ジエン化合物と非共役オレフィンとを重合させる重合反応系に共役ジエン化合物を分割又は連続投入することで、該重合反応系内の単量体の濃度比を制御することが可能となり、その結果、得られる共重合体中の連鎖構造(即ち、単量体単位の配列)を特徴づけることが可能となる。また、共役ジエン化合物の投入の際に、非共役オレフィンが重合反応系中に存在することで、共役ジエン化合物単独重合体の生成を抑制することができる。なお、共役ジエン化合物の投入は、非共役オレフィンの重合を開始した後に行ってもよい。
【0062】
例えば、上記第二製造方法によってランダム共重合体を製造する場合には、共役ジエン化合物と非共役オレフィンの重合を開始した重合反応系に、非共役オレフィンの存在下、共役ジエン化合物を新たに1回以上投入するか、又は共役ジエン化合物と非共役オレフィンとを重合させる重合反応系に、非共役オレフィンの存在下、共役ジエン化合物を連続的に投入することが有効となる。
【0063】
上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は特に限定されず、例えば、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の重合方法を用いることができる。また、上記第二製造方法は、上述のように重合反応系中への単量体の仕込み方を特定する以外は、上記第一製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができる。
【0064】
なお、上記第二製造方法においては、共役ジエン化合物の投入を制御する必要があるが、具体的には、共役ジエン化合物の投入量や共役ジエン化合物の投入回数を制御することが好ましい。また、共役ジエン化合物の投入の制御方法は、例えば、コンピュータ等のプログラムで制御する方法や、タイマー等を用いてアナログで制御する方法が挙げられるが、これらに限定されるものではない。また、上述のように、共役ジエン化合物の投入方法は、特に限定されず、連続投入、分割投入等が挙げられる。ここで、共役ジエン化合物を分割投入する場合、該共役ジエン化合物の投入回数は、特に限定されるものではない。
【0065】
また、上記第二製造方法においては、共役ジエン化合物の投入時に、非共役オレフィンが重合反応系に存在していることが必要であるため、非共役オレフィンを重合反応系へ連続的に供給することが好ましい。また、非共役オレフィンの供給方法は、特に限定されるものではない。
【0066】
また、上記第二製造方法は、効率よく重合を進行させる観点から、共役ジエン化合物と非共役オレフィンとの重合を、下記に示す重合触媒組成物の存在下で行うことが好ましい。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン等が挙げられる。
上記重合触媒組成物としては、下記一般式(III):
【0067】
【化3】

(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、及び下記一般式(IV):
【0068】
【化4】

(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、X´は、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す)で表されるメタロセン錯体、並びに下記一般式(V):
【0069】
【化5】

(式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR´は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示し、[B]-は、非配位性アニオンを示す)で表されるハーフメタロセンカチオン錯体からなる群より選択される少なくとも1種類の錯体を含む重合触媒組成物(以下、第二重合触媒組成物ともいう)が好適に挙げられ、該重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が
中心金属に結合した錯体化合物であり、特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。なお、重合反応系において、第二重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
【0070】
上記一般式(III)及び式(IV)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-XX又はC911-XXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(III)及び式(IV)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
【0071】
上記一般式(V)で表されるハーフメタロセンカチオン錯体において、式中のCpR´は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCpR´は、C55-XXで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR´として、具体的には、以下のものが例示される。
【0072】
【化6】

(式中、Meはメチル基を示し、Rは水素原子、メチル基又はエチル基を示す。)
【0073】
一般式(V)において、上記インデニル環を基本骨格とするCpR´は、一般式(III)のCpRと同様に定義され、好ましい例も同様である。
【0074】
一般式(V)において、上記フルオレニル環を基本骨格とするCpR´は、C139-XX又はC1317-XXで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
【0075】
一般式(III)、式(IV)及び式(V)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
【0076】
一般式(III)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、Ra〜Rfのうち少なくとも一つが水素原子であることが好ましい。Ra〜Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、Ra〜Rcのうち少なくとも一つが水素原子であり、Rd〜Rfのうち少なくとも一つが水素原子であることが更に好ましい。なお、アルキル基としては、メチル基が好ましい。
【0077】
一般式(IV)で表されるメタロセン錯体は、シリル配位子[−SiX´3]を含む。シリル配位子[−SiX´3]に含まれるX´は、下記で説明される一般式(V)のXと同様に定義される基であり、好ましい基も同様である。
【0078】
一般式(V)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
【0079】
一般式(V)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。
【0080】
一般式(V)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル
−6−ネオペンチルフェニルアミド基、2,4,6−トリ−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。
【0081】
一般式(V)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
【0082】
一般式(V)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
【0083】
一般式(V)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1〜20の炭化水素基が好ましい。
【0084】
一般式(V)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
【0085】
上記一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
【0086】
また、上記一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
【0087】
上記一般式(III)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(III)で表されるメタロセン錯体を得るための反応例を示す。
【0088】
【化7】

(式中、X”はハライドを示す。)
【0089】
上記一般式(IV)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(IV)で表されるメタロセン錯体を得るための反応例を示す。
【0090】
【化8】

(式中、X”はハライドを示す。)
【0091】
上記一般式(V)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
【0092】
【化9】

【0093】
ここで、一般式(VI)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR´は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基又は炭素数1〜20の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。
【0094】
[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。
【0095】
上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(V)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(V)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(VI)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(V)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(III)又は式(IV)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(V)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
【0096】
一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
【0097】
上記第二重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0098】
上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度、好ましくは100程度となるようにすることが好ましい。
【0099】
一方、上記有機アルミニウム化合物としては、一般式AlRR’R”(式中、R及びR’はそれぞれ独立してC1〜C10の炭化水素基又は水素原子であり、R”はC1〜C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。また、上記有機アルミニウム化合物の具体例としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。更に、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
【0100】
更に、上記重合触媒組成物においては、一般式(III)及び式(IV)で表されるメタロセン錯体、並びに上記一般式(V)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる共重合体の分子量を増大できる。
【0101】
また、上記重合触媒組成物としては
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B−1)、アルミノキサン(B−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B−3)よりなる群から選択される少なくとも一種と
を含む重合触媒組成物(以下、第三重合触媒組成物ともいう)を好適に挙げることもでき、該重合触媒組成物が、イオン性化合物(B−1)及びハロゲン化合物(B−3)の少なくとも一種を含む場合、該重合触媒組成物は、更に、
(C)成分:下記一般式(i):
YR1a2b3c ・・・ (i)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される有機金属化合物を含むことを特徴とする。上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)は、(A)成分へ供給するための炭素原子が存在しないため、該(A)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B−2)を含む場合であっても、該重合触媒組成物は、上記(C)成分を含むことができる。また、上記重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。なお、重合反応系において、第三重合触媒組成物に含まれる(A)成分の濃度は0.1〜0.0001mol/lの範囲であることが好ましい。
【0102】
上記第三重合触媒組成物に用いる(A)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
【0103】
また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
11112・L11w ・・・ (XI)
11113・L11w ・・・ (XII)
[式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す]で表されることができる。
【0104】
上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2´−ヒドロキシアセトフェノン、2´−ヒドロキシブチロフェノン、2´−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
【0105】
上記第三重合触媒組成物に用いる(A)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
【0106】
上記第三重合触媒組成物に用いる(B)成分は、イオン性化合物(B−1)、アルミノキサン(B−2)及びハロゲン化合物(B−3)よりなる群から選択される少なくとも一種の化合物である。なお、上記第三重合触媒組成物における(B)成分の合計の含有量は、(A)成分に対して0.1〜50倍モルであることが好ましい。
【0107】
上記(B−1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第三重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1〜10倍モルであることが好ましく、約1倍モルであることが更に好ましい。
【0108】
上記(B−2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(−Al(R´)O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R´は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R´として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第三重合触媒組成物におけるアルミノキサンの含有量は、(A)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度となるようにすることが好ましい。
【0109】
上記(B−3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、ハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第三重合触媒組成物におけるハロゲン化合物の合計の含有量は、(A)成分に対して1〜5倍モルであることが好ましい。
【0110】
上記ルイス酸としては、B(C653等のホウ素含有ハロゲン化合物、Al(C653等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
【0111】
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
【0112】
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
【0113】
上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01〜30モル、好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
【0114】
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
【0115】
上記第三重合触媒組成物に用いる(C)成分は、下記一般式(i):
YR1a2b3c ・・・ (i)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される有機金属化合物であり、下記一般式(X):
AlR111213 ・・・ (X)
[式中、R11及びR12は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R13は炭素数1〜10の炭化水素基であり、但し、R13は上記R11又はR12と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機金属化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第三重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
【0116】
<その他の成分>
・充填剤
本発明に係る樹脂組成物は、充填剤を含んでいてもよい。充填剤としては、特に制限なく一般に用いられるものを必要に応じて用いることができる。
無機充填剤として、具体的には、微粉末タルク、カオリナイト、焼成クレー、バイオフィライト、セリサイト、ウォラスナイトなどの珪酸塩、沈降性炭酸カルシウム、重質炭酸カルシウム、炭酸マグネシウムなどの炭酸塩、水産化アルミニウム、水酸化マグネシウムなどの水酸化物、酸化亜鉛、亜鉛華、酸化マグネシウムなどの酸化物、含水珪酸カルシウム、含水珪酸アルミニウム、含水珪酸、無水珪酸などの合成珪酸または珪酸塩などの粉末状充填剤;マイカなどのフレーク状充填剤;塩基性硫酸マグネシウムウィスカー、チタン酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー、セピオライト、PMF(Processed Mineral Fiber)、ゾノトライト、チタン酸カリ、エレスタダイトなどの繊維状充填剤;ガラスバルン、フライアッシュバルンなどのバルン状充填剤;などを挙げることができる。
【0117】
・ゴム成分
本発明に係る樹脂組成物には、他のゴム成分や、他の樹脂成分を配合してもよい。他のゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、他の共役ジエン化合物と非共役オレフィンとの共重合体、天然ゴム、各種ブタジエンゴム、各種スチレン−ブタジエン共重合体ゴム、イソプレンゴム、ブチルゴム、イソブチレンとp−メチルスチレンの共重合体の臭化物、ハロゲン化ブチルゴム、アクリロニトリロブタジエンゴム、クロロプレンゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン共重合体ゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0118】
・添加剤
また、本発明の樹脂組成物には、軟化剤、核剤、酸化防止剤、老化防止剤、塩酸吸収剤、耐熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤、難燃剤、顔料、染料、分散剤、銅害防止剤、中和剤、発泡剤、可塑剤、気泡防止剤、架橋剤、架橋助剤、架橋促進剤、過酸化物などの流れ性改良剤、ヘウェルド強度改良剤、可塑剤、加工助剤、耐候安定剤、着色防止剤、ブルーミング防止剤などの添加剤が含まれていてもよい。
架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤硫黄などが挙げられる。
【0119】
<自動車用部材>
本発明の樹脂組成物には、従来の樹脂組成物に対して適用されてきた成形法が、特に制限なく適用可能である。成形法としては、射出成形、押出成形、真空・圧空成形などの公知の成形法が採用できる。
本発明の樹脂組成物は、耐衝撃性、低温特性等に優れているので、各種の分野の成形品の製造に好適に用いることができる。特に自動車の外装材、内装材等の自動車用部材に好適に用いることができ、特に、フェンダー、バンパーなどの平板状の成形品に好適である。
【0120】
より具体的には、自動車部品としては、インストルメントパネル、センタークラスター、メータークラスター、グローブボックス、エアバッグ、デフロスターガーニッシュ、エアーダクト、ヒーターコントロール、ステアリングコラムカバー、ニーボルスター、エアーデフロスター、ドアトリム、サンシェード、リアパーセルシェルフ、ピラーカバー、ピラーインパクトアブソーバー、ボンネットエアースコープ、ラジエターグリル、ヘッドランプ部品、シグナルランプ部品、フォグランプ部品、バンパー、ヘッドランプフィニッシャー、ライセンスプレートフィニッシャー、フェンダー、ドアハンドル、ドアミラー、ドアパネル、リアクオーターパネル、リアコンビネーションランプ部品、テールゲートパネル、ラゲッジルームトリム、ホイールカバー、サイドリアカバー、センターキャップ、スポイラー、リアフィニッシャーなどが挙げられる。
【0121】
<電気部品>
また、本発明の樹脂組成物は、耐衝撃性、低温特性等に優れているので、家電、OA機器、電気電子部品等の電気部品として、特に好適である。
電気部品としては、テレビハウジング、テレビシャーシー、デフレションヨーク、他のテレビ部品、ACアダプター、電源ボックス、エアコン部品、オーディオ部品、照明カバー、モニターハウジング、モニターシャーシー、ノート型PCハウジング、ノート型PCバッテリー、液晶プロジェクターハウジング、PDAハウジング、アンテナカバー、プリンターハウジング、プリンターシャーシー、トナーカートリッジ、インクタンク、給紙用トレイ、スキャナーハウジング、スキャナーフレーム、携帯電話ハウジング、携帯電話バッテリーなどが挙げられる。
【実施例】
【0122】
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
エチレン−ブタジエン共重合体(EBR)の分析方法及び樹脂組成物の評価方法を以下に示す。
<(a)エチレン−ブタジエン共重合体(EBR)の分析方法>
・共重合体のミクロ構造(1,2−ビニル結合量、シス−1,4結合量)
共重合体中のブタジエン部分のミクロ構造(1,2−ビニル結合量)を、1H−NMRスペクトル(100℃、d−テトラクロロエタン標準:6ppm)による1,2−ビニル結合成分(5.0−5.1ppm)と全体のブタジエン結合成分(5−5.6ppm)の積分比より求めた。また、共重合体中のブタジエン部分のミクロ構造(シス−1,4結合量)を、13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)によるシス−1,4結合成分(26.5−27.5ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。
【0123】
・共重合体のエチレン含有率
共重合体中のエチレン部分の含有率(mol%)を 13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)による全体のエチレン結合成分(28.5−30.0ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。
【0124】
・共重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は140℃である。
【0125】
・共重合体のブロックポリエチレン融解温度(DSCピーク温度)
JIS K7121−1987に準拠して示差走査熱量測定(DSC)を行い、DSC曲線を描き、ブロックポリエチレン融解温度(DSCピーク温度)を測定した。なお、測定は、単体ポリマーや触媒残渣等の不純物の影響を避けるため、共重合体を大量のテトラヒドロフランに48h浸漬し、テトラヒドロフランに溶解する成分を全て取り除いた後、乾燥したゴム成分をサンプルとして使用した。
【0126】
・共重合体の同定
文献(「高分子学会予稿集Vol.42, No.4, Page1347」)のオゾン分解−GPC法を応用して、連鎖分布の解析を行った。なお、ゲルパーミエーションクロマトグラフィーは[GPC:東ソー製HLC−8121GPC/HT、カラム:昭和電工製GPC HT−803×2本、検出器:示差屈折率計(RI)、単分散ポリスチレンを基準、測定温度は140℃]を用いて測定した。
【0127】
<樹脂組成物の評価方法>
・耐熱性
耐熱性は、融解温度によって評価した。供試樹脂組成物の融解温度を示差走査熱量計(パーキンエルマー社製、DSC−7型、急冷対応タイプ)を用いて、あらかじめ試片10mgを窒素雰囲気下220℃で5分間加熱して試片を融解させた後、5℃/分の降温速度で40℃まで降温させる。その後、5℃/分で昇温させて、得られた融解吸熱カーブにおいて、吸熱量が最大であるピークのピーク温度を融解温度(Tm)とした。なお、本測定機を用いて5℃/分の昇温速度で測定したインジウム(In)の融解が開始する点は、156.6℃であった。
・耐衝撃性
常温(25℃)にて、JIS K7111:1996に従い、シャルピー衝撃試験機で行った。後述する比較例1の値を100として、下記式により指数表示した。数値が大きい程、耐衝撃性が良好である。
耐衝撃性指数={(供試試料の衝撃値)/(比較例1の試料の衝撃値)}×100
【0128】
製造例1 (a)エチレン−ブタジエン共重合体(EBR)のランダム共重合タイプの製造
十分に乾燥した2Lステンレス反応器に、1,3−ブタジエン28.0g(0.52mol)を含むトルエン溶液700mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にジメチルアルミニウム(μ−ジメチル)ビス(2−フェニルインデニル)ネオジウム[(2−PhC962Nd(μ−Me)2AlMe2]400.0μmol、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654)200.0μmolを仕込み、トルエン80mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ネオジウム換算で390.0μmolとなる量をモノマー溶液へ添加し、室温で120分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し共重合体(a)を得た。得られた共重合体(a)の収量は18.00gであった。
得られた共重合体(a)について、ミクロ構造、エチレン含有率、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を上記の方法で測定・評価した。
共重合体(a)中のブタジエン部分のミクロ構造として、シス−1,4−結合量は91%、1,2−ビニル結合量は2.1%であった。
重量平均分子量Mwは263,000であり、分子量分布Mw/Mnは1.58であった。エチレン含有率は15mol%であった。
(a)エチレン−ブタジエン共重合体(EBR)の連鎖構造は、ランダムであるため、ランダム構造を有する共重合体(a)のエチレン部分を取り出し、取り出したエチレン部分を、この共重合体(a)を合成したときと同様の条件で単独重合して得られる仮想の重合体の融解温度を、ランダム共重合体のエチレン部分の融解温度とした。
共重合体(a)のエチレン部分の融解温度は、110℃であった。
【0129】
実施例1、2及び比較例1〜4
表1に示す配合内容に従い、2軸押出機を用いて200℃で150rpmの条件で混練し、ペレタイザーによりペレット化して、製造例1で得られた(a)エチレン−ブタジエン共重合体(EBR)と、表1に示すオレフィン系樹脂とを含む樹脂組成物を調製した。上記方法によって、得られた実施例1,2、比較例1〜4の6種類の樹脂組成物の融解温度を測定した。
また、得られた実施例1,2、比較例1〜4の6種類の樹脂組成物のペレットから、射出成形機を用いて試験片を200℃で成形した。得られた6種類の試験片を用いて上記方法で耐衝撃性とを評価した。結果を表1に示す。
【0130】
【表1】

【0131】
なお、表1に示す各成分には、下記のものを使用した。・PE:ポリエチレン樹脂、株式会社プライムポリマー製、商品名「HI−ZEX(HDPE) 1608J」・PP:ポリプロピレン樹脂、株式会社プライムポリマー製、商品名「プライムポリプロ J229E」・オレフィン系樹脂:三井化学株式会社製、商品名「タフマー」、融解温度70℃
【0132】
表1より明らかなように、共重合体(a)のエチレン部分の融解温度(110℃)よりも高い融解温度を有するオレフィン系樹脂としてのPE,PPを配合した場合には、比較例1〜4の樹脂組成物と比べて、融解温度が向上することが確認できた。
また、実施例1、2の樹脂組成物は、耐衝撃性試験において、破断が確認されず、十分な耐衝撃性を備えていることが確認された。
共重合体(a)のエチレン部分の融解温度(110℃)よりも低い融解温度(70℃)を有するオレフィン系樹脂が配合された比較例4の樹脂組成物では、耐衝撃性は満たされたが、耐熱性に劣ることが確認できた。
【産業上の利用可能性】
【0133】
本発明の樹脂組成物は、耐衝撃性及び耐熱性を向上することができるため、自動車部品、電気部品に好適に用いられる。

【特許請求の範囲】
【請求項1】
オレフィン系樹脂と、共役ジエン化合物と非共役オレフィンとの共重合体を含む樹脂組成物であって、該オレフィン系樹脂の融解温度が前記共重合体の非共役オレフィンの融解温度以上である樹脂組成物。
【請求項2】
前記共重合体において、共役ジエンの割合が30mol%〜98mol%である請求項1に記載の樹脂組成物。
【請求項3】
前記オレフィン系樹脂100質量部に対して、前記共重合体の含有量が1〜100質量部である請求項1または2に記載の樹脂組成物。
【請求項4】
前記共重合体は、ランダム共重合体である請求項1乃至3のいずれか1項に記載の樹脂組成物。
【請求項5】
前記共重合体の共役ジエン化合物部分のシス−1,4結合量が50%以上である請求項1乃至4のいずれか1項に記載の樹脂組成物。
【請求項6】
前記共重合体のポリスチレン換算重量平均分子量は、10,000〜10,000,000である請求項1乃至5のいずれか1項に記載の樹脂組成物。
【請求項7】
前記共重合体の分子量分布(Mw/Mn)は、10以下である請求項1乃至6のいずれか1項に記載の樹脂組成物。
【請求項8】
前記非共役オレフィンは、非環状オレフィンである請求項1乃至7のいずれか1項に記載の樹脂組成物。
【請求項9】
前記非共役オレフィンの炭素数は、2〜10である請求項1又は8に記載の樹脂組成物。
【請求項10】
前記非共役オレフィンは、エチレン、プロピレン及び1−ブテンよりなる群から選択される少なくとも一種である請求項8又は9に記載の樹脂組成物。
【請求項11】
前記非共役オレフィンは、エチレンである請求項10に記載の樹脂組成物。
【請求項12】
前記共役ジエン化合物は、1,3−ブタジエン及びイソプレンよりなる群から選択される少なくとも一種である請求項1乃至11のいずれか1項に記載の樹脂組成物。
【請求項13】
前記オレフィン系樹脂の溶解性パラメータの値は、7乃至9である請求項1乃至12のいずれか1項に記載の樹脂組成物。
【請求項14】
請求項1乃至請求項13のいずれか1項に記載の樹脂組成物を用いた自動車用部材。
【請求項15】
請求項1乃至請求項13のいずれか1項に記載の樹脂組成物を用いた電気部品。