説明

磁気記録媒体及び磁気記録再生装置

【課題】サーボデータが上書きされず、かつ再生信号が弱くなることのない磁気記録媒体を提供する。
【解決手段】基板上に形成される記録層の有無で構成される凹凸パターンからなり、凹凸パターンの表面に形成される第1の保護層を有するサーボ部と、基板上に形成される記録層の有無で構成される凹凸パターンからなり、凹凸パターンの表面に形成される第2の保護層を有する記録トラック部とを具備し、前記サーボ部の記録層の上部に形成される第1の保護層の膜厚が前記記録トラック部の記録層の上部に形成される第2の保護層の膜厚よりも1nm以上10nm以下の範囲で厚くなっていることを特徴とする磁気記録媒体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は特にサーボ部が磁性体の有無もしくは凹凸によりパターン化されているパターンドサーボ型磁気記録媒体、およびこの磁気記録媒体を含む磁気記録装置に関する。
【背景技術】
【0002】
近年のパソコンなど情報機器の飛躍的な機能向上により、ユーザが扱う情報量は著しく増大してきている。このような状況の下で、これまでよりも飛躍的に記録密度の高い情報記録再生装置や集積度の高い半導体装置が求められている。情報記録再生装置を構成するものとして磁気記録媒体があるが、最近の磁気記録媒体は記録密度を向上させるために、記録トラック間を物理的に分離するディスクリートトラック型パターンド媒体(DTR媒体)が開発されている(特許文献1)。DTR媒体は基板上の記録トラック部に形成される軟磁性体、及びその上に形成される強磁性体のパターンと、記録トラック間を埋めるように形成される非磁性体と、強磁性層パターン、非磁性体上に形成される保護層からなる。この構成は基本的にサーボ部においても当てはまる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平7−85406号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来のDTR媒体のサーボ部は、サーボパターンが磁性体の有無で形成されているため、サーボトラックライターを用いずにDC消磁を行うのが一般的であった。一方、記録トラック層にデータを書き込む際には、磁気ヘッドを用いてデータを書き込む。
【0005】
そのため、サーボ部にサーボデータが書き込まれた後、磁気ヘッドを用いて記録データを書き込む際に、サーボトラックに書き込まれたサーボデータが磁気ヘッドにより上書きされてしまうという問題があった。この問題を解決するためにサーボ部、記録トラックの保護層を厚くすると、今度は磁気スペーシングにより磁気ヘッドを用いた記録トラックへの書き込みが出来なくなる、または記録トラックに書き込まれた記録データを再生する際に、再生信号が弱くなるという問題がある。
【0006】
本発明の目的は上記問題点を解決するため、サーボデータが上書きされず、かつ再生信号が弱くなることのない磁気記録媒体及び磁気記録再生装置を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するため本発明の磁気記録媒体は、基板上に形成される記録層の有無で構成される凹凸パターンからなり、凹凸パターンの表面に形成される第1の保護層を有するサーボ部と、基板上に形成される記録層の有無で構成される凹凸パターンからなり、凹凸パターンの表面に形成される第2の保護層を有する記録トラック部とを具備し、前記サーボ部と前記記録トラック部は、前記基板の表面に沿って互いに異なる領域上に形成されており、前記サーボ部の記録層の上部に形成される第1の保護層の膜厚が前記記録トラック部の記録層の上部に形成される第2の保護層の膜厚よりも1nm以上10nm以下の範囲で厚くなっていることを特徴とする。
【0008】
また、本発明の磁気記録再生装置は、上述の磁気記録媒体と、前記磁気記録媒体上を浮上する磁気ヘッドとを具備することを特徴とする。
【発明の効果】
【0009】
本発明によりサーボデータが上書きされず、かつ再生信号が弱くなることのない磁気記録媒体及び磁気記録再生装置を提供することが可能となる。
【図面の簡単な説明】
【0010】
【図1】本発明を実施するための最良の形態である磁気記録媒体の部分断面図である。
【図2】図1の磁気記録媒体の製造工程図である。
【図3】図1の磁気記録媒体の製造工程図である。
【図4】図1の磁気記録媒体の製造工程図である。
【図5】図1の磁気記録媒体の製造工程図である。
【図6】図1の磁気記録媒体の製造工程図である。
【図7】図1の磁気記録媒体の製造工程図である。
【図8】図1の磁気記録媒体の製造工程図である。
【図9】磁気記録再生装置の概略構成を例示する要部斜視図である。
【発明を実施するための形態】
【0011】
以下、図面を参照しつつ本発明の実施例について説明する。
【0012】
(磁気記録媒体)
図1はDTR媒体のサーボ部およびトラック部のパターンの一例を示す断面図である。
【0013】
すなわち、基板1上の記録トラック部、サーボ部にそれぞれ軟磁性層(図示せず)を介して強磁性層2が形成されている。この強磁性層2が記録トラック部にあっては記録データを保持する記録層の役割を果たし、サーボ部にあっては、サーボデータを保持する記録層の役割を果たす。軟磁性層は、垂直磁気記録層である強磁性層2を磁化するための磁気ヘッド例えば単磁極ヘッドからの記録磁界を、水平方向に通して、磁気ヘッド側へ還流させるという磁気ヘッドの機能の一部を担っており、磁界の記録層に急峻で充分な垂直磁界を印加させ、記録再生効率を向上させる役目を果たし得る。
【0014】
基板1の材料としては、例えばガラス基板、Al系合金基板、セラミック、カーボンや、酸化表面を有するSi単結晶基板、及びこれらの基板にNiP等のメッキが施されたもの等を用いることができる。ガラス基板としては、アモルファスガラス、結晶化ガラスがあり、アモルファスガラスとしては汎用のソーダライムガラス、アルミノシリケートガラスを使用できる。また、結晶化ガラスとしては、リチウム系結晶化ガラスを用いることができる。セラミック基板としては、汎用の酸化アルミニウム、窒化アルミニウム、窒化珪素などを主成分とする焼結体や、これらの繊維強化物などが使用可能である。基板としては、上記金属基板、非金属基板の表面にメッキ法やスパッタ法を用いてNiP層が形成されたものを用いることもできる。
【0015】
軟磁性層の材料としては、Fe、Ni、Coを含む材料を用いることができる。代表的な材料として、FeCo系合金、例えばFeCo、FeCoV等、FeNi系合金、例えばFeNi、FeNiMo、FeNiCr、FeNiSi等、FeAl系合金またはFeSi系合金、例えばFeAl、FeAlSi、FeAlSiCr、FeAlSiTiRu、FeAlO等、FeTa系合金、例えばFeTa、FeTaC、FeTaN等およびFeZr系合金、例えばFeZrN等を挙げることができる。また、Feを60at%以上含有するFeAlO、FeMgO、FeTaN、FeZrN等の微結晶構造、あるいは微細な結晶粒子がマトリクス中に分散されたグラニュラー構造を有する材料を用いることができる。また、軟磁性層の他の材料として、Coと、Zr、Hf、Nb、Ta、Ti、及びYのうち少なくとも1種とを含有するCo合金を用いることができる。Co合金中Coは80at%以上含まれることが望ましい。このようなCo合金は、スパッタ法により製膜した場合にアモルファスとなりやすく、結晶磁気異方性、結晶欠陥および粒界がないため、非常に優れた軟磁性を示す。また、このアモルファス軟磁性材料を用いることにより、媒体の低ノイズ化を図ることができる。好適なアモルファス軟磁性材料としては、例えばCoZr、CoZrNb、及びCoZrTa系合金などを挙げることができ、CoZrNbが120nm程度成膜されていることが好ましい。
【0016】
軟磁性層の下には、軟磁性層の結晶性の向上あるいは基板との密着性の向上のためにさらに下地層を設けることができる。下地層材料としては、Ti、Ta、W、Cr、Pt、あるいはこれらを含む合金、あるいはこれらの酸化物、窒化物を用いることができる。軟磁性層と記録層との間には、非磁性体からなる中間層を設けることができる。中間層の役割は、軟磁性層と記録層との交換結合相互作用を遮断することと、記録層の結晶性を制御することの二つがある。中間層材料としては、Ru、Pt、Pd、W、Ti、Ta、Cr、Si、あるいはこれらを含む合金、あるいはこれらの酸化物、窒化物を用いることができる。
【0017】
スパイクノイズ防止のために軟磁性層を複数の層に分け0.5〜1.5nmのRu層を挿入することで反強磁性結合させても良い。また、CoCrPtやSmCo、FePt等の面内異方性を持った硬磁性膜、あるいはIrMn、PtMn等の反強磁性体からなるピン層と軟磁性層とを交換結合させても良い。その際に、交換結合力を制御するために、Ru層の前後に強磁性(たとえばCo)の膜あるいは非磁性の膜(たとえばPt)を積層させても良い。
【0018】
強磁性層2の材料としては、Coを主成分とするとともに少なくともPtを含み、さらに酸化物を含んだ材料からなる。この酸化物としては、特に酸化シリコン,酸化チタンが好適である。
【0019】
垂直磁気記録用の強磁性層2は、層中に磁性粒子(磁性を有した結晶粒子)が分散していることが好ましい。この磁性粒子は、垂直磁気記録層を上下に貫いた柱状構造であることが好ましい。このような構造を形成することにより、垂直磁気記録層の磁性粒子の配向および結晶性を良好なものとし、結果として高密度記録に適した信号/ノイズ比(S/N比)を得ることができる。前述の柱状構造を得るためには、含有させる酸化物の量が重要となる。酸化物の含有量は、Co、Cr、Ptの総量に対して、3mol%以上12mol%以下であることが好ましい。さらに好ましくは5mol%以上10mol%以下である。垂直磁気記録層中の酸化物の含有量として上記範囲が好ましいのは、層を形成した際、磁性粒子の周りに酸化物が析出し、磁性粒子の孤立化、微細化をすることができるためである。酸化物の含有量が上記範囲を超えた場合、酸化物が磁性粒子中に残留し、磁性粒子の配向性、結晶性を損ね、さらには、磁性粒子の上下に酸化物が析出し、結果として磁性粒子が垂直磁気記録層を上下に貫いた柱状構造が形成されなくなるため好ましくない。また、酸化物の含有量が上記範囲未満である場合、磁性粒子の分離、微細化が不十分となり、結果として記録再生時におけるノイズが増大し、高密度記録に適した信号/ノイズ比(S/N比)が得られなくなるため好ましくない。垂直磁気記録層のCrの含有量は、0at%以上16at%以下であることが好ましい。さらに好ましくは10at%以上14at%以下である。Cr含有量が上記範囲であるのは、磁性粒子の一軸結晶磁気異方性定数Kuを下げすぎず、また、高い磁化を維持し、結果として高密度記録に適した記録再生特性と十分な熱揺らぎ特性が得られるために好適だからである。Cr含有量が上記範囲を超えた場合、磁性粒子のKuが小さくなるため熱揺らぎ特性が悪化し、また、磁性粒子の結晶性、配向性が悪化することで、結果として記録再生特性が悪くなるため好ましくない。垂直磁気記録層のPtの含有量は、10at%以上25at%以下であることが好ましい。Pt含有量が上記範囲であるのは、強磁性層2に必要なKuを得、さらに磁性粒子の結晶性、配向性が良好であり、結果として高密度記録に適した熱揺らぎ特性、記録再生特性が得られるため、好適だからである。Pt含有量が上記範囲を超えた場合、磁性粒子中にfcc構造の層が形成され、結晶性、配向性が損なわれるおそれがあるため好ましくない。また、Pt含有量が上記範囲未満である場合、高密度記録に適した熱揺らぎ特性を得るためのKuが得られないため好ましくない。
【0020】
強磁性層2は、Co、Cr、Pt、酸化物のほかに、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reから選ばれる1種類以上の元素を含むことができる。上記元素を含む事により、磁性粒子の微細化を促進、あるいは結晶性や配向性を向上させることができ、より高密度記録に適した記録再生特性、熱揺らぎ特性を得ることができる。上記元素の合計の含有量は、8at%以下であることが好ましい。8at%を超えた場合、磁性粒子中にhcp相以外の相が形成されるため、磁性粒子の結晶性、配向性が乱れ、結果として高密度記録に適した記録再生特性、熱揺らぎ特性が得られないため好ましくない。
【0021】
また、強磁性層2としては、上記の他、CoPt系合金、CoCr系合金、CoPtCr系合金、CoPtO、CoPtCrO、CoPtSi、CoPtCrSi,およびPt、Pd、Rh、およびRuからなる群より選択された少なくとも一種を主成分とする合金とCoとの多層構造、さらに、これらにCr、BおよびOを添加したCoCr/PtCr、CoB/PdB、CoO/RhOなどを使用することができる。強磁性層2の厚さは、好ましくは5ないし60nm、より好ましくは10ないし40nmである。この範囲であると、より高記録密度に適した磁気記録再生装置として動作し得る。強磁性層の厚さが5nm未満であると、再生出力が低過ぎてノイズ成分の方が高くなる傾向があり、強磁性層2の厚さが40nmを超えると、再生出力が高過ぎて波形を歪ませる傾向がある。強磁性層2の保磁力は、237000A/m(3000Oe)以上とすることが好ましい。保磁力が237000A/m(3000Oe)未満であると、熱揺らぎ耐性が劣る傾向がある。強磁性層2の垂直角型比は、0.8以上であることが好ましい。垂直角型比が0.8未満であると、熱揺らぎ耐性に劣る傾向がある。
【0022】
強磁性層2のパターン間には保護層3が埋め込まれるように形成される。保護層3の役割としては、強磁性層2の腐食を防ぐとともに、磁気ヘッドが媒体に接触したときに媒体表面の損傷を防ぐ目的設けられる。その材料としては、例えばC、SiO2、ZrO2を含むものがあげられる。保護層の厚さは、1ないし10nmとすることが好ましい。これにより、ヘッドと媒体の距離を小さくできるので、高密度記録に好適である。カーボンは、sp2結合炭素(グラファイト)とsp3結合炭素(ダイヤモンド)に分類できる。耐久性、耐食性はsp3結合炭素のほうが優れるが、結晶質であることから表面平滑性はグラファイトに劣る。通常、カーボンの成膜はグラファイトターゲットを用いたスパッタリング法で形成される。この方法では、sp2結合炭素とsp3結合炭素が混在したアモルファスカーボンが形成される。sp3結合炭素の割合が大きいものはダイヤモンドライクカーボン(DLC)と呼ばれる。耐久性、耐食性に優れ、アモルファスであることから表面平滑性にも優れるため、磁気記録媒体の表面保護層として利用されている。CVD(Chemical vapor Deposition)法によるDLCの成膜は、原料ガスをプラズマ中で励起、分解し、化学反応によってDLCを生成させるため、条件を合わせることで、よりsp3結合炭素に富んだDLCを形成することができる。
【0023】
保護層3の具体的材料としては、Cr、Ru、Pt、Pd、Ti、Ta、Mo、Wなどの金属や、NiTa、NiNb、NiNbTi、NiNbTiHf、CuHfZrTiなどの多元系金属、SiO2、TiOx、SiO2、Al2O3などの酸化物やSi3N4、AlN、TiNなどの窒化物、TiCなどの炭化物、BN等の硼化物、C、Si、などの単体などを挙げることができ、特に限定されないが、再生信号強度を強くするために金属材料であることが好ましい。また、埋め込み材が合金化することにより表面の平坦性が向上するため、前記金属材料としては、合金化しやすい材料が好ましく、より好ましくは金属ガラス等の多元系金属である。
【0024】
保護層3は強磁性層2のパターンを覆うように形成されているが、記録トラック部に形成された強磁性層2上の保護層3の厚さがサーボ部に形成された強磁性層2上の保護層3の厚さより1nm以上、10nm以下の範囲で大きくなっている。DTR媒体においては、記録トラック部は書き換え可能な「1」「0」の記録再生を行う必要があるため、磁気ヘッドにより記録を行う必要があるが、サーボ部においては、磁性体の有無でパターン化されており、一方向にDC透過磁界を印加することでサーボデータを書き込んだ後は信号を書き換える必要は無い。磁気ヘッドは、磁気抵抗効果素子の材料特性から2T程度の磁界しか印加することが出来ないが、サーボ部は磁性体の有無でパターン化されているため、一方向の強い磁界を与えることが可能であり、磁石等を用いて一括で強い磁界を印加することが可能である。すなわち、磁気スペーシングにより、強磁性層2への磁界が弱められるため、磁気ヘッドが通常発生させることのできる磁界よりもさらに大きい磁界を発生させなければサーボデータの書き込みが困難となるが、上述の通りサーボ部は磁性体の有無でパターン化されているため、一方向の強い磁界を与えることが可能であり、磁石等を用いて一括で強い磁界を印加することが可能であるため、磁気ヘッドへの負荷を考慮することなく、サーボ信号の書き込みができる。よって、サーボ部の保護層3を厚くすることが可能である。
【0025】
保護層3の膜厚を厚くすることによって、サーボ部磁性体の腐食や、記録再生ヘッドによるオーバーライト現象を抑制することが可能となる。一方、記録再生ヘッドを用いてデータ信号を記録する必要があるトラック部においては、保護層の厚さが20nmになると保磁力4.5kOeの媒体をオーバーライト(OW)することが出来ない。また、一般的に磁気スペーシングが1nm増加すると、BER(ビット誤り率)が0.3dB劣化するといわれている。よって、サーボ部では保護層を厚く形成するのが好ましいが、記録領域では、磁気スペーシング低減のため保護層膜厚をできるかぎり薄くする必要がある。
【0026】
しかし、サーボ部と記録トラック部との保護剤膜厚差が10nm以上存在すると、磁気ヘッドの浮上量と同等となり、ヘッドが安定浮上しなくなってしまうため、前記記録層上部保護層の膜厚差は10nm以下が好ましい。また、保護層に非金属材料を用いた場合、保護層が厚くなることによって読み込み信号強度が減少してしまう。従って、保護層が金属材料であり、前記記録層上部保護層の膜厚差は4nm以下であることがさらに望ましい。
【0027】
上記の構成により、サーボ部のオーバーライトおよび強磁性層2の腐食が起こりにくく、記録トラック部の記録再生は従来通り行える磁気記録媒体を提供することが可能となる。
【0028】
(磁気記録媒体の製造方法)
次に、本発明の磁気記録媒体の製造方法を図2乃至図8によって説明する。
【0029】
まず図2において、基板41表面に軟磁性層42、強磁性体層43を形成する。強磁性体層43表面はカーボンの保護層で被覆されていてもよい。強磁性体層43の表面に、レジスト45をスピンコート法で塗布する。レジストには一般的なノボラック系のフォトレジストを用いることが出来るが、SOG(Spin-On-Glass)を用いても良い。レジスト45形成後、例えば記録トラックとサーボ情報のパターンが埋め込まれたスタンパを100MPaで60秒間プレスすることによって、図2のようにレジスト45表面にそのパターンを転写する。プレスは、ダイセットの上板と下板との間に、スタンパ46、レジスト45が形成された基板41を配置することにより行われる。スタンパ46及びレジストが形成された基板41は、スタンパ46の凹凸面と基板41のレジスト膜側を対向させる。
【0030】
ダイセットの上板、下板によるプレスの後、図3に示すようにスタンパ45がパターニングされる。インプリントによって作製されたパターンの凹凸高さは60 〜 70 nmであるため、その残さは70 nm程度となる。スタンパ46にフッ素系の剥離材を塗布、あるいはフッ素混合のDLCを製膜することで、スタンパ46とレジスト45の良好な剥離ができる。
【0031】
次に図3に示すように、酸素ガスを用いたRIE(反応性イオンエッチング)でレジスト45の残さ除去を行い、インプリントされたレジストパターン45aのみを強磁性層43上に残した。レジストにSOGを用いた場合、CF4ガスを用いたRIEで残渣除去を行う。RIEにおけるプラズマ源は、低圧で高密度プラズマが生成可能なICP(Inductively Coupled Plasma)が好適だが、ECR(Electron Cyclotron Resonance)プラズマでも構わない。
【0032】
レジスト45の残さ除去後、図4に示すようにレジストパターン45aを用いて強磁性層43の磁性体加工を行い、強磁性層パターン43aを形成する。磁性体加工にはArイオンビームを用いたエッチング(Arイオンミリング)が好適だが、塩素ガスまたはCOとNH3の混合ガスを用いたRIEでも良い。COとNH3の混合ガスを用いたRIEの場合、磁性体加工のエッチングマスクとしてレジストパターン45aの代わりにTi、Ta、W等のハードマスクを用いなくてはならない。上述のRIEを用いた磁性体加工の場合、エッチングされた強磁性層パターン43aの側面にテーパはつかない。如何なる材料でもエッチング可能なArイオンミリングで磁性体加工を行う場合は、例えば加速電圧400V、イオン入射角度は30°から70°まで変化させてエッチングを行う。ECRイオンガンを用いたイオンミリングは、イオン入射角度90°でイオンミリングすることで、殆ど強磁性層パターンの側面にテーパが付かない加工が可能である。
【0033】
磁性体加工後、図5に示すようにレジストパターン45aを強磁性層パターン43a上から剥離する。一般的なノボラック系のフォトレジストを用いた場合は、酸素プラズマ処理を行うことで容易に剥離することが可能である。この時、強磁性層45の表面にカーボン保護層がある場合、カーボン保護層も剥離されるので注意が必要である。一方、SOGをエッチングマスクとした場合、この工程はフッ素系ガスを用いたRIEで行う必要がある。フッ素系ガスはCF4やSF6が好適だが、大気中の水と反応してHF、H2SO4等の酸が生じることがあるため、レジストパターン剥離後、水洗を行う必要がある。
【0034】
レジストパターン45a剥離後、図6に示すように強磁性層パターン43aの凹凸を保護層81で埋め込む。この埋め込み工程は、保護層81を通常のスパッタリングまたはCVD(化学気相成長法)で成膜する。保護層81の材料としては、Cr, Ru, Pt, Pd, Ti, Ta, Mo, Wなどの金属や、NiTa、NiNb、NiNbTi、NiNbTiHf、CuHfZrTiなどの多元系金属、SiO2、TiOx、SiO2、Al2O3などの酸化物やSi3N4、AlN、TiNなどの窒化物、TiCなどの炭化物、BN等の硼化物、C、Si、などの単体などから幅広く選択できる。また、この埋め込み工程ではバイアススパッタリングを用いることもできる。このバイアススパッタリングは基板41にバイアス電圧をかけながらスパッタ成膜する方法で、容易に凹凸を埋め込みながら成膜できる。しかし、バイアス電圧印加による基板41の溶解またはスパッタダストが生じやすいので、通常のスパッタリングを用いるのが好適である。
【0035】
保護層81による埋め込み後、図7に示すように保護層81のエッチバックを行い保護層パターン81aを形成する。この際、強磁性層パターン43aが露出する手前でエッチバックを止める。このエッチバック終了のタイミングはサーボ部と記録トラック部とで異なり、サーボ部の終了タイミングの方が記録トラック部の終了タイミングよりも早めになるよう設定する。この理由としては、前述のとおり保護層81の厚さをサーボ部の厚さの方が記録トラック部の厚さよりも大きくすることによる。このエッチバック工程においては、エッチャントが基板41に対し垂直に入射するようにECRイオンガンを配置しエッチングを行う事が望ましい。ECRイオンミリングの代わりにArイオンミリングを用いても良い。
【0036】
図6の保護層81埋め込み工程、図7のエッチバック工程を2回以上繰り返すことで、図8に示すように強磁性層パターン43aが保護層パターン81bで被覆された埋め込み構造を得ることができる。
【0037】
図8の埋め込み構造形成後、保護層パターン81b上へのC保護層(図示せず)の形成を行ってもよい。C保護層は、保護層パターン81bへのカバレッジを良くするためにCVD法で成膜することが望ましいが、スパッタリング、真空蒸着法でも構わない。CVD法でC保護層を形成した場合、sp3結合炭素を多く含むDLC膜が形成される。膜厚は1nm以下だとカバレッジが悪くなり、10nm以上だと、記録再生ヘッドと媒体との磁気スペーシングが大きくなってSNRが低下するので好ましくない。また、保護層上には、潤滑層を設けることができる。潤滑層に使用される潤滑剤としては、従来公知の材料、例えばパーフルオロポリエーテル、フッ化アルコール、フッ素化カルボン酸などを用いることができる。
【0038】
(磁気記録再生装置)
上述した磁気記録媒体は、以下に説明する磁気記録再生装置に搭載することができる。
【0039】
図9は、このような磁気記録再生装置の概略構成を例示する要部斜視図である。図9に示す磁気記録再生装置150は、ロータリーアクチュエータを用いた形式の装置である。同図において、磁気ディスク200は、スピンドル152に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。なお、図に示す磁気記録再生装置150では、単独の磁気ディスク200のみを用いているが、複数の磁気ディスク200を具えることができる。
【0040】
磁気ディスク200に格納する情報の記録再生を行うヘッドスライダ153は、薄膜状のサスペンション154の先端に取り付けられている。ヘッドスライダ153は、上述したいずれかの実施形態に係る磁気抵抗効果素子を含む磁気ヘッドをその先端付近に搭載している。
【0041】
磁気ディスク200が回転すると、ヘッドスライダ153の媒体対向面(ABS)は磁気ディスク200の表面から所定の浮上量をもって保持される。但し、このような浮上型に代えて、スライダが磁気ディスク200と接触するいわゆる「接触走行型」であってもよい。サスペンション154は、図示しない駆動コイルを保持するボビン部などを有するアクチュエータアーム155の一端に接続されている。アクチュエータアーム155の他端には、リニアモータの一種であるボイスコイルモータ156が設けられている。ボイスコイルモータ156は、アクチュエータアーム155のボビン部に巻き上げられた図示しない駆動コイルと、このコイルを挟み込むように対向して配置された永久磁石および対向ヨークからなる磁気回路とから構成される。
【0042】
アクチュエータアーム155は、スピンドル152の上下2箇所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ156により回転摺動が自在にできるようになっている。
【0043】
次に本願の実施例を示す。
【実施例1】
【0044】
実施例1として、図3〜8に示す、上述の磁気記録媒体の製造方法でサーボ部のみ保護層が厚いDTR媒体を作製した。保護層にはRuを用いた。スパッタ法により50nm成膜と30nmエッチバックを5回繰り返し、最後にエッチバックを100nm行って記録トラック上の凹凸を平坦化した。この時、原子間力顕微鏡(AFM)を用いて5μm角のRmaxを測定したところ、トラック部は3nmでサーボ部は7nmであり、サーボ部がトラック部より記録層上部保護層がRmaxで4nm厚くなっていることを確認した(表1)。
【表1】

【0045】
埋め込み後、CVDにてDLCを成膜し、潤滑材を塗布し保護層とした。この媒体を大気圧化においてデジタルレーザドップラ振動計(LDV)でサーボ部の凹凸に起因した共振は見られなかった。また、浮上量15nmのヘッドを用いてグライドハイトテスターで浮上評価を行ったところ、保護層の凹凸起因のクラッシュは見られなかった。スピンスタンドを用いて、マグネットを用いてDC消磁を行い、ドライブへ組み込みドライブ耐久試験を行ったところ、サーボ部信号、トラック部オーバーライト(OW)信号共に十分な強度が得られ、ビットエラーレート(BER)-5.5乗が得られた。保護層としてCrを用いた場合も同様の結果が得られた。
【実施例2】
【0046】
他の実施例として、図3〜8に示した方法でサーボ部のみ保護層が厚いDTR媒体を作製し、保護層にはNiNbTiHfを用いた(表1)。スパッタ法により50nm成膜と30nmエッチバックを5回繰り返し、最後にエッチバックを100nm行って記録トラック上の凹凸を平坦化した。この時、原子間力顕微鏡(AFM)を用いて5μm角のRmaxを測定したところ、トラック部は3nmでサーボ部は6nmであり、サーボ部がトラック部より記録層上部保護層がRmaxで3nm厚くなっていることを確認した。AFMで記録層上部100nm角のRaを測定したところ、0.3nmで表面平坦性に優れていることが確かめられた。埋め込み後、CVDにてDLCを成膜し、潤滑材を塗布し保護層とした。この媒体を大気圧化においてデジタルレーザドップラ振動計(LDV)でサーボ部の凹凸に起因した共振は見られなかった。また、浮上量15nmのヘッドを用いてグライドハイトテスターで浮上評価を行ったところ、保護層の凹凸起因のクラッシュは見られなかった。スピンスタンドを用いて、マグネットを用いてDC消磁を行い、ドライブへ組み込みドライブ耐久試験を行ったところ、BER-6.0乗が得られた。
【実施例3】
【0047】
さらに他の実施例として、図2乃至図8に示した方法でサーボ部のみ保護層が10nm厚いDTR媒体を作製した。保護層としてRuを用いた(表1)。記録層上部保護層と非記録層上部保護層との膜厚差を得るため、スパッタ法による50nm成膜と30nmエッチバックの繰り返し回数を3回とすることで、記録トラック部とサーボ部とのRmaxにおいて10nmの差を得た。最後にエッチバックを100nm行って記録トラック上の凹凸を平坦化した。埋め込み後、CVDにてDLCを成膜し、潤滑材を塗布し保護層とした。スピンスタンドを用いて、マグネットを用いてDC消磁を行い、ドライブへ組み込みドライブ耐久試験を行ったところ、保護層にRuとSiO2を用いた媒体それぞれでBER-5.0乗、-4.0乗が得られた。
【0048】
また保護層が10nm厚いDTR媒体を大気圧化においてデジタルレーザドップラ振動計(LDV)でサーボ部の凹凸に起因した共振は見られなかった。また、浮上量15nmのヘッドを用いてグライドハイトテスターで浮上評価を行ったところ、保護層の凹凸起因のクラッシュは見られなかった。
【0049】
以下、比較例を示す。
【0050】
(比較例1)
トラック部とサーボ部の凹凸を揃えるため、バイアススパッタ法を用いて埋め込み平坦化を行った以外、実施例1と同様の方法でサーボ部、トラック部ともに保護層が薄いDTR媒体を作製した。保護層にはSiO2を用い、埋め込み平坦化後のRmaxは、トラック部、サーボ部ともに4nmであった(表1)。
【0051】
マグネットを用いてDC消磁を行った後、スピンスタンドを用いて記録再生ヘッドによりトラック部に書き込みを行い、その後サーボ部書き込みを行った。作製したDTR媒体のオーバーライト(OW)信号を1とした時の、信号強度比較を行った(表2)。
【表2】

【0052】
実施例1の媒体においては、十分なOW信号が得られた。サーボ部に関しては、比較例1の媒体と比べて実施例1の媒体はOWされにくい。
【0053】
(比較例2)
埋め込み後のCVD保護層が10nm厚い(表1)以外、比較例1と同様の方法でサーボ部、トラック部ともに保護層が厚いDTR媒体を作製した。
【0054】
マグネットを用いてDC消磁を行った後、スピンスタンドを用いて記録再生ヘッドによりトラック部に書き込みを行い、その後サーボ部書き込みを行った。作製したDTR媒体のオーバーライト(OW)信号を1とした時の、信号強度比較を行った(表2)。
【0055】
トラック部において比較例2の媒体は、十分なOW信号が得られなかった。
【0056】
(比較例3)
図2乃至図8に示した方法でサーボ部のみ保護層が20nm 厚いDTR媒体を作製した。保護層としてSiO2を用いた。記録層上部保護層と非記録層上部保護層との膜厚差を得るため、スパッタ法による50nm成膜と30nmエッチバックの繰り返し回数を1回とすることで、20nmの凹凸差を得た(表1)。得られた媒体において、高温高湿化での腐食試験と、AEセンサを用いた浮上安定評価、およびスピンスタンドによるサーボ部の信号強度比較を行った(表3)。
【表3】

【0057】
埋め込みを行わない媒体に関しては、サーボ部、およびトラック部に腐食が見られたが、埋め込み媒体において腐食は見られなかった。さらに評価を続けると、保護層が薄いトラック部が先に腐食されたが、サーボ部に腐食は見られなかった。また、AEセンサを用いた浮上安定性評価においては、凹凸差20nmの比較例3の媒体でAEシグナルが観測されたが、凹凸差が10nmではAEシグナルは観測されず、ヘッドは安定浮上していた。また、媒体をDC消磁した後に行ったスピンスタンド評価においては、実施例1および実施例3の金属膜は凹凸差10nmで信号は減少しなかったが、比較例3の酸化物による埋め込みでは信号強度の減少が見られた。
【0058】
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
【符号の説明】
【0059】
1、41 … 基板
2、43 … 強磁性層
3、81 … 保護層
42 … 軟磁性層
45 … レジスト
46 … スタンパ
150 … 磁気記録再生装置
152 … スピンドル
153 … ヘッドスライダ
154 … サスペンション
155 … アクチュエータアーム
156 … ボイスコイルモータ

【特許請求の範囲】
【請求項1】
基板上に形成される記録層の有無で構成される凹凸パターンからなり、凹凸パターンの表面に形成される第1の保護層を有するサーボ部と、
基板上に形成される記録層の有無で構成される凹凸パターンからなり、凹凸パターンの表面に形成される第2の保護層を有する記録トラック部とを具備し、
前記サーボ部と前記記録トラック部は、前記基板の表面に沿って互いに異なる領域上に形成されており、
前記サーボ部の記録層の上部に形成される第1の保護層の膜厚が前記記録トラック部の記録層の上部に形成される第2の保護層の膜厚よりも1nm以上10nm以下の範囲で厚くなっていることを特徴とする磁気記録媒体。
【請求項2】
前記保護層は、Ni、Nb、Cu、Hf、Zr、Cr、Ru、Pt、Pd、Ti、Ta、Mo、Wから選ばれる金属材料の合金からなることを特徴とする請求項1記載の磁気記録媒体。
【請求項3】
請求項1または2記載の磁気記録媒体と、
前記磁気記録媒体上を浮上する磁気ヘッドと
を具備することを特徴とする磁気記録再生装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−249007(P2011−249007A)
【公開日】平成23年12月8日(2011.12.8)
【国際特許分類】
【出願番号】特願2011−199318(P2011−199318)
【出願日】平成23年9月13日(2011.9.13)
【分割の表示】特願2009−243593(P2009−243593)の分割
【原出願日】平成19年5月14日(2007.5.14)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】