説明

磁気コイル及び経頭蓋磁気刺激装置

【課題】コイル形態を工夫することにより、比較的簡単な構成で、限局された箇所に所要強度の渦電流を効率良く発生させることができる磁気コイル、並びに経頭蓋磁気刺激装置を提供する。
【解決手段】複数の渦巻導線部20J,20Kで構成された、磁界を生成する磁気コイル20であって、組をなす渦巻導線部20J,20Kについて、一方の渦巻導線部20Jの巻線の渦中心Jcが他方の渦巻導線部20Kの巻線の渦中心Kcへ近付く方向に偏心させて構成されている、ことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁界を生成する磁気コイル、特に、複数の渦巻導線部で構成された磁気コイル、或いは複数の渦巻導線部が所定の軸線の周りに立体的に配置された磁気コイル、並びにかかる磁気コイルを備えた経頭蓋磁気刺激装置に関する。
【背景技術】
【0002】
近年、薬物治療が必ずしも有効でない数多くの神経疾患患者に対する治療法として、経頭蓋磁気刺激療法への関心が高まっている。この経頭蓋磁気刺激療法は、患者の頭皮表面に配置した磁場発生源により脳の特定部位(例えば、脳内神経)に磁気刺激を加えることによって、治療及び/又は症状の緩和を図ることができる比較的新しい治療法であり、開頭手術が必要で患者の抵抗感が非常に強い留置電極を用いる従来の電気刺激法とは違って、非侵襲的で患者への負担が少なくて済む治療法として普及が期待されている。
治療の他にも、経頭蓋磁気刺激は神経疾患の診断を目的として利用されており、診断用の経頭蓋磁気刺激装置が実用化されている。さらに、磁気刺激によって、脳の特定の部位の活動を誘発、あるいは一時的に妨げることができるため、脳機能の基礎研究においても利用が進んでいる。
【0003】
かかる経頭蓋磁気刺激療法の具体的な手法としては、患者の頭皮表面に設置した治療用コイルに電流を流してパルス磁場を生じさせ、電磁誘導の原理を利用して頭蓋内に局所的な渦電流を起こすことにより、コイル直下の脳内神経に刺激を与える方法が知られている(例えば、特許文献1参照)。
この特許文献1においては、かかる方法で施した経頭蓋磁気刺激治療により難治性の神経障害性疼痛が有効に軽減され、更に、より正確な局所刺激がより高い疼痛軽減効果を実現することが確認されている。但し、最適刺激部位は個々の患者によって微妙に異なることも明らかにされている。
【0004】
また、前記特許文献1においては、上述の経頭蓋磁気刺激治療を行うと、疼痛軽減効果は、数時間程度は持続するが、数日間あるいはそれ以上持続するまでには至らないことが明らかにされている。従って、あまり時間間隔を空けずに、できれば毎日、継続的に上記療法を行うことが疼痛軽減の観点からは望ましいとされている。このような継続的な治療を、患者に過度の身体的,時間的等の様々な負担を強いること無く行えるようにするには、在宅、或いは近所のかかりつけの医院等での継続反復した治療を可能とすることが理想的である。
しかしながら、従来では、経頭蓋磁気刺激療法に用いられる磁気刺激装置は何れも、熟練した専門医師等による検査や研究用に、比較的大規模な病院や研究機関で用いることを前提としているので、かなり大掛かりで高価なものとなる。このため、患者個人の自宅や比較的小規模な医院や診療所等では、コスト負担が過大であるばかりでなく、設置スペースを確保することも一般に困難である。
【0005】
経頭蓋磁気刺激療法に用いられる磁気刺激装置は、電磁誘導の原理を利用して頭蓋内に渦電流を起こすための治療用の磁気コイルと、この磁気コイルに流す電流を供給するための駆動回路を備えたコイル駆動装置とを主要部として構成されており、このコイル駆動装置が、全装置の重量およびサイズの殆どを占めている。従って、コイル駆動装置を小型化できれば、実質的に磁気刺激装置を小型化できることになる。
【0006】
コイル駆動装置の小型化を図るための有力な方策の一つとして、磁気コイルによる磁場発生の効率を高めて、より出力の低い駆動回路でも、脳内の標的部位に所要の強度の渦電流を起こすことができるようにすることが考えられる。より低出力の駆動回路の適用が可能になれば、駆動回路自体の小型化は勿論、その関連部品の小型化も可能になり、ひいてはコイル駆動装置全体の小型化および低コスト化に大きく貢献することができる。
【0007】
コイル駆動装置の小型化を直接に意識したものではないが、前記特許文献1には、2つの円形の渦巻き形コイル部分を同一平面上で数字の「8」の字型に並べた、所謂、8の字型渦巻きコイルを経頭蓋磁気刺激療法に用いることが紹介されている。この8の字型渦巻きコイルでは、8の字の交点に相当する点直下にて誘導電流密度が最大となり、限局した刺激を効率良くもたらすのに好適であるとされている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】国際公開第2007/123147号
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、従来では、経頭蓋磁気刺激療法に用いられるコイル駆動装置は、あくまでも、かなり大規模な医療機関での使用を前提に製作されている関係上、高出力かつ高機能であるが、容積および総重量が過大であり(例えば、約70kg程度)、また、消費電力が大きいため設置時には電気工事を必要とするなど、大型で製作コストも高く、また、比較的大きな設置スペースを要し、更に設置コストも高くなる、という難点があった。このため、特に、患者個人の自宅や比較的小規模な医院や診療所等に設置することを考えた場合、コスト負担が過大であるばかりでなく、設置スペースを確保することも一般に困難であった。
【0010】
前述のように、磁気コイルによる磁場発生の効率を高めて、より低出力の駆動回路でも所要強度の渦電流を発生させることができるようにすることは、コイル駆動装置の小型化を図る上で有効である。
尚、このように磁気コイルによる磁場発生効率を高めて特定箇所で強い渦電流が得られるようにすることは、磁気刺激療法に用いられる治療用コイルのみならず、限局された箇所に所要強度の渦電流を発生させることが求められる他の種々の用途の磁気コイルについても同様に重要であり、更には、コイル駆動装置の小型化を図る場合に限らず、省エネルギ化の観点からも非常に有意義である。
【0011】
そこで、本発明は、コイル形態を工夫することにより、比較的簡単な構成で、限局された箇所に所要強度の渦電流を効率良く発生させることができる磁気コイル、並びに経頭蓋磁気刺激装置を提供することを、基本的な目的としてなされたものである。
【0012】
本願発明者らは、かかる目的を達成すべく鋭意研究開発を進める中で、渦巻コイルの渦中心を当該渦巻コイルの外周形状の中心から偏心させることにより、渦中心と外周形状の中心とを結ぶ直線に沿って、コイル巻線の間隔に疎密が生じることに起因してコイルへの通電により発生する誘導電流の密度にも偏りが生じ、このような誘導電流密度の偏りを旨く利用することにより、誘導電流密度が比較的均一で偏りが無い場合に比して、電流値が同じでも、限局された特定箇所により強い渦電流が発生し得ることを見出した。
【0013】
図26は、2個の渦巻導線部を平面視で横並びに配置し、各渦巻導線部の渦中心を偏心させた磁気コイル90により、患者頭部Mhの脳内の標的部位に所要の強度の渦電流を誘導する場合を模式的に示す説明図であり、図27は、前記磁気コイル90に代えて、従来型の所謂、8の字型渦巻きコイル110を用いて、患者頭部Mhの脳内の標的部位に所要の強度の渦電流を誘導する場合を模式的に示す説明図である。
これらの図に示されるように、脳内に誘導される電流の経路は、コイル90,110の巻線形状を脳に投影した形に近いものになる。
【0014】
図27に示される従来の8の字型渦巻きコイル110の場合には、各渦巻導線部110J,110Kは同心状に巻かれているが、図26に示される磁気コイル90の場合には、渦巻導線部110J,110Kは、お互いの巻線の渦中心が相互に近付く方向に偏心させて構成することにより、つまり、渦巻導線部90J,90Kの渦中心を当該渦巻導線部90J,90Kの外周形状の中心から中央側へ偏心させることにより、中央側でコイル巻線の間隔が密となり、コイル90への通電により発生する誘導電流の密度も中央側で高くなる。その結果、図27に示される従来の8の字型渦巻きコイル110の場合に比して、脳内に誘導される刺激電流も中央に集中し、標的部位を高い電流密度で刺激できる。若しくは、標的部位で同じ刺激電流密度を得るために、磁気コイル90は、より小さいコイル電流で動作できる。
【0015】
本願発明者らは、このように、コイル渦巻導線部の渦中心をコイル外形形状の中心から偏心させることによって生じる誘導電流密度の偏りを旨く利用すれば、電流値が同じでも、限局された特定箇所により強い渦電流が発生し得る点に着目することにより、比較的簡単な構成で、限局された箇所に所要強度の渦電流を効率良く発生させることができる磁気コイルの発明に至ったものである。
【課題を解決するための手段】
【0016】
本願の第1の発明に係る磁気コイルは、複数の渦巻導線部で構成された、磁界を生成する磁気コイルであって、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成されている、ことを特徴としたものである。
【0017】
また、本願の第2の発明に係る磁気コイルは、複数の渦巻導線部が所定の軸線の周りに立体的に配置された、磁界を生成する磁気コイルであって、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成されている、ことを特徴としたものである。
【0018】
これらの場合において、前記1組の渦巻導線部は、一方の渦巻導線部の一部が他方の渦巻導線部の一部と互いに略並行をなして重なり合うように構成することもできる。
【0019】
この場合、この重なり合う部分について、一方の渦巻導線部の外周部が他方の渦巻導線部の巻線の渦中心あるいはその付近に至るまで重なり合うようにしてもよい。
【0020】
以上の場合において、前記1組の渦巻導線部が所定の角度を挟んで山形をなすように傾斜状に構成してもよい。
或いは、以上の場合において、前記1組の渦巻導線部が患者頭部の表面に沿うように、円柱面の一部や球面の一部などの曲面で構成してもよい。
【0021】
また、以上の場合において、前記渦巻導線部の外周形状は、好ましくは、円形である。
【0022】
更に、以上の場合において、前記複数の渦巻導線部は、断面形状が四角形である導線を用いて巻き上げられてもよい。
【0023】
或いは、前記複数の渦巻導線部は、多数の金属線を寄り合わせて構成した導線を用いて巻き上げられてもよい。
或いは、前記複数の渦巻導線部は、テープ状の導線を電気的に絶縁させたうえで積層して構成した導線を用いて巻き上げられてもよい。
【0024】
本願の第3の発明に係る経頭蓋磁気刺激装置は、患者の頭蓋内に渦電流を起こすための少なくとも1組の渦巻導線部を有する治療用磁気コイルを備えた、経頭蓋磁気刺激装置であって、前記渦巻導線部が、患者頭部の表面形状に沿うよう曲面を形成してなる、ことを特徴としたものである。
【0025】
この場合において、前記曲面が円柱面の一部であってもよい。
【0026】
或いは、前記曲面が球面の一部であってもよい。
【0027】
以上の経頭蓋磁気刺激装置において、前記少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成されていてもよい。
【0028】
また、本願の第3の発明に係る経頭蓋磁気刺激装置は、患者の頭蓋内に渦電流を起こすための少なくとも1組の渦巻導線部を有する治療用磁気コイルを備えた、経頭蓋磁気刺激装置であって、a)前記少なくとも1組の渦巻導線部をそれぞれ個別にまたは全体として収納するケースと、b)前記ケースとの間に隙間が形成されるように当該ケースに装着されるカバーと、c)前記カバーの所定部位に設けられた空気流入口から、前記隙間を経由して、前記カバーの他の部位に設けられた空気流出口へ、前記ケースを冷却するための空気流を強制的に流通させる空気流通手段と、を備えたことを特徴としたものである。
【0029】
この場合において、前記隙間が、少なくとも前記ケースの患者頭部に近い側に設けられている、ことが好ましい。
【0030】
特に、前記隙間が、前記ケースの患者頭部に近い側およびその反対側の双方に設けられている、ことがより好ましい。
【発明の効果】
【0031】
本願の第1の発明によれば、複数の渦巻導線部で構成された磁気コイルにおいて、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成されているので、一方の渦巻導線部の渦中心と外周形状の中心とを結ぶ直線に沿って、コイル巻線の間隔に疎密が生じることになる。これにより、コイルへの通電により誘導電流を発生させる際には、一方の渦巻導線部のコイル巻線間隔の疎密に対応して、誘導電流の密度の高い領域が発生し、この領域で強い脳刺激が得られる。すなわち、複数の渦巻導線部で構成された磁気コイルについて、各渦巻導線部の形状および配置を工夫するだけの比較的簡単な構成で、限局された箇所に所要強度の脳刺激を効率良く発生させることができる。
【0032】
また、本願の第2の発明によれば、複数の渦巻導線部が所定の軸線の周りに立体的に配置された磁気コイルにおいて、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成されているので、一方の渦巻導線部の渦中心と外周形状の中心とを結ぶ直線に沿って、コイル巻線の間隔に疎密が生じることになる。これにより、コイルへの通電により誘導電流を発生させる際には、一方の渦巻導線部のコイル巻線間隔の疎密に対応して、誘導電流の密度の高い領域が発生し、この領域で強い脳刺激が得られる。すなわち、複数の渦巻導線部が所定の軸線の周りに立体的に配置された磁気コイルにおいても、各渦巻導線部の形状および配置を工夫するだけの比較的簡単な構成で、限局された箇所に所要強度の脳刺激を効率良く発生させることができる。
【0033】
これらの場合において、前記1組の渦巻導線部を、一方の渦巻導線部の一部が他方の渦巻導線部の一部と互いに略並行をなして重なり合うように構成することにより、この重なり合った部分では、コイル通電時に発生する誘導電流の密度がより高くなり、より強い脳刺激を得ることが可能になる。
【0034】
特に、この重なり合う部分について、一方の渦巻導線部の外周部が他方の渦巻導線部の巻線の渦中心あるいはその付近に至るまで重なり合うように構成することにより、コイル巻線の間隔が密な部分どうしを最も広範囲に重ね合わせることができ、より効率良く強い渦電流を得ることができる。
【0035】
以上の場合において、前記1組の渦巻導線部が所定の角度を挟んで山形をなすように傾斜状に構成することにより、(例えば人間の頭部のような)山形をなす対象物の表面形状に沿うようにして誘導電流を発生させることが可能になり、より効率的な磁場発生を実現することができる。或いは、以上の場合において、渦巻導線部を、患者頭部の表面に沿うように円柱面の一部や球面の一部などの曲面で構成しても、同様に、効率的な磁場発生を実現することができる。
【0036】
また、以上の場合において、前記渦巻導線部の外周形状を円形とすることで、最も通用性が高く、また、通電時の電気抵抗も低く抑えられる形状の渦巻導線部を備えた磁気コイルについて、以上の場合と同様の作用効果を奏することができる。
【0037】
更に、以上の場合において、前記複数の渦巻導線部を、断面形状が四角形である導線を用い巻き上げて構成することにより、円形断面の場合に比して、コイル巻線間隔が同じでも断面積を大きく確保して大容量の電流を流すことができ、より効率的な磁場発生を実現することが可能になる。
【0038】
或いは、以上の場合において、前記複数の渦巻導線部を、多数の金属線を寄り合わせて構成した導線を用いて巻き上げることにより、コイル巻線の柔軟性を高めて渦巻導線部の成形を容易に行うことができる。或いは、以上の場合において、前記複数の渦巻導線部を、テープ状の導線を電気的に絶縁させたうえで積層して構成した導線を用いて巻き上げることによっても、同様の効果を得ることができる。
【0039】
本願の第3の発明によれば、治療用磁気コイルの渦巻導線部が患者頭部の表面形状に沿うよう曲面を形成してので、患者頭部の表面形状に沿うようにして誘導電流を発生させることができ、より効率的な磁場発生を実現することができる。
【0040】
この場合において、前記曲面を円柱面の一部で構成することにより、簡単な構成で効率的な磁場発生を実現することができる。
【0041】
或いは、前記曲面を球面の一部で構成することにより、簡単な構成でより一層効率的な磁場発生を実現することができる。
【0042】
以上の経頭蓋磁気刺激装置において、前記少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成することにより、一方の渦巻導線部の渦中心と外周形状の中心とを結ぶ直線に沿って、コイル巻線の間隔に疎密が生じることになる。これにより、コイルへの通電により誘導電流を発生させる際には、一方の渦巻導線部のコイル巻線間隔の疎密に対応して、誘導電流の密度の高い領域が発生し、この領域で強い脳刺激が得られる。すなわち、複数の渦巻導線部で構成された磁気コイルについて、各渦巻導線部の形状および配置を工夫するだけの比較的簡単な構成で、限局された箇所に所要強度の脳刺激を効率良く発生させることができる。
【0043】
また、本願の第4の発明によれば、治療用磁気コイルの渦巻導線部を収納するケースと当該ケースに装着されるカバーとの間に形成される隙間に、空気流を強制的に流通させて前記ケースを冷却することができるので、磁気刺激治療に伴って発熱する磁気コイルの渦巻導線部を効果的に冷却し、より高頻度の磁気刺激でも支障なく行えるようにすることができる。
【0044】
この場合において、前記隙間を、少なくとも前記ケースの患者頭部に近い側に設けることにより、磁気コイルの患者頭部に近い側を確実に冷却することができる。
【0045】
特に、前記隙間を、前記ケースの患者頭部に近い側およびその反対側の双方に設けることにより、磁気コイル全体を冷却して、より高い冷却効果を得ることができる。
【図面の簡単な説明】
【0046】
【図1】本実施形態に係る磁気刺激装置の全体構成を概略的に示す説明図である。
【図2】前記磁気刺激装置のコイルユニットを拡大して示す斜視図である。
【図3】前記コイルユニットの磁気コイルを拡大して示す平面図である。
【図4】前記磁気コイルの形態を模式的に示す説明図である。
【図5】コンピュータシミュレーションによる本発明実施例に係る磁気コイルの効果の検証を説明するための図である。
【図6】前記コンピュータシミュレーションにおいて、脳を模擬する球体の内部における渦電流密度分布を、コイル面に平行な直線上で表示する図である。
【図7】前記コンピュータシミュレーションにおいて、脳を模擬する球体の内部における渦電流密度分布を、コイル面に垂直な直線上で表示する図である。
【図8】前記渦電流密度分布を、最大値によって規格化した上で示す図である。
【図9】前記コンピュータシミュレーションにおいて、結果から得られた電場分布を、脳を模擬する球体から2cm上方の直線上で表示する図である。
【図10】試作コイルの一例を示す平面図である。
【図11】前記試作コイルの駆動回路の一例を示す説明図である。
【図12】ケースに掘った溝に導線をはめ込む方法によって製作された試作コイルの一例を示す斜視図である。
【図13】強制空冷のための流路を備えた試作コイルの一例を示す斜視図である。
【図14】前記試作コイルのインダクタンスと電気抵抗を例示する図である。
【図15】磁場測定の実験に用いたサーチコイルを示す斜視図である。
【図16】前記磁場測定の実験でのオシロスコープの記録波形の一例を示す図である。
【図17】前記オシロスコープの記録波形から求めた発生磁場の波形を示す図である。
【図18】磁場測定の実験から求めたコイル電流の波形と発生磁場の波形を示す図である。
【図19】発生磁場の磁場分布の数値解析結果を示す図である。
【図20】前記数値解析により求めたy=0の平面上での磁場の強さの分布を示す図である。
【図21】高頻度で磁気刺激を行ったときのコイルの温度変化の一例を示す図である。
【図22】前記実施形態の第1変形例に係る偏心スパイラルコイルの形態を模式的に示す説明図である。
【図23】前記実施形態の第2変形例に係る偏心スパイラルコイルの形態を模式的に示す正面図である。
【図24】前記実施形態の第3変形例に係る偏心スパイラルコイルの形態を模式的に示す正面図である。
【図25】前記実施形態の第4変形例に係る偏心スパイラルコイルの形態を模式的に示す正面図である。
【図26】2個の渦巻導線部を平面視で横並びに配置し各渦巻導線部の渦中心を偏心させた磁気コイルにより、患者の脳内に渦電流を誘導する場合を模式的に示す説明図である。
【図27】従来型の8の字型渦巻きコイルを用いて、患者の脳内に渦電流を誘導する場合を模式的に示す説明図である。
【図28】コンピュータシミュレーションによって、脳内の渦電流と、コイルのインダクタンスを求めるための、計算モデルを示す説明図である。
【図29】コンピュータシミュレーションから得られたコイルの周囲の磁束密度の等高線図の一例を示す図である。
【図30】偏心度合いが異なる3種類のコイルを例示す平面図である。
【図31】コンピュータシミュレーションにおいて、コイルの偏心度合い,外径,内径,巻数をそれぞれ変化させた場合の、コイルの電気的特性の変化を例示する図である。
【図32】四つ葉状に配置された4個の渦巻導線部を備えた磁気コイルの一例を示す模式図である。
【図33】立体配置された4個の渦巻導線部を備えた磁気コイルの一例を示す模式図である。
【図34】立体配置された5個の渦巻導線部を備えた磁気コイルの一例を示す模式図である。
【図35】立体配置された5個の渦巻導線部を備えた磁気コイルの他の一例を示す模式図である。
【発明を実施するための形態】
【0047】
以下、本発明の一実施形態について、経頭蓋磁気刺激療法に用いられる磁気刺激装置にて治療用コイルとして使用される磁気コイルに適用した場合を例にとって、添付図面を参照しながら説明する。
なお、以下の説明では、特定の方向を意味する用語(例えば、「上」、「下」、「左」、「右」、およびそれらを含む他の用語、「時計回り方向」、「反時計回り方向」)を使用するが、それらの使用は図面を参照した発明の理解を容易にするためであって、それらの用語の語義によって本発明が限定的に解釈されるべきものでない。また、以下に説明する磁気コイルでは、同一又は類似の構成部分には同一の符号を用いている。
【0048】
図1は、経頭蓋磁気刺激療法に用いられる本実施形態に係る磁気刺激装置の全体構成を概略的に示す説明図である。この図において、その全体が数字符号1で表示される磁気刺激装置(以下、適宜、単に「装置」と略称する)は、治療用の椅子2に固定的に着座した患者M(被験者)の頭皮表面に配置したコイルユニット5に内包された磁気コイル(治療用コイル)20により脳内神経に磁気刺激を加えることによって、治療及び/又は症状の緩和を図るものである。
【0049】
前記磁気コイル20は、患者Mの少なくとも脳の特定部位に磁気刺激を加えるための動磁場を発生するものであり、患者Mの頭部Mhの表面に対して変位可能に操作することができるコイルユニット5内に固定されている。
尚、図1においては、コイルユニット5を把持し治療用コイル20を患者頭皮に沿って変位させ、当該コイル20の位置決めを行った後、当該コイル20が不用意に移動することがないように、より好ましくは、コイルユニット5をホルダ固定具3に固定した状態が示されている。
【0050】
磁気刺激装置1は、磁気コイル20への電流パルスの供給を制御するために、コイル駆動回路(不図示)を内包したコイル駆動装置10を備えている。このコイル駆動装置10と磁気コイル20とは、ケーブル16を介して電気的に相互に接続されている。
コイル駆動装置10は、例えば略直方体のボックス形状に形成された本体ケース11を備え、この本体ケース11に、前記ケーブル16の装置側コネクタ17が結合される端子部12、操作者がコイル駆動装置10のオン/オフ(ON/OFF)操作を行うための操作スイッチ部13、磁気コイル20に流す電流の強さまたは内部コンデンサの充電電圧,最大充電電圧に対するパーセント値などを表示する出力表示部14など、が設けられている。尚、具体的には図示しなかったが、前記コイル駆動装置10は、磁気コイル20による磁気刺激の強度やサイクルを決定付ける電流パルスの強度やパルス波形の設定,パルス間隔,パルス回数等も、操作者によって行うことができるように構成されている。
【0051】
前記コイルユニット5は、図2に拡大して示すように、磁気コイル20の周囲を覆うコイルケース6を備えている。このコイルケース6には、前記ケーブル16のコイル側コネクタ18が結合される端子台7が形成されていてもよい。このように端子台7を設ける代わりに、図3に示すように、コイル20J,20Kから延長して引き出したコイル巻線21の引き出し部分22J,22Kと、磁気コイル20と駆動回路(不図示)とを接続するケーブル16の芯材16J,16Kとを収納したグリップ9を設けてもよい。この場合、ケーブル16の芯材16J,16Kは、曲がりやすいように、複数の細い導線を束ねた寄り線(より好ましくは、束ねた複数の細い導線を紙縒状に縒り合わせた縒り線)を採用しており、コイル巻線21の引き出し部分22J,22Kとケーブル16の芯材16J,16Kとは、グリップ9の内部で接続される。
【0052】
コイルケース6は、磁気コイル20の巻線と患者Mとの間での絶縁を確保して感電を防止する役割を果たすもので、所定の成形型(不図示)内に磁気コイル20を位置決めして配置した上で、溶融状態にある所要特性(少なくとも電気絶縁性と100℃程度までの耐熱性)を有する樹脂材料8を成形型内に充填して固化させることによって、磁気コイル20と一体的に形成される。このように、樹脂8と一体形成されることにより、磁気コイル20の巻線21がコイルケース6内で確実に固定され、また、巻線形状の(つまりコイル形状の)歪み等の変形の発生も抑制することもできる。
なお、磁気コイル20を成形する別の方法として、コイルケース6に渦巻型の溝を彫り、この溝に巻線21を嵌め込んでいくこともできる。この場合、コイル20自体が偏心渦巻状の複雑な形状を保持する必要が無いため、磁気コイル20の製作が容易になる。また、このように、溝に巻線21を嵌め込んで磁気コイル20を成形する場合、巻線21の断面形状が四角形の方が円形断面よりも成形作業を容易に行うことができる。
【0053】
本実施形態では、磁気コイル20は、複数(本実施形態では2個)の渦巻導線部20J,20Kで構成された、磁界を生成する磁気コイルであって、少なくとも1組(本実施形態では、渦巻導線部は2個であるので1組)の渦巻導線部20J,20Kについて、一方の渦巻導線部20J又は20Kの巻線の渦中心Jc又はKcが他方の渦巻導線部20K又は20Jの巻線の渦中心Kc又はJcへ近付く方向に偏心させて構成されている。
より具体的に説明すれば、本実施形態では、磁気コイル20は、複数(本実施形態では2個)の円形スパイラル状の渦巻導線部20J,20Kを、平面視で実質的に横並びとなるように配置して構成されている。このように、2個の渦巻導線部20J,20Kを平面視で実質的に横並びとなるように配置したことにより、コイル20への通電時には、両渦巻導線部20J,20Kどうしが最も近接する箇所で強い渦電流が得られ、限局した刺激を効率良くもたらす上で好適である。
【0054】
図4(a)〜(c)は、磁気コイル20の形態を模式的に示す説明図で、図4(a)は磁気コイル20の平面図、図4(b)は磁気コイル20を矢印4b,4b方向から見て示した矢視図(正面図)、図4(c)は磁気コイル20を矢印4c,4c方向から見て示した矢視図(側面図)である。
【0055】
これら図4(a)〜(c)に示すように、本実施形態では、特に、各渦巻導線部20J,20Kは、各々の渦中心Jc,Kcが、当該渦巻導線部20J,20Kの外周形状の中心Js,Ksから所定量偏心するように構成されている。しかも、これら2個の渦巻導線部20J,20Kは、渦中心Jc,Kc間の距離Dcが外周形状の中心Js,Ks間の距離Dsよりも小さくなるように配置されている(Dc<Ds)。つまり、この場合、各渦巻導線部20J,20Kの渦中心Jc,Kcは、外周形状の中心Js,Ksから、それぞれ(Ds−Dc)/2だけ、お互いが近づく方向に偏心していることになる。
【0056】
このように、平面視で実質的に横並びに配置された2個の渦巻導線部20J,20Kが、各渦巻導線部20J,20Kの渦中心Jc,Kcが当該渦巻導線部20J,20Kの外周形状の中心Js,Ksから所定量偏心するように構成されているので、各渦巻導線部20J,20Kについて、渦中心Jc,Kcと外周形状の中心Js,Ksとをそれぞれ結ぶ直線Lcsに沿って、コイル巻線21の間隔に疎密が生じることになる。しかも、前記2個の渦巻導線部20J,20Kは、渦中心Jc,Kc間の距離Dcが外周形状の中心Js,Ks間の距離Dsよりも小さくなるように配置されているので、コイル巻線21の間隔が密な部分どうしが近接した配置となっている。
【0057】
かかる配置により、磁気コイル20に通電して誘導電流を発生させる際には、各渦巻導線部20J,20Kのコイル巻線21の間隔の疎密に対応して、誘導電流の密度の高い領域どうしが近接した状態で発生し、この近接した箇所で強い脳刺激が得られる。すなわち、2個の渦巻導線部20J,20Kを有する磁気コイル20について、各渦巻導線部20J,20Kの形状および配置を工夫するだけの比較的簡単な構成で、限局された箇所に所要強度の脳刺激を効率良く発生させることができるのである。
【0058】
その結果、より小さいコイル駆動電流でも、つまり、より出力の低いコイル駆動回路(不図示)でも、患者頭部Mhの脳内の標的部位に所要の強度の渦電流を起こすことができるようになる。そして、より低出力の駆動回路を用いることで、駆動回路自体の小型化は勿論、その関連部品の小型化も可能になり、ひいてはコイル駆動装置10全体の小型化および低コスト化に大きく貢献することができる。また、消費電力も小さくできるので、設置時の電気工事も不要にすることも可能になる。すなわち、コイル駆動装置10の小型化,低コスト化,省スペース化および設置性の向上、並びに省エネルギ化に寄与することができる。
【0059】
しかも、本実施形態では、好ましくは、2個の隣り合う渦巻導線部20J,20Kは、当該渦巻導線部20J,20Kの一部どうしが、互いに略平行をなして重なり合うように配置されている。
かかる構成を採用したことにより、この重なり合った部分20Qでは、コイル20への通電時に発生する誘導電流の密度がより高くなり、より一層強い脳刺激を得ることが可能になる。
【0060】
更に、この場合、より好ましくは、2個の隣り合う渦巻導線部20J,20Kは、この重なり合う部分20Qについて、一方の渦巻導線部の外周部が他方の渦巻導線部の渦中心、或いはその付近に至るまで重なり合うように配置されている。すなわち、一方(図における左方)の渦巻導線部20Jの外周部が他方(図における右方)の渦巻導線部20Kの渦中心Kcの付近に至るまで(より具体的には、渦中心Kcを含む略円形空間部の内側外周に至るまで、また逆に、右方の渦巻導線部20Kの外周部が左方の渦巻導線部20Jの渦中心Jcの付近に至るまで(より具体的には、渦中心Jcを含む略円形空間部の内側外周に至るまで、重なり合うように構成されている。
かかる構成を採用したことにより、コイル巻線21の間隔が密な部分どうしを最も広範囲に重ね合わせることができ、より効率良く強い渦電流を得ることが可能になる。
【0061】
尚、隣り合う渦巻導線部の一部どうしを重ね合わせる場合、一方の渦巻導線部の外周部が他方の渦巻導線部の渦中心に至るまで、或いは渦中心を含む略円形空間部の外側外周に至るまで、重なり合うように、両渦巻導線部を配置してもよい。若しくは、一方の渦巻導線部の外周部が他方の渦巻導線部の渦中心を含む略円形空間部の内側外周まで至らない範囲で、渦中心の付近に至るまで重なり合うように配置してもよい。更には、一方の渦巻導線部の外周部と他方の渦巻導線部の渦中心との位置関係に拘らず、単に隣り合う渦巻導線部の一部どうしが重なり合うように構成することもできる。
【0062】
[コンピュータシミュレーションによる検証]
本発明に係る磁気コイルについて、各渦巻導線部の渦中心を当該渦巻導線部の外周形状の中心から所定量偏心するように構成したことによる効果を、コンピュータシミュレーション手法を用いて検証した。
次に、このコンピュータシミュレーションによる検証について、図5を参照しながら説明する。
【0063】
脳は複雑な立体構造を持っているが、上述の各渦巻導線部の渦中心の「偏心」による効果を見やすくするため、単純な球体で模擬した。磁気コイルが発生する磁場は空間的な対称性を持っており、その対称性を利用して計算量を低減するため、球体を8分割した計算モデルNm1を作成した。さらに計算量の低減のため、中心部分を切り欠いて、最終的な脳のモデルとした。脳に相当する部分には、周波数3.15kHzにおける灰白質の導電率である0.106S/mを割り当てた。
【0064】
実際の脳の周りには頭蓋や頭皮が存在するが、頭蓋は脳に比べて非常に低い導電率を持っており、脳内の電流分布のみを考える限り、近似的には頭蓋とその外側の組織を絶縁体としてモデル化できる。図5には示されていないが、脳の周りには導電率がゼロで比透磁率が1の層を設けて、頭蓋やその周囲の組織,空気などをモデル化している。モデルNm1の要素数は17160である。
【0065】
脳を模擬する1/8球モデルNm1の上に、2個の渦巻導線部30J,30Kの各々について、渦中心が当該渦巻導線部の外周形状の中心から所定量偏心しており、2個の渦巻導線部30J,30Kが、渦中心間の距離が外周形状の中心間の距離よりも小さくなるように配置されている本発明実施例に該当する磁気コイル30(以下、適宜、「偏心スパイラルコイル」と称する)と、従来型の同心状の渦巻導線部100J,100Kを2個備えた比較例に該当する磁気コイル100とを、それぞれ置いた。
【0066】
実際のコイルは渦巻形状に巻かれるが、モデル作成の単純化のため、円環の集合で近似を行った。2つのコイル30,100は共に、外径100mm,内径20mm,巻数10回とした。脳内の誘導電流の集中をさらに高めるため、左右の巻線を一部オーバーラップさせている(つまり、平面視で重なり合うようにしている)。巻線の素線は、幅2mm,高さ6mmであり、偏心スパイラルコイル30については、中央部において隣り合う巻線が接触する限界まで偏心させた。各円環の周方向には36個に要素分割を行っている。各磁気コイル30,100には、一般に脳の刺激に必要とされている4.6kA(キロアンペア)の駆動電流を与えた。
【0067】
脳とその周囲の絶縁体層を構成する各計算要素の位置において、磁気コイル30,100が発生する磁場を、ビオ・サバールの法則に基づいて計算した。続いて、脳を模擬した導体の内部における誘導電流分布を、有限要素法によって計算した。解析には、市販の電磁場解析ソフトウェアPHOTO-EDDYjωを使用した。磁気刺激におけるパルス幅は317μs程度であり、その逆数をとった周波数は3.15kHzとなる。そこで、磁気コイル30,100にはこの周波数の交流電流を通電したと仮定して、交流電磁場解析を行った。
【0068】
計算を実行した結果、収束解が得られ、磁気コイル30,100の中央部の真下における球体の表層部に、強い電流が誘導された。球体内部における最大の電流密度は、比較例の従来型コイル100(図5(a)参照)が8.5A/m、本発明実施例の偏心スパイラルコイル30が9.3A/mであった。本発明のように、渦巻導線部の渦中心を当該渦巻導線部の外形形状の中心から偏心させることによって、脳内電流密度が10%程度高められる結果となり、偏心スパイラルコイルの有効性が検証できた。
【0069】
経頭蓋磁気刺激療法において脳を刺激して治療効果を得るためには、ある閾値以上の電流密度を脳内に発生させる必要がある。このために必要な磁気コイルの駆動電流が、偏心スパイラルコイル30を用いることによって、従来型コイル100を用いる場合に比べて小さくて済む。このことは、磁気コイルの刺激効率が高まることを意味しており、十分な治療効果を得るのに必要な脳内の刺激電流密度を、より小さな出力のコイル駆動回路でも達成できる。つまり、偏心スパイラルコイル30を採用すれば、低出力のコイル駆動回路でも脳を十分に刺激できるため、より小型の回路部品を使用できるようになり、コイル駆動回路を含むコイル駆動装置のサイズ及び総重量を軽減することができる。また、大容量の特殊な電源も必要とせず、家庭用コンセント等からの給電も可能になる。
【0070】
すなわち、偏心スパイラルコイル30を採用することで、コイル駆動装置を構成する部品の低スペック化および小型化が可能になり、磁気刺激装置の総重量の大半を占めるコイル駆動装置の小型軽量化,低コスト化および設置性の向上に有効である、ことが確認できた。
【0071】
シミュレーションによって得られた渦電流の分布を、コイル面に対して平行な方向(x方向)と垂直方向(z方向)についてプロットした。コイル面に平行な方向(x方向)における渦電流の分布を図6に示す。偏心スパイラルコイルと従来型同心円コイルの両方において、コイルの中央直下において最も強い渦電流が得られていることが分かる。また、偏心スパイラルコイルから誘導される渦電流について、渦電流が最大値の半分になる幅(半値半幅)は2.43cmであった。一方、従来型同心円コイルの場合では、半値半幅は2.49cmであった。図7に、深さ方向(−z方向)に対する渦電流密度の減衰の様子を示す。いずれのコイルの場合もコイルからの距離とともに減衰がみられた。こちらも同様にして半値幅を求めたところ、偏心スパイラルコイルでは1.86cm、従来型同心円コイルでは1.88cmであった。
【0072】
偏心スパイラルコイルと従来型同心円コイルの電流局在性を比較するために、渦電流密度を最大値で規格化してグラフを作成した。図8(a)にz=−0.5cmにおけるx方向の渦電流分布を示す。また、図8(b)に−z方向に対する渦電流密度分布を示す。2つのグラフから、脳内の渦電流分布の局在性は、コイル面に平行な方向および深さ方向についてほとんど変わらないことが分かった。
【0073】
脳表面から2cm上方における、頭蓋あるいは頭皮の位置について、コイル面に沿った電場分布を図9(a)に示す。これより、偏心スパイラルコイルからは従来型同心円コイルよりも約15%強い電場が発生していることが分かる。また、局在性を比較するために、最大値で規格化したグラフを図9(b)に示す。偏心スパイラルコイルから誘導される電場の半値半幅は2.01cm、同心円コイルから誘導される電場の半値半幅は2.31cmであった。脳とコイルの距離が離れているために、図8(a)では脳内渦電流分布にほとんど差が見られなかったが、コイル近傍における電場は、偏心スパイラルコイルの方が高い局在性を示す。
【0074】
以上のように、脳内に誘導する渦電流の局在性は、偏心スパイラルコイルと従来型同心円コイルとで、ほぼ変わらないことが示された。難治性疼痛の治療においては、刺激対象は脳の一次運動野である。この場合は局所的な刺激が必要となるために、刺激の空間分解能は高い方が有効だと考えられるが、在宅治療においては高精度のコイルの位置決めが常に可能とは限らない。現在利用可能なナビゲーションシステムでは、最適位置からの誤差が5mm以内であるため、偏心スパイラルコイルの刺激空間分解能は5mmより低いことが望ましい。解析から求められた渦電流密度の半値半幅は2cm余りであり、この要請を満たしている。
【0075】
[コイルの試作1]
提案した偏心スパイラル形状に基づいて、図10に示す磁気コイル40を試作した。この磁気コイル20の各渦巻導線部40J,40Kの外径は100mm、内径は20mm、巻数は10回、導体の断面は2mm×6mmの四角形である。巻線41の形状は、以下の式(数1)及び(数2)で表される関数によって設計した。
【0076】
【数1】

【0077】
【数2】

【0078】
ここでxとyの単位はmmであり、θは0≦θ≦20πの範囲をとるものとする。この関数の描く曲線が、巻線導体41の中心の軌跡を与える。コイル40の巻線長は約3.7mである。コイル中央付近の、導体が密に巻かれる領域において、隣り合う導体のギャップは0.5mmである。また、誘導電流をさらに高める効果を狙って、左右の巻線のオーバーラップを設けた。オーバーラップする領域の、上下の層のギャップは1mmである。
【0079】
偏心スパイラル形状は複雑であり、一本の平角導線から継ぎ目なく巻き、その形状を維持するのは容易ではない。そこで、厚さ6mmの銅板から、蚊取り線香のように、ワイヤーカットによって巻線を切り出す加工法を採用した。この加工法によって、歪みがほとんど無い形状と寸法で、コイルの形状を加工することに成功した。ワイヤーカットを利用すると、巻線の加工を機械で自動的に行うことができるため、大量生産に適している。
ただし、ワイヤーカットは、素材の板から平面的に形状を切り出す加工法であるため、今回の磁気コイル40のような立体的な形状を作成するためには、複数の部品に分割する必要がある。図10のコイルは、左右2個のコイル巻線を含む計4個の部品から構成され、3か所の接合部N1,N2,N3を持つ。うち2か所の接合部N1,N2は、左右の渦巻導線部40J,40Kの巻線中心に設けられており、もう1か所の接合部N3は右側の渦巻導線部40Kの下方に位置している。コイル中央部の、導体が密になる個所では、導体同士の隙間に繊維強化プラスチックの小片(不図示)を挿入し、電気的な接触を防いでいる。コイル40の下部には端子台47を設けて、磁気コイル40と駆動回路49(図11参照)とを結ぶケーブルを交換できるような設計とした。
【0080】
磁気コイル40の巻線導体41を、ガラスエポキシ樹脂のケース46に収納して、内部空間をエポキシ系樹脂48で埋めることで、形状の維持と絶縁の確保を行った。ケース本体部の外寸は200mm×120mm×21mmである。巻線導体41と脳との距離を縮められるよう、図10の底面のケース46の厚さは1mmとした。端子台47に、長さ1mのケーブル(不図示)を接続し、その先端に2極のコネクタを取り付け、コイルが完成した。ケーブルは4芯のものを利用し、正負の方向に流れる電流をそれぞれ2芯ずつに割り当てた。
【0081】
駆動回路49の基本的な構成は、図11に示すように、交流200Vから各コンポーネントで必要な電圧を生成する電源回路49A、コンデンサ49Cを充電するための直流高電圧を生成するための昇圧回路49B、磁気コイル40に供給する電荷を蓄積するコンデンサ49C、コンデンサ49Cの充電電流を調整する抵抗49D、パルス磁界発生のタイミングを制御するための半導体スイッチ49Eから成る。半導体スイッチ49Eは、サイリスタとダイオードを逆向きに並列接続したもので、制御信号によってサイリスタがターンオンした後で、磁気コイル40には正弦波の一周期分すなわち二相性の電流が流れる。
【0082】
駆動回路49のケースには、コイルのケーブルを接続するコネクタ、電源スイッチ、刺激動作をコントロールするスイッチ類、内部コンデンサの充電電圧を調整するダイヤルと、設定値を表示する目盛りを備えている。刺激動作は、単発、毎秒5パルス、毎秒10パルスの間で切り替えが可能である。連発動作を行う場合には、磁気コイル40の発熱を抑えるため、10秒間の刺激動作を行った後で50秒間のクールダウンを行うように、タイマーが設けられている。駆動回路49の総重量は41kgであった。外部トリガに同期させた刺激動作も行えるように、トリガ入力用のコネクタも備えている。
【0083】
[コイルの試作2]
上記のワイヤーカットとは別の加工法を使って、図3に示す2個目の磁気コイル20の試作を行った。断面が6mm×2mmの四角形である1本の平角導線21から、継ぎ目が出来ないようにコイル20を巻き上げる加工法を採用した。この方法は、継ぎ目の部分で電気抵抗が発生するのを防止できるという利点がある。繊維強化プラスチック製のコイルケース6に、あらかじめ偏心スパイラル形状の溝を掘っておき、その溝に平角導線21をはめ込んでいくことで、コイル20の形状を作成した。この加工方法を採用したことによって、任意の形状の巻線を、簡便かつ再現性良く製作できるようになった。
ケースの溝の外側と内側の曲線を与える関数は、図3の左半分のコイル巻線20Jの外側の曲線については、以下の式(数3)及び(数4)で表される。
【0084】
【数3】

【0085】
【数4】

【0086】
また、図3の左半分のコイル巻線20Jの内側の曲線については、以下の式(数5)及び(数6)で表される。
【0087】
【数5】

【0088】
【数6】

【0089】
一方、図3の右半分のコイル巻線20Kの外側の曲線については、以下の式(数7)及び(数8)で表される。
【0090】
【数7】

【0091】
【数8】

【0092】
また、図3の右半分のコイル巻線20Kの内側の曲線については、以下の式(数9)及び(数10)で表される。
【0093】
【数9】

【0094】
【数10】

【0095】
繊維強化プラスチック製のケース6は、図12に示すようにコイル本体部で上下左右の計4個の部品6P,6Q,6R,6Sに分割され、グリップ9がさらに別の部品となっている。このような分割構造のケースを採用することによって、重なりを持つ立体的な巻線でも、製作が可能になる。平角導線を嵌め込んで全体を組み立てた後、エポキシ系の樹脂を充填し、固定を行った。磁気コイル20と駆動回路(不図示)とを接続するケーブル16の芯材16J,16Kは、曲がりやすいように、複数の細い導線を束ねた寄り線(より好ましくは、束ねた複数の細い導線を紙縒状に縒り合わせた縒り線)を採用しており、コイル20J,20Kから延長して引き出した平角導線21の引き出し部分22J,22Kとケーブル16の芯材16J,16Kとは、グリップ9の内部で接続されている。
【0096】
十分な治療効果を得るためには、毎秒5回以上の高頻度で磁気刺激を行う必要がある。このような条件では、磁気コイルに発熱が生じる。磁気コイルを冷却する方法としては、コイルのケースにフィンを形成して放熱を向上させる自然空冷方式、コイルの巻線部にファンで風を当てて冷却する強制空冷方式、コイルの巻線付近に流体を充填し、熱対流によって流体を循環させる自然対流液冷方式、流体を外部ポンプによって循環させる強制対流液冷方式などがある。強制対流液冷方式としては、ケース内に流路を形成する方法と、コイルの導体内にトンネル状の流路を形成しておき、この流路を通して導体の内部に流体を流す方法とがある。
【0097】
図13に、強制空冷のための流路を備えた試作コイルの一例を示す。ケース6の外側に、計3個の部品からなるカバー23P,23Q,23Rが取り付けられている。ケース6は、磁気コイルの複数の渦巻導線部を、それぞれ個別に又は全体として収納するものである。ケース6とカバー23P,23Q,23Rとの間には隙間が形成されており、この隙間は、例えばカバー23Pに設けられた空気口24と、例えばカバー23Rに設けられた空気口25と、に連通している。つまり、空気口24と、ケース6とカバー23P,23Q,23Rとの間の隙間と、空気口25とが連通して、全体として一つの流路が形成されている。
空気口24には、ホース(不図示)を介して、送風のためのファンを備えたエアーポンプ(不図示)が接続されており、このエアーポンプで圧送されファンにより送風された空気は、空気口24から流路内に流入し、ケース6とカバー23P,23Q,23Rとの間の隙間を通過した後、空気口25から流出する。かかる空気の流れにより、ケース6内の磁気コイルを強制空冷することができる。なお、送風機能を持ったエアーポンプの代わりに、吸引機能を持った掃除機等を空気口24に接続するようにしてもよい。この場合には、空気口25が空気の流入口となり、空気口24が空気の流出口になる。これら送風機能を持ったエアーポンプ或いは吸引機能を持った掃除機等が、前記隙間を経由して空気口24,25間に冷却用の空気流を強制的に流通させる空気流通手段を構成している。
【0098】
以上の構成を採用することにより、磁気コイルの渦巻導線部を収納するケース6と当該ケース6に装着されるカバー23P,23Q,23Rとの間に形成される隙間に、空気流を強制的に流通させて前記ケース6を冷却することができるので、磁気刺激治療に伴って発熱する磁気コイルの渦巻導線部を効果的に冷却し、より高頻度の磁気刺激でも支障なく行えるようにすることができる。
また、このような冷却構造を設ける場合、磁気コイルの患者頭部に近い側を確実に冷却するために、冷却用の空気流が流れる前記隙間を、少なくとも前記ケース6の患者頭部に近い側に設けることが好ましい。更には、前記隙間を、ケース6の患者頭部に近い側およびその反対側の双方に設けることにより、磁気コイル全体を確実に冷却して、より高い冷却効果を得ることができる。
【0099】
尚、以上の説明は、1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成した、「偏心スパイラルコイル」を構成の前提としたものであったが、上述の冷却構造を設けることにより得られる効果は、偏心スパイラルコイルの場合のみに限られるものではなく、同心状の渦巻コイルであっても得られることは、上記の説明からも明らかである。従って、これら同心状コイルを用いた構成もまた本発明に含まれるものである。
【0100】
[インダクタンスと抵抗の測定]
本発明実施例に係る偏心スパイラルコイルの電気的特性を評価するため、インダクタンスと抵抗の測定を行った。図4に示したものと同様の磁気コイル20を用い、この磁気コイル20をLCRメータに接続した。図14の横軸はLCRメータの動作周波数、縦軸はインダクタンスおよび抵抗の値である。インダクタンスは11〜12μH程度であり、周波数に対する顕著な依存性はみられなかった。一方で、周波数の増加とともに、抵抗値は減少した。これは、周波数の増加につれて電流の流れる実効的な面積が減少すること、すなわち表皮効果が原因である。
【0101】
[磁場測定の実験]
次に、本発明実施例に係る偏心スパイラルコイルが、予定通りの磁場を発生できることを確認するための実験(磁場測定)を行った。以下、この磁場測定の実験について説明する。
<測定方法>
本実験では、図4に示したものと同様の磁気コイル20を用い、この磁気コイル20をコイル駆動装置に(つまり、その内部のコイル駆動回路に)接続し、また、磁気コイル20上には、磁場測定用の微小なサーチコイルを配置した。磁場が発生すると、電磁誘導の法則により、サーチコイルに電圧が生じる。この電圧波形をオシロスコープで記録した。また、コイル駆動回路に内蔵されているCT(current transformer)を利用して、磁気コイル20に流れる電流も同時に記録した。
【0102】
サーチコイルは、磁場を検出するための微小なコイルであり、図15に示すように、アクリルパイプ26の先端に、例えば直径が0.3mmの銅線を巻き付けて構成した。巻き数は内層5回,外層4回の計9回巻きで、実効直径は内層6.3mm,外層7.1mmである。これらの数値から、サーチコイル25の実効的な面積を計算すると314.3mmとなる。
サーチコイル25は、以下の3箇所の測定位置に配設した。
・測定位置A:右側の渦巻導線部20Kの渦中心Kc
・測定位置B:磁気コイル20全体の中心(左右の渦中心Jc,Kcの中点)
・測定位置C:左側の渦巻導線部20Jの渦中心Jc
【0103】
更に、磁気コイル20からの距離に応じた磁場の減衰も測定するため、磁気コイル20とサーチコイル25との間にアクリルブロックのスペーサを入れ、距離を0mm(コイルコイルケース6とサーチコイル25とが接触した状態)から、10mm,20mm,30mmと変化させた。従って、測定ポイントの数は12点となる。なお、サーチコイル25を当てた磁気コイル20の面においてコイルコイルケース6の厚さは1mmである。
磁場ベクトルの向きは、測定位置AおよびCでは、ほぼz方向(コイル面に垂直な方向)であり、測定位置Bでは、ほぼx方向(左右方向)である。サーチコイル25は、コイル面に垂直な方向の磁場に対して感度を持つため、それぞれの測定位置において、磁場ベクトルの向きとサーチコイル25の面とが直交するように、サーチコイル25を保持するようにした。
尚、測定に使用したオシロスコープはTektronix社TDS2014Bであり、CTはピアソン社モデル4418である。
【0104】
<測定結果>
図16は、この磁場測定の実験でオシロスコープに表示されたサーチコイル25及びCTからの出力波形の一例を示している。上側の波形がサーチコイル25からの出力波形であり、下側の波形がCTからの出力波形である。
サーチコイル25を置いた位置における磁場をB(t)とすると、サーチコイル25に生じる電圧V(t)は、次式(数11)で与えられる。
【0105】
【数11】

【0106】
ここに、Sはサーチコイル25の実効的な面積(314.3mm)である。サーチコイル25のピーク電圧は約4Vであった。
【0107】
CTからは、磁気コイル20に流れる電流に比例した電圧が発生し、CTの電圧とコイル電流とは係数0.001V/Aにより変換可能である。求められたピーク電流は3.2kA,パルス幅は240μsである。
前記数11を積分すると、次式(数12)が得られる。
【0108】
【数12】

【0109】
オシロスコープで記録された波形をもとに,数値的に積分を行い、図17の発生磁場の波形を求めた。測定位置A,距離0mmにおいて、400mT(ミリテスラ)を超えるピーク磁束密度を示した。
【0110】
前記磁場測定と同様の方法によって、図12に示すコイルについても、磁場測定を行った。コイルに流れる電流の波形と、コイルから発生した磁場の波形とを、図18に示す。この磁場測定では、サーチコイルを前記測定位置Aに置いた。ピーク値で約6kAのコイル電流に対して、約1.5Tの発生磁場が得られた。
【0111】
<数値解析>
測定結果との比較を行って妥当性を検証するため、発生磁場の数値解析を行った。
図19は、発生磁場の磁場分布の数値解析結果を示している。図19(a)に示された磁気コイル20において、各渦巻導線部20J,20Kは、実際の渦巻形状(スパイラル状)ではなく、円環の集合で近似されており、解析の単純化が図られている。
それぞれの渦巻導線部20J,20Kの発生する磁場は、以下のような数式を利用して計算することができる。
【0112】
すなわち、半径aの円形コイル(渦巻導線部)が、原点を中心としてz軸に垂直な面内にあり、強さIの電流が与えられている場合を考える。このコイルが位置(x,y,z)または(r,θ,φ)に発生する磁場ベクトルを示す。以下、μ=4π×10−7H/mは真空の透磁率,単位はMKSA単位とする。
円形コイルを、周方向にN個の要素に分割する。それぞれの要素は、直線(線分)で近似する。位置r=(x’,y’,z’)にあるn番目の要素が、位置r=(x,y,z)に発生する磁場は、次式(数13)のビオ・サバールの法則で与えられる。
【0113】
【数13】

【0114】
ここでΔs=2πa/Nは線要素の長さであり、位置r’は次式(数14,数15)で与えられる。
【0115】
【数14】

【0116】
【数15】

【0117】
t(r’)は、要素の方向を表す単位ベクトルであり、円形コイルの接線方向を向き、次式(数16)で表される。
【0118】
【数16】

【0119】
円形コイルが発生する磁場は、各要素が発生する磁場のベクトル和となり、次式(数17)で表される。
【0120】
【数17】

【0121】
以上をもとに,磁場分布は次式(数18)で表される。
【0122】
【数18】

【0123】
図20は、半径a(a=0.05m)の円形コイルが、原点を中心としてz軸に垂直な面内にあり、強さI(I=2000A)の電流が与えられており、円形コイルを周方向にN(N=10)個の要素に分割した場合において、前記(数18)の式を用いて求めた、y=0の平面上での磁場の強さBの分布を示している。
ここに、磁場の強さBは、B=(B+B+B1/2として求められている。
【0124】
図19(b)及び(c)を参照すれば、右側の渦巻導線部20Kが左側の渦巻導線部20Jの上に重なる様子も、解析上で表現されている。磁気コイル20には、3.2kAの駆動電流を与えた。図19(b)から良く分かるように、右側の渦巻導線部20Kと左側の渦巻導線部20Jとが重なり合っている領域では磁場が強く、この領域から遠ざかるに従って磁場が減衰する様子が読み取れる。なお、図19(b)及び(c)において、等高線でプロットしたのは磁場ベクトルの長さ(B+B+B1/2である。
【0125】
<測定結果と解析結果の比較>
各測定位置におけるピークの磁束密度の測定結果と解析結果とを、表1に纏めた。
【0126】
【表1】

磁束密度の測定結果と解析結果の比較
【0127】
測定距離が0mmの場合など、磁気コイル20とサーチコイル25とが近い場合には、測定結果と解析結果とに乖離がみられたが、測定距離が大きくなるに連れて、両者が近い値を示すようになり、測定距離30mmでは大略的に一致する結果となった。
図19からも分かるように、磁気コイル20の巻線に近い領域では、磁場の空間的な変化が急になる。したがって、サーチコイル25の位置が僅かにずれただけでも測定結果が変動しやすい。今回の測定では、サーチコイル25を手で保持したため、位置決めはそれほど精密ではなく、誤差が出やすい状況であった。また、表1の解析結果は、サーチコイル25の中心点における磁束密度を求めているのに対して、実際のサーチコイル25は有限の高さと直径を持っており、サーチコイル25の内部での磁場分布が平均化されて測定される。この違いも、測定結果と解析結果との差を生む原因となっており、同様に磁場の空間変化が急になるような磁気コイル20の近傍で、不一致が起こりやすいと言える。
【0128】
以上のことから、磁気コイル20からの距離が離れるにしたがって、正確な評価が可能になると言える。測定距離30mmにおいて、測定結果と解析結果とが近い値を示していることから、製作した磁気コイルは、予定通りの磁場を発生できていると判断した。
【0129】
[発熱の測定]
連続で刺激を出力した時のコイルの発熱を、実験から求めた。使用したコイルは、図13に示したのと同様のものである。測定機器は、コイルに内蔵した白金測温抵抗体と、サーモグラフィを併用した。内蔵の白金測温抵抗体は、コイルのグリップの付け根部分に埋め込まれており、コイル内部の温度を測定することができる。また、サーモグラフィはコイル上方に固定されており、頭部に当てられる側のコイル面すなわち図13の下面の表面温度を計測して、測定された領域内での最高温度の時間変化を記録した。図13のコイルは、コイル表面に空気を循環させ冷却するための流路が設けられているが、今回の実験では空冷用のカバーを外して測定を行った。前記磁場測定の実験に使ったのと同じ駆動装置にコイルを接続して、動作を行った。
【0130】
連発刺激のパターンは、以下の<1>〜<4>ののいずれかを単位として、これを最長で600秒間、繰り返した。サーモグラフィは30秒ごとに撮影し、プラスチック製ケースの耐熱性を考慮して、温度が100℃超えた時点で動作を打ち切るようにした。
<1>5pps 50train
:1秒間に5パルスの電流を10秒間流す(その後50秒間休み)。
<2>5pps 100train
:1秒間に5パルスの電流を20秒間流す(その後40秒間休み)。
<3>10pps 50train
:1秒間に10パルスの電流を5秒間流す(その後55秒間休み)。
<4>10pps 100train
:1秒間に10パルスの電流を10秒間流す(その後50秒間休み)。
【0131】
図21に実験結果を示す。横軸に連発刺激開始後の時刻(秒)をとり、縦軸に温度をとっている。コイルの場所によって温度変化が異なることが分かった。すなわち、コイルの表面は発熱体である銅線との距離が近く熱が伝わりやすいため、温度上昇が激しいが、白金測温抵抗体は導線から距離があるために熱が伝わりにくく、温度上昇が鈍かった。また同じコイル表面においても、銅線が密に巻いてある中心付近が最も温度が高かった。一方、休止時においては、空気に触れる表面の方が熱を奪われやすく、サーモグラフィの測定結果においては温度下降が見られるが、内臓センサにおいては温度下降が見られない。
【0132】
また、上記のような動作パターンでは、刺激頻度は温度上昇にほとんど影響せず、刺激回数(train)によって温度上昇が決まることが分かった。サーモグラフィの温度上昇において、刺激開始後200秒を定常状態と見なして50trainと100trainの上昇を比較すると、50trainの場合の温度上昇は約6.3℃、100trainの場合の温度上昇は約13℃であり、温度上昇は刺激回数(train)に比例することが分かった。
以上は、あくまで装置としての能力を評価するための試験であり、実際の治療においてはこの何割かの出力に設定するため、図21ほどの温度上昇が生じるわけではない。加えて、図13のコイルには、実際には冷却機構が備わっているため、温度上昇は実際にはより低く抑えられる。
【0133】
以上の説明は、主として、渦巻導線部の一部どうしが重なり合った偏心スパイラルコイルについてのものであったが、本発明に係る磁気コイルは、このような構成に限定されるものではなく、その要旨を逸脱しない範囲で、種々の変更あるは改良等を加えることも可能である。以下、種々の変形例について説明する。
【0134】
[第1変形例]
図22(a)〜(c)は、本実施形態の第1変形例に係る磁気コイル50の形態を模式的に示す説明図で、図22(a)は磁気コイル50の平面図、図22(b)は磁気コイル50を矢印11b,11b方向から見て示した矢視図(正面図)、図22(c)は磁気コイル50を矢印11c,11c方向から見て示した矢視図(側面図)である。
【0135】
これら図22(a)〜(c)に示すように、この第1変形例に係る偏心スパイラルコイル50は、図4(a)〜(c)に示されたものと類似しているが、2個の渦巻導線部50J,50Kが同一平面上に配置され、その一部どうしが重なり合うことなく、完全に横並びに配置されている点が、図4(a)〜(c)に示された磁気コイル20とは異なっている。
この場合、重なり合う部分を設けることによる特有の効果は得られないものの、偏心スパイラルコイル20のその他の効果を享受することができ、しかも、磁気コイル50が同一平面上に並ぶことにより、磁気コイル50が平坦になり、この磁気コイル50を内包するコイルユニットをより薄く形成することができる。また、重なりが無いことから、コイル巻線の製作が容易になるという利点もある。
【0136】
[第2変形例]
図23は、本実施形態の第2変形例に係る偏心スパイラルコイル60の形態を模式的に示す正面図である。
この第2変形例の偏心スパイラルコイル60は、前記第1変形例の場合と同様に、2個の渦巻導線部60J,60Kが重なり合う部分が無い構成のものであるが、患者頭部Mhの表面形状にできるだけ沿うように、2個の渦巻導線部60J,60Kが、所定の角度βを挟んで山形をなすように傾斜している。
このような形態を採用することにより、コイル60を患者頭部Mhの表面形状にできるだけ沿って配置することができ、両者間の距離のバラツキを抑制して、患者頭部Mhの表面形状に沿うようにして誘導電流を発生させることが可能になり、より効率的な脳刺激を実現することができる。
この場合、患者頭部Mhの表面形状に対してより良好に対応することができるように、コイル60を湾曲させて丸みを帯びるように形成することにより、患者頭部Mhの表面とコイル60との間の距離のバラツキをより効果的に抑制することができる。
【0137】
[第3変形例]
図24は、本実施形態の第3変形例に係る偏心スパイラルコイル70の形態を模式的に示す正面図である。
この第3変形例の偏心スパイラルコイル70は、前記第2変形例の場合と同様に、2個の渦巻導線部70J,70Kが、患者頭部Mhの表面形状にできるだけ沿うように、所定の角度βを挟んで山形をなすように傾斜しているが、更に、2個の渦巻導線部70J,70Kが重なり合う部分70Qを有している。
【0138】
そして、この重なり合う部分70Qは、渦巻導線部70J,70Kの一部をそれぞれ折り曲げて平行をなすように構成されている。
このような形態を採用することにより、重なり合った部分70Qでは、コイル通電時に発生する誘導電流の密度がより高くなり、より強い磁場を得ることが可能になる。また、磁気コイル70を患者頭部Mhの表面形状にできるだけ沿って配置することができ、両者間の距離のバラツキを抑制して、患者頭部Mhの表面形状に沿うようにして誘導電流を発生させることが可能になり、より効率的な脳刺激を実現することができる。しかも、2個の渦巻導線部70J,70Kが重なり合う部分70Qは、渦巻導線部70J,70Kの一部をそれぞれ折り曲げて平行をなすように構成されており、図24と図23とを対比して良く分かるように、磁気コイル70を、患者頭部Mhの表面形状により一層沿った配置とすることができる。
【0139】
[第4変形例]
図25は、本実施形態の第4変形例に係る偏心スパイラルコイル80の形態を模式的に示す正面図である。
この第4変形例の偏心スパイラルコイル80は、前記第3変形例の場合と同様に、2個の渦巻導線部80J、80Kが重なり合う部分80Qを有しているが、渦巻導線部80J、80Kが、患者頭部Mhの表面形状にできるだけ沿うように、曲面を形成している。この曲面とは、例えば、図25に示すような円柱面の一部である。このような曲面とすることにより、前記第3変形例に比べて、頭部表面にコイルが密着する度合いが増すため、渦電流を効果的に誘導できる。さらに、この曲面を球面の一部で形成すれば、より一層、頭部表面にコイルが密着する度合いを増すことができる。
【0140】
尚、以上の変形例では、1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成した、「偏心スパイラルコイル」を構成の前提として、更に、コイルの一部を折り曲げた構成,円柱面の一部でなる曲面とした構成,球面の一部でなる曲面とした構成を説明した。しかし、患者頭部の表面形状にできるだけ沿うように、かかる形状となした渦巻コイルを用いることにより得られる効果は、偏心スパイラルコイルの場合のみに限られるものではなく、同心状の渦巻コイルであっても得られることは、上記の説明からも明らかである。従って、これら同心状コイルを用いた構成もまた本発明に含まれるものである。
【0141】
磁気刺激用コイルの性能を示す様々な値の中では、脳内の渦電流の強さと、コイルのインダクタンスが、特に重要である。コイルの外径や内径、巻数、偏心度合いなどの設計パラメータを変化させたとき、脳内渦電流やインダクタンスがどのように変化するのかを、コンピュータシミュレーションによって明らかにした。偏心スパイラルコイルの基準寸法として、最内円の平均直径は20mm(線幅が2mmであることから内径は18mm)、最外円の平均直径は100mm(線幅が2mmであることから外径は102mm)、巻数は10として、偏心度合いは、細密部の巻線間ギャップが0.5mmになるように決定した。このパラメータを基準として、内径、外径、巻数、偏心度合いをそれぞれ独立に変化させた。この他の設計パラメータは、表2に示すとおりに固定した。
【0142】
【表2】

コイルの設計パラメータ
【0143】
なお、経頭蓋磁気刺激治療において、有効な治療効果を得るためには、高頻度に刺激を行う必要がある。その場合に、磁気コイルの発熱が動作上の制約になることが多い。磁気コイルの発熱は、コイルに与える電流の2乗に比例する。また、駆動回路内の部品は、電流に応じて選定される物が多い。そこで、電流を一定とする条件の下で、シミュレーションを行った。この条件において、脳内に強い渦電流を誘導できるコイルを、効率の良いコイルであると判断できる。
コイルの発熱Pは、コイルの電流I,コイルの抵抗R、パルス幅T、1秒あたりの刺激回数fから、次式(数19)によって計算できる。
【0144】
【数19】

【0145】
脳に誘導される渦電流のシミュレーションは、前述の図5を用いて説明した方法と同様の方法によって行った。ただし、ここでは、脳を模擬する導体を、1/8球では無く、1/4球とした。これによって、計算の所要時間は長くなるが、計算の正確性が向上する。
図28は、コンピュータシミュレーションによって、脳内の渦電流と、コイルのインダクタンスを求めるための計算モデルを示す説明図である。図28(a)に、渦電流を解析するための計算モデルを示す。本シミュレーションでは、コイルのインダクタンスを求めるため、コイルに1A(アンペア)の単位電流を与えたときの、コイルの周囲に生成される磁場の分布を解析した。図28(b)に示すような、コイルの半分を表わすモデルを、空気を表わす160mm×80mm×100mmの直方体の内部に置いた。コイルの切断面が、空気を表わす直方体の160mm×100mmの面に含まれるように、コイルの位置を決定した。有限要素法を利用して、この直方体の内部における磁場の分布を計算した。モデルの6つの外周面には、全て、対称境界条件を与えた。計算のための有限要素は、最も密度が高い部分で、2mm程度の大きさである。
【0146】
図29は、本コンピュータシミュレーションから得られたコイルの周囲の磁束密度の等高線図の一例を示す図である。この図に示すように、コイルから遠ざかるにしたがって、磁束密度が減衰していく様子が分かる。この磁束密度をもとに、次式(数20)によって、コイルのインダクタンスを計算することができる。
【0147】
【数20】

【0148】
この式は、磁気エネルギーの釣り合いを表わしており、Lはコイルのインダクタンス、I(=1A)はコイルに与えた電流、μは真空の透磁率、Bは磁束密度である。右辺の積分は、空気を表わす直方体の内部で行う。
実際のコイルにおいては、(数20)の式から計算されるコイル本体のインダクタンスに加えて、コイルと駆動回路とをつなぐケーブルもインダクタンスを有しているため、両者を足し合わせて評価する必要がある。往復2導体のケーブルのインダクタンスは、次の式(数21)を使って近似的に計算した。(数21)において、r=4.9mmは導体外径、D=7mmは中心間距離、l=1.5mはケーブルの長さである。
【0149】
【数21】

【0150】
また、図1に示した駆動回路49において、パルス幅T、コンデンサの充電電圧V、コイルとケーブルの電気抵抗Rは、それぞれ以下の式(数22),(数23),(数24)から求まる。
【0151】
【数22】

【0152】
【数23】

【0153】
【数24】

【0154】
ここでは、コンデンサの静電容量を125μFとした。また、電気抵抗は,銅の抵抗率ρ=16.78μΩ・mmから計算した。抵抗は、コイル本体の分と、長さ1.5mのケーブルの分を加えた値である。
【0155】
コイルの偏心の度合いは、最密部における巻線間のギャップによって表わした。偏心していない同心円コイルでは、ギャップが2.44mmになる。偏心の度合いが大きくなるにしたがってギャップが小さくなり、理想的にはギャップをほぼゼロにすることができる。実際には、被覆付きの導線を用いた場合には、被覆の厚さ分のギャップが必要であり、被覆無しの導線や銅板から切り出したコイルを用いた場合には、絶縁を確保するためのギャップが必要である。目安としては、0.50mm以上のギャップを設けることが好ましい。図30に、偏心していない同心円コイルと、ギャップ0.50mmの偏心スパイラルコイル、これらの中間にあたるギャップ1.47mmの偏心スパイラルコイルを示す。渦中心間の距離Dcと、外形形状の中心間の距離も併せて示した。
【0156】
次に、コイルの偏心度合い(つまり、渦巻導線部の最密部の巻線間ギャップ),渦巻導線部の外径,渦巻導線部の内径,渦巻導線部の巻数をそれぞれ変化させた場合におけるコイルの電気的特性の変化を調べた。コイルの電気的特性としては、渦電流密度,インダクタンス,パルス幅,電圧,抵抗,毎秒5回刺激時の発熱を調べた。
【0157】
コイルの偏心度合い、つまり渦巻導線部の最密部の巻線間ギャップ(mm)を変化させた場合のコイルの電気的特性の変化を表3に示す。
【表3】

【0158】
また、渦巻導線部の外径(mm)を変化させた場合のコイルの電気的特性の変化を表4に示す。
【表4】

【0159】
更に、渦巻導線部の内径(mm)を変化させた場合のコイルの電気的特性の変化を表5に示す。
【表5】

【0160】
更に、渦巻導線部の巻数(回)を変化させた場合のコイルの電気的特性の変化を表6に示す。
【表6】

【0161】
図31は、本コンピュータシミュレーションにおいて、コイルの偏心度合い,外径,内径,巻数を、それぞれ表3,表4,表5,表6に示すように変化させた場合の、コイルの電気的特性の変化を例示する図である。最密部の巻線間ギャップを小さくすると、すなわち偏心の度合いを大きくすると、脳内に誘導される渦電流が大きくなることが分かり、偏心スパイラルコイルの有効性が改めて示された。コイル設計においては、絶縁が保たれる範囲で、最密部の巻線間ギャップを可能な限り小さくすることが望ましい。外径,内径および巻数の3つの設計パラメータについては、これらの増加に伴って、誘発する渦電流密度,インダクタンス,充電電圧も大きくなることが分かる。抵抗については、巻線長が長くなるにつれて大きくなるが、ケーブル長の寄与が大きいために、変化は2%以内となっている。
【0162】
コイル電流が一定の条件の下で比較して、脳内に強い渦電流を誘導できるコイルが優れたコイルであると考えるならば、外径,内径,巻数はいずれも大きいほうが望ましいことになる。ただし、これらは際限無く大きくできるのではなく、パルス幅やコンデンサの充電電圧が一定の範囲内に収まっている必要がある。パルス幅については、従来の磁気刺激装置を使った治療効果の評価が、300μs前後で行われていることから、ここから大きく逸脱するパルス幅では、治療効果の評価そのものからやり直す必要があるため、装置開発は困難になる。磁気刺激治療における従来の知見の蓄積を活かすのであれば、300μs前後のパルス幅を保つことが好ましい。また、コンデンサの充電電圧が上昇するのは、安全上のリスクが高まるため好ましくない面があり、装置の大型化にもつながる。目安としては、2kV以下の充電電圧に収めることが好ましい。また、必要な刺激強度は、個々の患者によってばらつくことから、これらの値に対して、所定量の余裕を持っておくことが必要である。図31の計算結果では、いずれのコイル形状においても、パルス幅は300μs程度、充電電圧は2kV以下となっている。
【0163】
外径102mm,内径18mm,巻数10回を基準として、外径,内径,巻数を10%増加させたときに、脳内の誘導電流はそれぞれ9%,2%,9%増加するのに対して、コンデンサの充電電圧はそれぞれ3.5%,1.9%,8.1%増加する。すなわち、脳内の誘導電流を10%向上させることに対する電圧の増加は、外径を変化させた場合に3.9%、内径を変化させた場合に9.5%、巻数を変化させた場合に9.0%である。よって、電圧の増加を招くことなく脳内渦電流を強化できるという点では、外径を増加させることが最も好ましい。一方で、外径102mm,内径18mm,巻数10回を基準として、外径,内径,巻数を10%減少させた場合には、脳内の誘導電流はそれぞれ14%,2%,10%減少する。これらの値を見ても、コイルの設計パラメータを適切に選ぶことの重要性を理解できる。
【0164】
コイルを実際に設計する際には、コイルの形状(渦巻導線部の形状)に関するだけでも、数多くのパラメータを決める必要がある。具体的には、少なくとも以下のパラメータを決定しなければならない。
<a>渦巻導線部の基本形状(丸,角,角など)
<b>渦巻導線部の個数と配置
<c>素線(導線)の高さ
<d>素線(導線)の幅
<e>外径
<f>内径
<g>巻数
<h>偏心の度合い
<i>重なりの度合い
<j>渦巻導線部間の傾きの角度
【0165】
コイルの性能評価を行う場合には、コンピュータシミュレーションは非常に有効な手段である。しかし、コイルの最適な設計を求めようとする際には、これらのパラメータの膨大な組み合わせについて、単に時間をかけてコンピュータシミュレーションを繰り返すアプローチは、現実には極めて困難であり不可能に近い。そこで、電磁気学的な考察に基づいて、好ましい設計の方向性をある程度示したうえで、限定的かつ有効にコンピュータシミュレーションを使用して、設計を行うことが求められる。
【0166】
前記<a>項の「渦巻導線部の基本形状」については、脳を刺激の対象とする場合には特に、基本形状は丸が好ましい。コイルの導線と脳との間には、頭蓋や頭皮、さらには絶縁を確保するためのコイルケース等があるため、およそ3cm程度のギャップがある。脳内の神経は、さらに数cmの深さまで分布している。このような深さまで、減衰させずに磁場を到達させる点においては、丸いコイルが最も有利である。コイルの囲む面積が大きいほど、磁場が深くまで到達する傾向があるが、一定の長さの導線で囲む面積が最大になるのが、円形である。したがって、円形コイルが、最も深部まで磁場を減衰させずに到達させる能力がある。
前記<b>項の「渦巻導線部の個数と配置」については、非常に出力の大きな駆動回路と組み合わせることができるならば、3個以上の渦巻導線部から成るコイルも選択肢に入る。3個以上の渦巻導線部を設けることで、設計の自由度が増し、脳内の渦電流をより望ましい分布に近づけることができる。しかしながら、2個の渦巻導線部のコイルに比べて、3個以上の渦巻導線部を持つコイルの効果は、これまでの研究結果を概観すると限定的である。渦巻導線部の個数が増えるにつれて、駆動回路に求められる出力も大きくなるという難点がある。在宅治療用の磁場発生コイルでは特に、2個の渦巻導線部から成るコイルが、駆動回路を小型化できる点で好適である。
【0167】
前記<c>項の「素線(導線)の高さ」については、素線(導線)の高さが高い方が、電気抵抗を低減できる利点がある。一方で、例えば図4等に示されるコイルのように渦巻導線部に重なりのあるコイルを製作する場合には、高さの異なる層の間を滑らかに接続するために、素線を曲げる必要がある。素線が高すぎると、曲げ加工が困難になるという技術的課題が生じる。経験上、6cm程度までの高さであれば、曲げ加工が比較的容易に行える。
前記<d>の「素線(導線)の幅」については、素線(導線)の幅が広ければ、電気抵抗が小さくなるので、駆動回路の出力が小さくて済むが、一方で、偏心させることのできる度合いが小さくなるという問題がある。2mm程度の幅を選べば、[数19]で計算される発熱の大きさが結果的に300ワット程度となり、家庭用コンセントから給電できるレベルの消費電力で駆動回路の設計が可能である。
【0168】
前記<e>項から<h>項に示した「外径」,「内径」,「巻数」,「偏心の度合い」がコイルの性能に与える影響は単純では無く、3次元的な電磁界解析を行って初めて評価できる。これらについては、コンピュータシミュレーションを活用した最適化が極めて有効である。
前記<i>項の「重なりの度合い」については、例えば図4等に示すように、一方の渦巻導線部の外周が、他方の渦巻導線部の内周に接する位置まで重なり部分を設けることが好ましい。それによって、重なりを設けたコイル中央部での電流の集中を最も高めることができる。
前記<j>項の「渦巻導線部間の傾きの角度」については、加工し易さと刺激の効果とを総合的に考えて、選択することになる。例えば図4のように平面的にコイルを構成すると、コイルの加工は容易になる。一方、図24に示すような設計を採用できれば、渦電流発生の効率は向上する。コイルの渦巻導線部間に重なりを設けなければ、図23に示すような形状も可能である。
【0169】
上述のように、コンピュータシミュレーションを活用して、許容されるパルス幅やコンデンサ充電電圧の範囲内で、最も強い脳内渦電流を得られるコイルを探索することによって、コイル設計を最適化することができる。ただし、シミュレーションで検討する設計パラメータを絞り込んだとしても、なお、かなり多大な手間を要する点が課題であると言える。また、外径,内径,巻数などの設計パラメータは、有限個数の組み合わせを選んで解析することになり、選んだ値の中間に最適値がある場合には、この最適値を求める精度が低下する。様々な数値解析手法を利用してデータの補間を行うことにより、コンピュータシミュレーションを実行する際に選択した有限個の設計パラメータの中間に最適値がある場合に、この最適値を推定することができる。
【0170】
また、以上の説明は、渦巻導線部の外形形状が円形の偏心スパイラルコイルについてのものであったが、本発明は、渦巻導線部の外形形状が、楕円もしくは長円、三角形,四角形もしくはそれ以上の多角形など、他の種々の形状の磁気コイルについても、有効に適用することができる。渦巻導線部の外形形状が三角形,四角形などの多角形の偏心スパイラルコイルでは、角部方向に偏る場合と辺方向に偏る場合の2通りが考えられるが、何れの場合にも同様に適用可能である。
【0171】
更に、渦巻導線部の個数としては、2個に限定されるものではなく、3個あるいは4個、更にはそれ以上の個数であってもよい。
例えば、図32は、4個の円形渦巻導線部130J,130K,130L,130Mを備えた磁気コイル130を示す模式図である。尚、実際の渦巻導線部130J〜130Mでは、渦巻形状(スパイラル状)に巻かれるが、図32の模式図では、図面の簡潔明瞭化のために円環で模しており、各円環上の矢印は電流の流れ方向を例示している。
【0172】
図32に示した磁気コイル130では、4個の渦巻導線部130J,130K,130L,130Mは、患者頭部Mh上において平面視で四つ葉状に並び、且つ、各々の一部どうしが重なり合うように配置されている。この場合においても、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付くように偏心させて構成することで、一方の渦巻導線部のコイル巻線間隔の疎密に対応して、誘導電流の密度の高い領域が発生し、この領域で強い脳刺激が得られる。すなわち、複数の渦巻導線部で構成された磁気コイルについて、各渦巻導線部の形状および配置を工夫するだけの比較的簡単な構成で、限局された箇所に所要強度の脳刺激を効率良く発生させることができる。
特に、4個の円形渦巻導線部130J,130K,130L,130M全てについて、渦巻導線部の巻線の渦中心がz軸を通る中心に近付くように偏心させて構成することにより、全ての組の渦巻導線部について、渦巻導線部の巻線の渦中心が他の渦巻導線部の巻線の渦中心へ近付くように偏心させることができ、最も高い効果を得ることができる。
【0173】
また、本発明は、複数の渦巻導線部が実質的に1つの平面上に、若しくは若干の傾斜をもって配置されている場合のみならず、複数の渦巻導線部が所定の軸線の周りに立体的に配置されている場合でも、有効に適用することができる。
図33は、立体配置された4個の渦巻導線部を備えた磁気コイル150の一例を示す模式図である。この図33の模式図では、渦巻導線部150J,150K,150L,150Mを、図面の簡潔明瞭化のために楕円で模している。
この磁気コイル150は、所謂「slinky」タイプのもので、ケーブル156に繋がるグリップ159の軸線Saの周りに4個の楕円状の渦巻導線部150J,150K,150L,150Mが立体的に配置されている。
【0174】
この場合においても、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付くように偏心させて構成することで、一方の渦巻導線部のコイル巻線間隔の疎密に対応して、誘導電流の密度の高い領域が発生し、この領域で強い脳刺激が得られる。
特に、4個の渦巻導線部150J,150K,150L,150M全てについて、渦巻導線部の巻線の渦中心が前記軸線Saを通る中心に近付くように偏心させて構成することにより、全ての組の渦巻導線部について、渦巻導線部の巻線の渦中心が他の渦巻導線部の巻線の渦中心へ近付くように偏心させることができ、最も高い効果を得ることができる。
【0175】
図34は、立体配置された5個の渦巻導線部170J,170K,170L,170M,170Nを備えた磁気コイル170の一例を示す模式図である。この図34の模式図では、渦巻導線部170J,170K,170L,170M,170Nを、図面の簡潔明瞭化のために円環状のディスクで模しており、各ディスクに沿った矢印は電流の流れ方向を例示している。
この場合、各渦巻導線部170J,170K,170L,170M,170Nは、z軸と平行な軸線Sbの周りに5個の渦巻導線部170J,170K,170L,170M,170Nが立体的に配置されている。
この場合においても、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付くように偏心させて構成することで、一方の渦巻導線部のコイル巻線間隔の疎密に対応して、誘導電流の密度の高い領域が発生し、この領域で強い脳刺激が得られる。
【0176】
図35は、立体配置された5個の渦巻導線部180J,180K,180L,180M,180Nを備えた磁気コイル180の一例を示す模式図である。この図35の模式図では、図面の簡潔明瞭化のために、3個の渦巻導線部180J,180K,180Mを中実の円盤ディスクで模し、2個の渦巻導線部180L,180Nを円環状のディスクで模している。
この磁気コイル180は、所謂8字コイルをベースにしたもので、グリップ189の軸線Scの周りに5個の渦巻導線部180J,180K,180L,180M,180Nが立体的に配置されている。
この場合においても、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付くように偏心させて構成することで、一方の渦巻導線部のコイル巻線間隔の疎密に対応して、誘導電流の密度の高い領域が発生し、この領域で強い脳刺激が得られる。
【0177】
尚、以上の説明は、少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成した「偏心スパイラルコイル」を構成の前提として、3個以上の渦巻導線部が実質的に1つの平面上に、若しくは若干の傾斜をもって配置されている場合、複数の渦巻導線部が所定の軸線の周りに立体的に配置されている場合、について説明したものであったが、渦巻導線部をこのように配置することにより得られる効果は、偏心させた渦巻コイルのみに限られるものではなく、同心状の渦巻コイルであっても得られることは、上記の説明からも明らかである。従って、これら同心状コイルを用いた構成もまた本発明に含まれるものである。
【0178】
以上の説明は、主として、神経障害性疼痛に対する経頭蓋磁気刺激療法に用いられる磁気刺激治療用の磁気コイルについてのものであったが、磁気刺激療法自体は、他の神経疾患や精神疾患、更に尿失禁等の脳以外の臓器の治療にも応用が進んでおり、また、診断の目的でも早くから臨床応用が進んでおり、脳機能の基礎研究や脳科学研究にも積極的に利用されている。従って、本発明は、これらの分野においても有効に適用できるものである。また、本発明の磁気コイルは、更に他の分野、例えば、磁気コイル及び電磁場を利用した温熱療法や、渦電流による非破壊探傷検査法などにおいても、応用が可能である。
【産業上の利用可能性】
【0179】
本発明は、磁界を生成する磁気コイル、特に、複数の渦巻導線部で構成された磁気コイル、或いは複数の渦巻導線部が所定の軸線の周りに立体的に配置された磁気コイル、並びにかかる磁気コイルを備えた経頭蓋磁気刺激装置に関するもので、例えば、経頭蓋磁気刺激療法に用いられる磁気刺激治療用の磁気コイルとして、また、かかる磁気コイルを備えた経頭蓋磁気刺激装置として、有効に利用することができる。
【符号の説明】
【0180】
6 ケース
20,30,40,50,60,70,80,90 磁気コイル
23P,23Q,23R カバー
24,25 空気口
130,150,170,180 磁気コイル
20J,30J,50J,60J,70J,80J 渦巻導線部
20K,30K,50K,60K,70K,80K 渦巻導線部
130J〜130M,150J〜150M 渦巻導線部
170J〜170N,180J〜180N 渦巻導線部
Dc 渦中心間の距離
Ds 外形形状の中心間の距離
Jc,Kc 渦中心
Jc,Js 外形形状の中心

【特許請求の範囲】
【請求項1】
複数の渦巻導線部で構成された、磁界を生成する磁気コイルであって、
少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成されている、ことを特徴とする磁気コイル。
【請求項2】
複数の渦巻導線部が所定の軸線の周りに立体的に配置された、磁界を生成する磁気コイルであって、
少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成されている、ことを特徴とする磁気コイル。
【請求項3】
前記1組の渦巻導線部について、一方の渦巻導線部の一部が他方の渦巻導線部の一部と互いに略並行をなして重なり合っている、ことを特徴とする請求項1又は2に記載の磁気コイル。
【請求項4】
前記1組の渦巻導線部について、一方の渦巻導線部の外周部が他方の渦巻導線部の巻線の渦中心あるいはその付近に至るまで重なり合っている、ことを特徴とする請求項3に記載の磁気コイル。
【請求項5】
前記1組の渦巻導線部が、所定の角度を挟んで山形をなすように傾斜している、ことを特徴とする請求項1から4の何れか一に記載の磁気コイル。
【請求項6】
前記少なくとも1組の渦巻導線部の外周形状は円形である、ことを特徴とする請求項1から5の何れか一に記載の磁気コイル。
【請求項7】
前記複数の渦巻導線部は、断面形状が四角形である導線によって巻き上げられている、ことを特徴とする請求項1から6の何れか一に記載の磁気コイル。
【請求項8】
前記複数の渦巻導線部は、多数の金属線を寄り合わせて構成した導線によって巻き上げられている、ことを特徴とする請求項1から6の何れか一に記載の磁気コイル。
【請求項9】
患者の頭蓋内に渦電流を起こすための少なくとも1組の渦巻導線部を有する治療用磁気コイルを備えた、経頭蓋磁気刺激装置であって、
前記渦巻導線部が、患者頭部の表面形状に沿うよう曲面を形成してなる、ことを特徴とする経頭蓋磁気刺激装置。
【請求項10】
前記曲面が円柱面の一部である、ことを特徴とする請求項9に記載の経頭蓋磁気刺激装置。
【請求項11】
前記曲面が球面の一部である、ことを特徴とする請求項9に記載の経頭蓋磁気刺激装置。
【請求項12】
前記少なくとも1組の渦巻導線部について、一方の渦巻導線部の巻線の渦中心が他方の渦巻導線部の巻線の渦中心へ近付く方向に偏心させて構成されている、ことを特徴とする請求項9から11の何れか一に記載の経頭蓋磁気刺激装置。
【請求項13】
患者の頭蓋内に渦電流を起こすための少なくとも1組の渦巻導線部を有する治療用磁気コイルを備えた、経頭蓋磁気刺激装置であって、
前記少なくとも1組の渦巻導線部をそれぞれ個別にまたは全体として収納するケースと、
前記ケースとの間に隙間が形成されるように当該ケースに装着されるカバーと、
前記カバーの所定部位に設けられた空気流入口から、前記隙間を経由して、前記カバーの他の部位に設けられた空気流出口へ、前記ケースを冷却するための空気流を強制的に流通させる空気流通手段と、
を備えた、ことを特徴とする経頭蓋磁気刺激装置。
【請求項14】
前記隙間は、少なくとも前記ケースの患者頭部に近い側に設けられている、ことを特徴とする請求項13に記載の経頭蓋磁気刺激装置。
【請求項15】
前記隙間は、前記ケースの患者頭部に近い側およびその反対側の双方に設けられている、ことを特徴とする請求項14に記載の経頭蓋磁気刺激装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate


【公開番号】特開2012−125546(P2012−125546A)
【公開日】平成24年7月5日(2012.7.5)
【国際特許分類】
【出願番号】特願2011−200991(P2011−200991)
【出願日】平成23年9月14日(2011.9.14)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成23年度独立行政法人、医薬基盤研究所基礎研究推進事業、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(504176911)国立大学法人大阪大学 (1,536)
【出願人】(504137912)国立大学法人 東京大学 (1,942)
【Fターム(参考)】