説明

熱源システム

【課題】 複雑な制御を必要とせず、高効率で運転可能な熱源システムを得ること。
【解決手段】 冷却塔と、冷凍機と、その間を配管で接続して冷却水を循環させる冷却水ポンプから構成される冷却水系と、上記冷凍機で冷却された冷水を冷水ポンプで負荷側に供給する冷水系からなる熱源システムにおいて、上記冷却塔は、冷却塔のファン動力を増加させることなく外気と冷却水との熱交換面積を広げることにより、当該冷却塔の冷却水出口温度が年間を通じて1℃程度低くなるように設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷凍機、冷却塔、冷却水ポンプ、冷水ポンプ等から構成される熱源システムのCOP(成績係数)を向上させることにより高効率化を実現した熱源システムに関するものである。
【背景技術】
【0002】
従来、オフィスビル等の各種施設において空調設備等の熱負荷のために熱源システムが用いられている。かかる熱源システムは、冷却水系に冷凍機、冷却塔、冷却水ポンプを設け、上記冷却水ポンプにて冷却水を冷却水配管内において冷凍機から冷却塔へと循環させ、上記冷凍機の凝縮器にて温度上昇した冷却水を上記冷却塔にて冷却する構成である。また、熱負荷の設けられた冷水系では、冷水配管内の冷水を上記冷凍機の蒸発器にて冷却して熱負荷に循環させる構成である。
【0003】
このような熱源システムにおいて、冷却水温度が低くなれば上記冷凍機の効率が良くなることは知られているが、通常は、最大負荷時(ピーク時)以外の中間期(部分負荷時)の外気温が低くなった時に冷却水温度もそれに応じて低下するという状況下での運転状態となっている。
【0004】
そこで、夏場のピーク負荷時において冷却水系の冷却水温度を低下させて熱源システム全体の効率を向上させることが考えられるが、そのためには冷却塔の送風ファンの動力を大きくしたり、同一構成の冷却塔を複数台並設してその冷却能力を向上させることにより、冷却水温度を低下させ、これにより冷凍機のCOP(成績係数)を向上させることが提案されている(特許文献1)。
【0005】
また、ピーク負荷時においては、冷凍機の入口温度と出口温度の冷却水温度差を5℃の冷却水流量にて運転し、部分負荷時においては、インバータにより冷却水ポンプの動力を低減制御することで冷却水流量を下げ、これにより動力低減を行って熱源システム全体の効率の向上を図ることが提案されている(特許文献2)。
【0006】
【特許文献1】特開2005−214608
【特許文献2】特開2005−257221
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところで、上記特許文献1の技術では、冷却塔の台数を増やして冷却塔の容量を2倍程度に増強し、ターボ冷凍機の凝縮温度を下げて冷凍機のCOPを向上させているが、単に冷却塔を増設すると各冷却塔に設けられている冷却ファンの消費電力が増加して冷却水系の消費電力量が増加してしまう。このため冷却水系のCOPの最適化に必ずしもつながらないという課題がある。
【0008】
また、上記特許文献2の技術では、圧縮式冷凍機の冷却水入口と冷却水出口の温度差を上記冷凍機のCOPに応じて変更する方式であるが、熱源システム内に多くのセンサーやインバータが必要となり、熱源システムの構成及びその制御が複雑となり設計及び運転が難しいとの課題がある。
【0009】
本発明は、上記課題に鑑みてなされたものであり、冷却塔のファン動力を増加させることなく、外気と冷却水温度との熱交換面積を広げることにより、当該冷却塔の冷却水温度が年間を通して低くなるように設定したものであり、また、ピーク時において冷凍機の入口温度と出口温度の冷却水温度差を従来の温度差より大きく設定すると共に、そのような温度差を実現するための冷却水流量を以って年間を通じて一定流量で運転すること等により、複雑な制御を必要とせずに、構造の簡単な高効率の熱源システムを実現したものである。
【課題を解決するための手段】
【0010】
本発明は上記課題を解決するため、
第1に、冷却塔と、冷凍機と、その間を配管で接続して冷却水を循環させる冷却水ポンプから構成される冷却水系と、上記冷凍機で冷却された冷水を冷水ポンプで負荷側に供給する冷水系からなる熱源システムにおいて、上記冷却塔は、冷却塔のファン動力を増加させることなく外気と冷却水との熱交換面積を広げることにより、当該冷却塔の冷却水出口温度が年間を通じて1℃程度低くなるように設定したものであることを特徴とする熱源システムにより構成される。
【0011】
上記冷凍機は例えばターボ冷凍機(圧縮式冷凍機)である。このように構成すると、夏場のピーク時のみならず、部分負荷時においても例えば従来型の冷却水温度(ピーク時32℃)より年間を通じて1℃程度低い温度に設定することができ、これにより冷凍機のCOP(成績係数)を年間を通じて向上させることができる。また、冷却水温度の低下は、冷却塔の冷却ファンの動力の増加を伴うことなく実現しているので、熱源システムのCOPを向上させて効率的な運転を実現し得る。上記冷却水温度差の1℃程度とは、1℃を含み概ね0.5℃以上2.0℃以下の範囲を含む温度をいう。
【0012】
第2に、上記冷却塔の100%負荷の運転時における冷却水出口温度は31℃近傍であることを特徴とする上記第1記載の熱源システムにより構成される。
【0013】
このように構成すると、特に夏場のピーク時の消費電力を低減して熱源システムのCOPを最大限に向上することができる。上記冷却水入口温度の31℃近傍とは、31℃を含み概ね温度範囲が30℃から31℃台前半の範囲を含む温度をいう。
【0014】
第3に、上記冷却塔及び上記冷凍機の100%負荷の運転時において、上記冷凍機の冷却水入口温度と冷却水出口温度の温度差が7℃近傍となるように冷却水の流量を決定すると共に、上記冷却水ポンプは、上記決定した流量による一定流量の冷却水を上記冷却水系に年間を通じて循環させるように構成したものであることを特徴とする上記第1又は2記載の熱源システムである。
【0015】
このように構成すると、夏場のピーク時(100%負荷の運転時)において、冷却水入口温度を例えば31℃とすると、冷却水は冷凍機において38℃に温度上昇して(温度差7℃)当該冷凍機を流出して冷却塔に流入し、当該冷却塔により31℃まで冷却され、冷却水ポンプにより再度冷凍機に流入していく。よって、夏場のピーク時においては冷凍機の冷却水温度差は7℃に保たれる。また、上記冷凍機の100%負荷の運転時において冷却水温度差(7℃)を基準に冷却水流量が決定されるので、従来の冷却水温度差(5℃)に基づく冷却水量よりも少ない流量とすることができ、低容量の冷却水ポンプを使用することができる。また、ピーク時以外においては冷凍機の発生熱量は低下するが冷却水量は一定流量を維持するため温度差は小さくなる。しかし、冷却水出口温度が低下するため冷凍機のCOP(成績係数)は向上する。よって、部分負荷時においても消費電力の低い効率的な運転を行うことができる。上記冷却水の温度差が7℃近傍とは、7℃を含み概ね温度差が6℃台後半から8℃台前半の範囲を含む温度をいう。
【0016】
第4に、上記冷却塔及びターボ冷凍機の100%負荷の運転時及び部分負荷運転時において、年間を通して常時、熱源システムのCOP(成績係数)が最大値となることを特徴とする上記第1〜3の何れかに記載の熱源システムにより構成される。
【発明の効果】
【0017】
本発明に係る熱源システムは、冷却塔のファン動力を増加させることなく冷却水温度が年間を通じて1℃程度低く設定することで、冷凍機のCOPを向上させるものである。
【0018】
また、本発明に係る熱源システムは、ピーク時における冷凍機の冷却水温度差を従来より大きく設定すると共に、従来より少ない冷却水流量を以って年間を通じて一定の冷却水を循環させることにより、年間の消費電力量を低減して効率的な運転を可能としたものである。
【0019】
従って、冷却水ポンプのインバータによる回転数制御等の複雑な制御を必要とせず、非常に簡単な構成により効率的な運転を実現することができる。
【発明を実施するための最良の形態】
【0020】
以下、本発明の実施の形態を添付図面に基づいて説明する。尚、以下の説明において本発明のシステムにおけるCOP(成績係数)は、冷水系の冷水ポンプを除く冷却水系の熱源システムのCOPをいうものとする(後述の式(5)(6)参照)。
【0021】
まず、本発明の熱源システムの基本的構成を図1により詳述する。本発明に係る熱源システムは、ビル等の空調設備に用いられるシステムであり、冷却塔1a〜1cから構成される冷却塔1、ターボ冷凍機(圧縮式冷凍機)2、上記冷却塔1と上記冷凍機2との間に配管され冷凍機用の冷却水の往管3a及び還管3bからなる冷却水配管3、上記冷却水配管3中に設置され上記冷凍機2と上記冷却塔1との間の冷却水を循環させる冷却水ポンプ4、上記冷凍機2に接続され負荷側に冷水を供給する冷水配管5、及び冷水配管5中に設置された冷水ポンプ6を含む。尚、上記冷却水の循環する系を冷却水系、上記冷水が循環する系を冷水系という。上記各冷却塔1a〜1cにおいて、7a〜7cは外気を導入するための冷却ファン、8a〜8cは上記冷却水散布用スプレー、9は冷却水であり、これら冷却塔1a〜1cの冷却水入口は各々上記還管3bに接続され、上記冷却塔1a〜1cの冷却水出口は各々上記往管3aに接続されている。
【0022】
上記ターボ冷凍機2において、10は気化した冷媒を液化するための凝縮器であり、上記冷却水は上記冷凍機入口12aより凝縮器10内を経て冷凍機出口12bより上記還管3bに流出する。11は液化した冷媒を気化するための蒸発器であり、上記冷凍機2の上記冷水は冷水入口13aから蒸発器11内を経て冷水出口13bより冷水配管5に流出する。14は上記液化した冷媒を圧縮して気化させるための圧縮機である。15aはターボ冷凍機2の冷却水入口温度を計測するための温度センサー、15bはターボ冷凍機2の冷却水出口温度を計測するための温度センサー、16aはターボ冷凍機2の冷水入口温度を計測するための温度センサー、16bはターボ冷凍機2の冷水出口温度を計測するための温度センサー、17はターボ冷凍機2の操作部であり、表示部(図示せず)により上記温度センサー15a,15bの出力値、即ち冷却水入口温度と冷却水出口温度及び上記温度センサー16a,16bの出力値、即ち冷水入口温度と冷水出口温度等を表示し得るように構成されている。尚、図示していないが、上記熱源システムは各動力部に動力を供給するための動力盤と各種制御を行うための制御盤を具備している。
【0023】
このような構成の熱源システムは、冷却水系においては、冷却塔1a〜1cから流出した冷却水は冷却水ポンプ4の容量に基づく一定流量でターボ冷凍機2に往管3aを介して流入し、当該ターボ冷凍機2の上記凝縮器10において冷媒の液化に伴う熱を吸収して温度上昇して還管3bに流出し、さらに配管3内を通って冷却塔1a〜1cに流入し、各冷却塔1a〜1cのスプレー8a、8b、8cから散布され各冷却塔において外気により冷却された後、各々往管3aに流入して冷却水ポンプ4により上記冷凍機2に送り出される。
【0024】
また、冷水系においては、負荷により温度上昇した冷水は、冷水ポンプ6により上記冷凍機2に送り出され、当該冷凍機2の上記蒸発器11において冷媒の気化に伴って熱を奪われて温度が低下し、当該冷凍機2の冷水出口13bから冷水配管5を通って負荷側に流出していく。尚、ターボ冷凍機2内の冷媒はその後圧縮機14によりに圧縮されたガスとなり、再度上記凝縮器10に流入するサイクルを繰り返す。
【0025】
尚、図1中、18は上記往管3aと還管3bとの間に接続されたバイパス弁であり、空調負荷が小さくなる中間期において外気温が低下して冷却水温度が低下した場合、当該バイパス弁18を開いて還管3b内の冷却水を往管3a側にバイパスし、これにより冷却水入口温度がターボ冷凍機2の下限値以下にならないようにするものである。
【0026】
(A)ターボ冷凍機単体のCOP(成績係数)について
このように構成される熱源システムにおいて、まず、ターボ冷凍機単体のCOP(成績係数)、即ち、「ターボ冷凍機の消費電力に対するターボ冷凍機の生産熱量の比」に着目する。ここでターボ冷凍機単体のCOPは以下の式(1)により求められる。
ターボ冷凍機のCOP=(ターボ冷凍機の生産熱量)/(ターボ冷凍機の消費電力)
・・・・・・・・・・・・・・(1)
ここで、ターボ冷凍機の生産熱量は以下の式(2)により求められる。
ターボ冷凍機の生産熱量={(冷水入口温度−冷水出口温度)×冷水流量}
・・・・・・・・・・・・・・(2)
また、冷却塔から外気に放熱される熱量は、式(3)及び式(4)により求められる。
冷却塔からの放熱量=ターボ冷凍機の生産熱量+ターボ冷凍機の消費電力・・・(3)
冷却塔からの放熱量={(冷却水出口温度−冷却水入口温度)×冷却水流量}・(4)
【0027】
図3は、上記熱源システムとして用いられる一般的なインバータ制御のターボ冷凍機2単体のCOP(成績係数)を示すものであり、縦軸にCOP、横軸に負荷率をとり、当該冷凍機2への冷却水入口温度ごとに負荷率とCOPとの関係を示したものである。同図より、全体として冷却水温度が低下する程、ターボ冷凍機のCOPは向上することがわかる。即ち、ターボ冷凍機2は、冷却水温度は低い程効率的な運転が可能であること及び年間を通じての熱源システムのCOP向上に貢献し得ることが予測される。
【0028】
ここで、上記ターボ冷凍機2の冷却水入口温度は、上記冷却塔1の設計条件によって定まる。従来、冷却塔1の設計条件は、夏場のピーク時、即ち冷却塔1の100%負荷時において、概ね冷却水入口温度37℃、冷却水出口温度32℃で運転し得るように設計されている。尚、このような従来の一般的な冷却塔を以下「標準型冷却塔」という。
【0029】
そこで、上記ターボ冷凍機2並びに熱源システムのCOPの向上を図るため、夏場のピーク時のターボ冷凍機2の冷却水入口温度を従来の32℃から31℃近傍(31℃を含み概ね温度範囲が30℃から31℃台前半の範囲を含む温度。以下同じ)に低下させ、これによりターボ冷凍機単体のCOPを向上させることを検討する。
【0030】
ピーク時のターボ冷凍機2の冷却水入口温度を1℃程度(1℃を含み概ね0.5℃以上2.0℃以下の範囲を含む温度。以下同じ)低下させるためには、冷却塔1の冷却能力を向上させることが必要となる。即ち、ピーク時(100%負荷時)の冷却塔1の設計条件を例えば外気温度33.5℃、外気湿球温度27.5℃とし、このときの冷却塔1が冷却水出口温度31℃近傍(或は31℃以下)になるように、冷却水温度を従来の冷却水温度に比較して1℃程度(或は1℃以上)低下させる。結果として、このような冷却能力の冷却塔1によると、ピーク時のみならず、ピーク時以外の部分負荷時においても年間を通じて冷却水温度を1℃程度低下させることになる。
【0031】
このとき、冷却塔1の冷却能力を向上させるために、従来技術にて説明したように冷却塔1自体を複数台増設することや、冷却塔1の冷却ファンの動力を増加させること等が考えられるが、何れの場合も冷却塔1の冷却ファン動力が増加してしまい、結果として冷却水系の消費電力が増大し、熱源システムのCOPを低下させるおそれがある。よって、上記冷却塔1の冷却能力の向上は、冷却塔1の冷却ファン7a等の動力を増加させることなく、外気と冷却水との熱交換面積を1.5倍から2倍程度に増大させることにより行う。以下、このように冷却ファンの動力を増加させずに熱交換面積を増大させることにより、ピーク時の冷却水出口温度31℃近傍、かつ年間を通じて上記標準型冷却塔より1℃程度低い冷却水温度を実現した冷却塔を「高性能型冷却塔」という。
【0032】
(B)ターボ冷凍機の冷却水温度差
次に、本発明の発明者らは、上記熱源システムのCOPをさらに向上させることを検討するに当たり、ターボ冷凍機2の冷却水の出入口温度差に着目した。
【0033】
従来型のターボ冷凍機は上述のように冷却水入口温度32℃、冷却水出口温度37℃であり、温度差は5℃で運転しているが、一般にターボ冷凍機の生産熱量は、100%負荷時(夏場のピーク時)において生産される熱量Qを基準として、当該基準熱量Qを100%負荷時において生産し得るように設計されている。よって、100%負荷時(夏場のピーク時)を考慮すると、生産される熱量Q及びターボ冷凍機の消費電力は一義的に定まるので、上記式(2)、(4)より、冷却水温度差を増加させると、冷却水流量を低減することができる。
【0034】
即ち、冷却水温度差を大きくすることにより、ターボ冷凍機2自体のCOPは低下するが、その代わり冷却水流量を低減することができるので、冷却水ポンプ4の動力を削減することができる。そして、この冷却水ポンプ4の動力の削減が熱源システムのCOPの削減につながることが予測される。
【0035】
そこで、発明者らは、上記知見に基づいて、上記図1に示す熱源システムについて、上記標準型冷却塔を用いた場合と、上記高性能型冷却塔を用いた場合について、各々以下の試算を行った。
【0036】
(a)条件1(標準型冷却塔を用いた場合)(図4(a)参照)
冷却塔1として上記標準型冷却塔を用いた。よって、ピーク時の冷却塔1の冷却水出口温度は32℃、ターボ冷凍機2の冷却水入口温度は32℃である。ターボ冷凍機はピーク時(100%負荷時)に生産される熱量Q、標準型冷却塔から放熱される熱量Qs(ピーク時一定)を基準値として、ピーク時におけるターボ冷凍機2の冷却水温度差を5℃、6℃、7℃、8℃、9℃、10℃とした場合の冷却水流量を上記式(2)、(4)に基づいて決定した。即ち、冷却水流量は各温度差毎に、Qs/5、Qs/6、Qs/7、Qs/8、Qs/9、Qs/10となる。
【0037】
そして、これらの冷却水流量を送出可能な容量の冷却水ポンプ4を用いて年間を通じてピーク時以外においても各温度差毎に一定流量を冷却水系に循環させるものとする。そして、上記各冷却水温度差毎に、以下のパターンA〜Cの3パターンの負荷率(後述)について、年間の消費電力量を算出した。
【0038】
(b)条件2(高性能型冷却塔を用いた場合)(図4(b)参照)
冷却塔1として上記高性能型冷却塔を用いた。よって、ピーク時の冷却塔1の冷却水出口温度は31℃、ターボ冷凍機2の冷却水入口温度は31℃であり、年間を通じて冷却水温度は上記条件1よりも1℃程度低く設定される。ターボ冷凍機2はピーク時(100%負荷時)に生産される熱量Q、高性能型冷却塔から放熱される熱量Qh(ピーク時一定)を基準値として、ピーク時におけるターボ冷凍機2の冷却水温度差を同様に5℃、6℃、7℃、8℃、9℃、10℃とした場合の冷却水流量を式(2)、(4)に基づいて決定した。即ち、冷却水流量は各温度差毎に、Qh/5、Qh/6、Qh/7、Qh/8、Qh/9、Qh/10となる。
【0039】
そして、これらの冷却水流量を送出可能な容量の冷却水ポンプ4を用いて年間を通じて各温度差毎にピーク時以外においても一定流量を冷却水系に循環させるものとする。そして、上記各冷却水温度差毎に、以下のパターンA〜Cの3パターンの負荷率について、年間の消費電力量を算出した。
【0040】
(c)運転パターンについて
この場合、上記条件1、2の何れの場合も、熱源システムの運転パターンは、図5(a)〜(c)に示す3つのパターンの年間負荷率とした。即ち、パターンAは、日間負荷率は、1時から9時までの深夜は45%、9時から23時までが90%であり、月別負荷率は、年間を通じて95%一定とするもので、年間負荷率は65%である。
【0041】
パターンBは、日間負荷率はパターンAと同一であるが、月別負荷率は、7月と8月にピークが存在し、それ以外の月は漸次減少するパターンであり、年間負荷率は45%である。
【0042】
パターンCは、月別負荷率はパターンBと同一であるが、日間負荷率は1時から9時までは0%とするものであり、年間負荷率は30%である。
【0043】
(d)年間を通じた試算方法
まず、パターンA〜Cの各々の負荷(図5の日間負荷率及び月間負荷率)に基づいてその月日の交換熱量を決定し、その月日での外気条件に基づいて冷却塔の運転条件(冷却水温度)を算出する。冷却水流量は一定なので、冷却塔の冷却水出口温度が決まれば、冷却水温度条件が決定される。例えば、標準型冷却塔を用いた場合は(図4(a))、夏場のピーク時(7月、8月等)の冷却水温度は32℃に設定され、ターボ冷凍機2の冷却水温度差が例えば5℃の場合は、ピーク時の冷却水流量はQs/5となる。よって、ピーク時を含めて冷却水流量はQs/5一定で年間を通じて運転される。負荷が小さく、冷凍機が部分負荷運転を行う場合は(例えば、パターンBでは3月、4月は月別負荷率は60%参照)、交換熱量も減少し、冷却水側の交換熱量も減少し、温度差は上記5℃より低下するので、このような中間期の負荷率も考慮する。そして、当該条件で1年間運転した場合の冷却水系の消費電力の合計、即ち、算出した冷却水流量(Qs/5)での年間の冷却水ポンプ4の消費電力量を算出し、算出した温度条件でのターボ冷凍機2本体の消費電力量を算出し、算出した温度条件と冷却水流量から冷却塔1の冷却ファン7a〜7cの消費電力を算出し、これらの合計の消費電力量[kWh/年]を求める。
【0044】
また、高性能型冷却塔を用いた場合(図4(b))も同様に年間消費電力量を求める。即ち、同様に、パターンA〜Cの各々の負荷(図5の日間負荷率及び月間負荷率)に基づいてその月日の交換熱量を決定し、その月日での外気条件に基づいて冷却塔の運転条件(冷却水温度)を算出する。例えば、高性能型冷却塔を用いた場合は(図4(b))、夏場のピーク時(7月、8月等)の冷却水温度は31℃に設定され、ターボ冷凍機2の冷却水温度差が例えば7℃の場合は、ピーク時の冷却水流量はQh/7となる。よって、ピーク時を含めて冷却水流量はQh/7一定で年間を通じて運転される。負荷が小さく、冷凍機が部分負荷運転を行う場合は(例えば、パターンCでは1月、2月は月別負荷率は40%参照)、交換熱量も減少するので、冷却水側の交換熱量も減少し、温度差は上記7℃より低下するので、このような中間期の負荷率も考慮する。そして、当該条件で1年間運転した場合の冷却水系の消費電力の合計、即ち、算出した冷却水流量(Qh/7)での年間の冷却水ポンプ4の消費電力量を算出し、算出した温度条件でのターボ冷凍機2本体の消費電力量を算出し、算出した温度条件と冷却水流量から冷却塔1の冷却ファン7a〜7cの消費電力を算出し、これらの合計の消費電力量[kWh/年]を求める。
即ち、その日の外気湿球温度(統計値)と冷却塔の性能曲線より、冷凍機の冷却水入口温度を算出し、負荷パターンの部分負荷率と上記冷却水入口温度よりターボ冷凍機の入力値[kw]、冷却塔の入力値[kw]、冷却水ポンプの入力値[kw]を算出して1日の消費電力を算出し、当該消費電力を年間日数分積み上げることにより、年間の消費電力量を求める。
【0045】
(e)熱源システムのCOP(成績係数)
熱源システム(但し、冷水系の冷水ポンプを除く)のCOPは以下の式(5)により求める。
熱源システムCOP(成績係数)
=ターボ冷凍機の生産熱量[kw]/熱源システムの合計消費電力[kw]
・・・・・・・・・・・(5)
【0046】
ここで、ターボ冷凍機の生産熱量は上記式(2)によって算出される。また、熱源システム(但し、冷水系の冷水ポンプを除く)の合計消費電力は、以下の式(6)によって算出する。
熱源システム消費電力=(ターボ冷凍機電力+冷却塔ファン電力+冷却水ポンプ電力)
・・・・・・・・・・・(6)
【0047】
(f)試算結果(図6参照)
上記の条件に基づいて、上記パターンA、B、Cの運転を行った場合の標準型冷却塔と高性能型冷却塔について、冷却水温度差に対する年間消費電力量を表したものが図6である。この図によると、まず、標準型冷却塔よりも高性能型冷却塔を用いた方が、どの温度差においても年間の消費電力が低いことがわかる。これは高性能型冷却塔の冷却水温度が標準型冷却塔の冷却水温度よりも年間を通じて1℃程度低いことが消費電力の効率化に貢献しているものと考えられる。さらに、標準型冷却塔及び高性能型冷却塔の何れの場合も、冷却水温度差が7℃近傍のときに、最も消費電力が低いことがわかる。即ち、標準型冷却塔及び高性能型冷却塔の何れの場合も、温度差が7℃近傍のときに、熱源システムのCOP(成績係数)が最高値を示すことがわかる。
【0048】
(C)COPの最高値を実現するための構成
以上の検討結果より、発明者らは図1に示す熱源システムにおいて、以下の構成とすることにより、年間の消費電力を最も低くし、熱源システムのCOPを最高値とすることができるとの知見を得るに至った。
【0049】
(a)夏場のピーク負荷時に、ターボ冷凍機2を100%運転する場合、冷却水系においてターボ冷凍機2の冷却水入口温度を従来の32℃から1℃程度低下させ31℃近傍とする。そして、年間を通じて冷却水入口温度を1℃程度低下させる。
【0050】
これを実現するため冷却塔1の冷却能力を向上させる必要があるが、そのために、冷却ファンの動力を増加させずに、外気と冷却水との熱交換面積を1.5倍から2倍に増大させた高性能型冷却塔を用いる。
【0051】
(b)熱源システムの消費電力をさらに低減させるために、ターボ冷凍機2の出入口の冷却水温度差ΔTを、ピーク時(100%負荷時)において7℃近傍に設定する。これを実現させるために、冷却水ポンプ4の冷却水流量を標準型より下げて消費電力を減少させる。
【0052】
さらに、ピーク時(100%負荷時)のターボ冷凍機2の生産熱量を基準として、上記温度差7℃近傍に基づいて冷却水流量を決定し、当該冷却水流量(一定)にて年間を通じて運転を行う。
【0053】
このような条件で運転することにより、標準型冷却塔、高性能型冷却塔の何れを用いた場合も、熱源システムの年間消費電力を最小として、COPを最高値とすることができる。
【0054】
(D)具体的機器構成
以下、図1の熱源システムにおいて、上記(C)(a)(b)条件を満たす各機器の具体的構成について説明する。
(a)冷却塔(高性能型冷却塔)1について
【0055】
冷却塔1は、図2(a)に示すような冷却塔を用いる。上述のように夏場のピーク時(100%負荷時)に冷却塔1の冷却水出口温度が31℃となるような設計を行う。具体的には、例えば外気温度を33.5℃、外気湿球温度が27.5℃のとき、冷却塔1の冷却水入口温度38℃、冷却水出口温度31℃となるように当該冷却塔の設計を行う。ここでは、冷却ファン7aの動力を増加せずに設計することが重要である。一例として、標準型冷却塔(冷却水出口温度32℃)が7.5kWのモータを使用した直径2100mmの冷却ファンを用いており、かかる冷却塔を2台並設していたのに対して、3.7kWのモータを使用した直径1800mmの冷却ファン7aを用い、当該冷却塔を3台並設する(冷却塔1a〜1c)。また、冷却塔1台あたりの外気と冷却水との熱交換面積(充填材19の面積)を広げることで、冷凍機1a〜1bの3台における外気と冷却水との熱交換面積の合計を、従来比で1.5倍〜2倍とし、冷却ファン動力を増加させることなく冷却能力を向上し、冷却水出口温度31℃近傍を実現した(図2(b))。上記熱交換面積の増大は、具体的には冷却塔1の充填材19の幅及び奥行はそのままで高さ方向に面積を1.5倍から2倍拡大した。図8に面積拡大後の充填材19(面積拡大部分19’)を示す。尚、このように構成すると設置面積の効率化を図ることができる。尚、図2(a)中、20は外気取入口を示す。
【0056】
(b)冷凍機2及び冷却水ポンプ4について
冷凍機2は、定速ターボ冷凍機とインバータ制御ターボ冷凍機の何れも使用可能である。尚、このような性能の冷凍機は従来から一般的に用いられているので、本発明を実現するにあたっては従来から用いられているターボ冷凍機をそのまま使用することができる。
【0057】
そして、本発明に係る熱源システムの設計条件として、ターボ冷凍機2の100%負荷時において発生する熱量(一定値)を基準として、式(2)、(4)に基づいて冷却水温度差が7℃近傍となるように冷却水流量を決定する。
【0058】
例えば、従来のターボ冷凍機の冷却水温度差が5℃であるとすれば、冷却水流量は従来の熱源システムに比べて約5/7に設定することができる。即ち、ピーク時の冷却水流量が従来比約5/7となるような容量の冷却水ポンプ4を用いる。このように、従来の冷凍機の発生熱量を維持しながら冷却水で入口温度差を7℃近傍とするには、例えば冷却水ポンプ4の能力を従来型の容量の約5/7の容量のポンプを用いればよい。
【0059】
(c)その他
上述のように、冷却水系の冷却水流量は、例えば従来装置の約5/7のように少ない流量とすることができるため、冷却水系の配管3(往管3a,還管3b)の直径は従来の冷却水温度差が5℃の熱源システムより小さくすることが可能な場合がある。これにより、熱源システム全体の製造コストをも低減することができる。
【0060】
(E)動作説明
本発明の熱源システムは上述のように構成することができるため、以下その動作を説明する。尚、以下の説明では、冷却塔として冷却塔1a、1b、1cから構成される高性能型冷却塔(ピーク時の冷却水温度31℃近傍)、ターボ冷凍機2のピーク時(100%負荷時)の冷却水入口温度31℃近傍、冷却水出口温度38℃近傍(温度差ΔT=7℃近傍)、冷却水ポンプ4の冷却水流量はQh/7(一定)とする。
(a)ピーク時の運転
【0061】
ピーク時においては、ターボ冷凍機2、冷却塔1a、1b、1c、冷却水ポンプ4の何れもが100%の能力で運転を行う。よって、冷却塔1の出口温度は31℃近傍となり、当該温度の冷却水が冷却水ポンプ4によって往管3a内をターボ冷凍機2に向けて送り出される。
【0062】
上記ターボ冷凍機2に流入した冷却水は、31℃近傍の冷却水入口温度にて冷凍機2内の冷却水入口12aから凝縮器10内に入り、当該凝縮器10において冷媒からの放熱により38℃近傍に温度上昇して冷却水出口12bから流出し、還管3b内を介して冷却塔1aの入口から冷却塔1a〜1c内に流入する。上記冷却塔1a〜1cに流入した冷却水は当該冷却塔にて31℃近傍まで冷却され、当該温度にて冷凍機2の冷却水入口12aに流入する。尚、このときバイパス弁18は閉鎖状態となり、ターボ冷凍機2を出た冷却水は全量が冷却塔1に流入する。
【0063】
このように、ピーク時においては、冷却水入口温度31℃近傍、かつターボ冷凍機2の冷却水温度差が7℃近傍に固定して運転が行われる。このとき、図6に示すように、熱源システムのCOP(成績係数)は最大値となっており、効率的な運転を実現し得る。
【0064】
(b)ピーク時以外の運転
外気条件の変動により例えば外気湿球温度が設計値の27.5℃よりも低くなれば、上記冷却水温度は31℃よりも低くなる(図7参照)。
【0065】
上記外気温が低下する等してターボ冷凍機2の運転が部分負荷(例えば80%)になったとすると、上記ターボ冷凍機2による交換熱量も80%に減少することになり、冷却水の交換熱量も減少する。この場合、冷却水ポンプ4は一定流量(Qh/7)にて運転を継続しているので、上記式(2)、(4)より熱量が減少した分ターボ冷凍機2の冷却水温度差が7℃よりも小さくなる(例えば5.6℃)。
【0066】
しかしながら、このような部分負荷時は外気温がピーク時よりも低くなっているので、冷却水温度もピーク時の31℃近傍よりも低下する(例えば24℃)。よって、ターボ冷凍機2の冷却水入口温度は24℃となり、冷却水入口12aから凝縮器10内に入り、当該凝縮器10において冷媒からの放熱により29.6℃に温度上昇して(温度差5.6℃)冷却水出口12bから流出し、還管3b内を介して冷却塔1aの入口から冷却塔1a〜1c内に流入する。上記冷却塔1a〜1cに流入した冷却水は当該冷却塔にて24℃まで冷却され、当該温度にて冷凍機2の冷却水入口12aに流入する。
【0067】
かかる部分負荷時においては冷却水温度が低下するが、図3に示すようにターボ冷凍機2単体のCOPは冷却水温度がピーク時の31℃近傍より低下してくと逆に向上することになる。例えば、図3において冷却水温度が24℃になると負荷率80%でCOPは約8.5であり、冷却水温度31℃の100%負荷時の約6.5よりも大幅に向上する。よって、冷却水温度が低下しても熱源システムのCOPは低下することはない。また、冷却水温度(上記の24℃)は標準型冷却塔に比較して1℃程度低下しているため(図7参照)、当該部分負荷時においても従来型のターボ冷凍機に比べてターボ冷凍機2(単体)のCOPは向上している。即ち、年間を通じて冷却水温度は1℃程度低下するので、年間を通じてターボ冷凍機2単体のCOPが向上し、結果として熱源システムのCOPが向上して、部分負荷時を含めて年間を通じて効率的な運転を行うことができる。
【0068】
このように、部分負荷時においても、ピーク時の冷却水温度31℃近傍で冷凍機2の温度差が7℃となるように冷却水流量を選定した冷却水ポンプ4によって、年間を通じて一定流量で運転することにより、冷却水温度差を可能な限り大きくし、ピーク時を含めた年間を通じての熱源システムのCOPを最大とすることができる。
【0069】
以上説明してきた本発明の熱源システムにおいては、冷凍機は定速運転のターボ冷凍機、インバータ制御のターボ冷凍機の何れも適用することができる。
【産業上の利用可能性】
【0070】
本発明の熱源システムは、構造簡単で効率的な運転が可能であり、省エネルギー運転を実現し得るため、工場やオフィスビル等の各種の空調設備に適用することができる。特に本発明は以下の効果を有する。
【0071】
夏場のピーク時においてはターボ冷凍機2の冷却水温度差は7℃近傍に保たれ、消費電力の低い効率的な運転を行うことができる。
【0072】
また、上記冷凍機2の100%負荷の運転時において冷却水温度差(7℃近傍)を基準に冷却水流量が決定されるので、標準の冷却水温度差(5℃)に基づく冷却水流量よりも少ない冷却水流量とすることができ、これにより低容量の冷却水ポンプを使用することができる。
【0073】
また、ピーク時以外においてはターボ冷凍機2の発生熱量は低下するが、冷却水流量は一定流量を維持するため、外気湿球温度の低下により冷却水温度が低下し、しかも冷却水温度は年間を通して1℃程度低いので、これにより冷凍機のCOP(成績係数)が向上し、部分負荷時においても消費電力の低い効率的な運転を行うことができる。
【0074】
また、本発明の熱源システムにおいては、冷凍機は吸収式冷凍機、吸収式冷温水機等にも適用が可能である。
【0075】
従って、冷却水ポンプ等のインバータによる回転数制御等の複雑な制御を必要とせず、非常に簡単な構成により効率的な運転を実現可能な熱源システムを提供し得る。
【図面の簡単な説明】
【0076】
【図1】本発明に係る熱源システムの全体構成を示すブロック図である。
【図2】(a)は同上システムにおける冷却塔の詳細構成を示す図、(b)は同上システムにおける冷却塔の構成図である。
【図3】一般的なターボ冷凍機の部分負荷率に対するCOPの特性図である。
【図4】(a)は標準型冷却塔における冷却水温度差に対応する各運転条件を示す表、(b)は高性能型冷却塔における冷却水温度差に対応する各運転条件を示す表である。
【図5】(a)は年間負荷率65%の運転パターンを示す表、(b)は年間負荷率45%の運転パターンを示す表、(c)は年間負荷率30%の運転パターンを示す表である。
【図6】同上システムにおける冷却水温度差に対する消費電力量/年を示す特性図である。
【図7】同上システムにおける年間の冷却水温度と冷却水流量を示す表である。
【図8】同上システムの冷却塔に使用される充填材の斜視図である。
【符号の説明】
【0077】
1 冷却塔
1a〜1c 冷却塔
7a〜7c 冷却ファン
2 ターボ冷凍機
3 冷却水配管
4 冷却水ポンプ
6 冷水ポンプ

【特許請求の範囲】
【請求項1】
冷却塔と、冷凍機と、その間を配管で接続して冷却水を循環させる冷却水ポンプから構成される冷却水系と、上記冷凍機で冷却された冷水を冷水ポンプで負荷側に供給する冷水系からなる熱源システムにおいて、
上記冷却塔は、冷却塔のファン動力を増加させることなく外気と冷却水との熱交換面積を広げることにより、当該冷却塔の冷却水出口温度が年間を通じて1℃程度低くなるように設定したものであることを特徴とする熱源システム。
【請求項2】
上記冷却塔の100%負荷の運転時における冷却水出口温度は31℃近傍であることを特徴とする請求項1記載の熱源システム。
【請求項3】
上記冷却塔及び上記冷凍機の100%負荷の運転時において、上記冷凍機の冷却水入口温度と冷却水出口温度の温度差が7℃近傍となるように冷却水の流量を決定すると共に、
上記冷却水ポンプは、上記決定した流量による一定流量の冷却水を上記冷却水系に年間を通じて循環させるように構成したものであることを特徴とする請求項1又は2記載の熱源システム。
【請求項4】
上記冷却塔及び上記冷凍機の100%負荷の運転時及び部分負荷運転時において、年間を通して常時、熱源システムのCOP(成績係数)が最大値となることを特徴とする請求項1〜3の何れかに記載の熱源システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2008−70004(P2008−70004A)
【公開日】平成20年3月27日(2008.3.27)
【国際特許分類】
【出願番号】特願2006−246767(P2006−246767)
【出願日】平成18年9月12日(2006.9.12)
【出願人】(591095823)株式会社九電工 (17)
【出願人】(503164502)荏原冷熱システム株式会社 (91)
【Fターム(参考)】