説明

経皮的免疫のアジュバント

【課題】抗原とアジュバントを含んでなる経皮的免疫のための製剤を提供する。
【解決手段】経皮的免疫システムは、動物またはヒトで皮膚に穴をあけることなく免疫細胞に抗原を送達し、免疫応答を誘導する。このシステムは、動物またはヒトの無傷の皮膚に、抗原とアジュバントを含有する製剤を経皮的に適用した後に、アジュバント(好ましくはADP−リボシル化外毒素)を使用して、抗原特異的免疫応答(例えば、体液性および/または細胞性エフェクター)を誘導する。水分補給物質(例えば、リポソーム)、貫通エンハンサー、または閉鎖性包帯を、経皮的送達システムに加えることにより、免疫の効率が増強される。このシステムは、皮膚のランゲルハンス細胞の活性化、リンパ節へのランゲルハンス細胞の遊走、および抗原提示を可能にし得る。

【発明の詳細な説明】
【技術分野】
【0001】
発明の背景
本発明は、抗原特異的免疫応答を誘導するための、経皮的免疫およびそのために有用なアジュバントに関する。
【背景技術】
【0002】
経皮的免疫には、皮膚の外部バリア(これは、通常抗原を通さない)の抗原の通過と、抗原に対する免疫応答の両方が必要である。米国特許出願第08/749,164号では、抗原としてコレラ毒素を使用すると、再現性のある強い抗体応答が誘導されることが証明された。抗原はリポソーム有りまたは無しで、生理食塩水中で皮膚に投与された。本出願において我々は、例えば細菌外毒素、そのサブユニットおよび関連する毒素のようなアジュバントを使用する経皮的免疫を示す。
【0003】
ポール(Paul)ら(1995年)によるトランスフェロソーム(transferosome)を用いる経皮的免疫の報告がある。この文献では、抗原感作リポソームの補体介在溶解が向けられているタンパク質(ウシ血清アルブミンおよびギャップジャンクションタンパク質)の担体としてトランスフェロソームが使用されている。このタンパク質を含有する溶液を皮膚の上に置いても免疫応答は誘導されず、トランスフェロソームのみが皮膚を介して抗原を輸送し、免疫を達成することができた。米国特許出願第08/749,164号に記載されているように、トランスフェロソームはリポソームではない。
【0004】
ポール(Paul)ら(1995年)の図1は、抗原とトランスフェロソームの製剤のみが免疫応答(抗原感作リポソームの溶解により測定される)を誘導することを示した。皮膚に適用された溶液中の抗原、抗原と混合ミセル、および抗原とリポソーム(すなわち、スメクチック中間相(smectic mesophases))の製剤は、皮下注射により誘導されるものと等しい免疫応答は誘導しなかった。従って抗原とリポソームの製剤が経皮的免疫を引き起こさなかったという負の結論を正当化する、陽性の調節(すなわち、抗原とトランスフェロソーム)があった。
【0005】
ポール(Paul)ら(1995年)は、3521頁において、皮膚は「分子量が最大750ダルトンの物質を通さない」有効な防御バリアであり、大きい免疫原の、完全な皮膚を介する非侵襲性免疫を排除していると述べている。従ってこの文献は、そのような分子は皮膚を通過せず、従って免疫を達成できないと予測されるため、コレラ毒素(これは85,000ダルトンである)のような分子を使用することを否定している。すなわち、皮膚は、本発明の開示無しではコレラ毒素のようなアジュバントまたは抗原の通過は考えられないとするバリアである。
【0006】
ポール(Paul)とセブク(Cevc)(1995年)は、145頁において、「大きい分子は通常、完全な哺乳動物の皮膚を通過しない。従って単純なペプチドまたはタンパク質溶液で皮膚の外から免疫することは不可能である」と述べている。彼らは、「皮膚に適用されたリポソームまたは混合ミセル免疫原は、免疫アジュバント脂質Aと組合されていようがいまいが、単純なタンパク質溶液と同様に生物活性を持たない」と結論した。
ワング(Wang)ら(1996年)は、アトピー性皮膚炎のモデルとしてアレルギータイプの応答を誘導するために、剃毛したマウスの皮膚の上に、オバルブミン(OVA)の水溶液を置いた。マウスを麻酔し、10mgまでのOVAを含有する閉鎖パッチでカバーし、これを連続4日間皮膚の上に置いた。2週間後に、この操作を繰り返した。
【0007】
ワング(Wang)ら(1996年)の図2において、IgG2a抗体応答を測定するために行なったELISA測定法は、OVAに対するIgG2a抗体応答を示さなかった。しかし、アレルギー応答に関連するIgE抗体が検出された。さらなる実験において、2週間毎に4日間、OVA溶液でマウスをさらに広範にパッチを適用した。これを5回繰り返し、すなわちマウスは全部で20日間パッチを適用された。再度高用量のOVAは有意なIgG2a抗体を産生しなかった。有意なレベルのIgE抗体が産生された。
【0008】
著者らは4079頁において、「我々は、アジュバントの非存在下でタンパク質抗原を皮膚の上に適用すると、動物を感作することができ、高レベルのIgEとともに優勢のTh2様応答が誘導されることを証明するために、動物モデルを確立した」と述べている。高用量のタンパク質抗原の広範な皮膚への暴露は有意なIgG抗原を産生することができなかったが、アレルギータイプの反応の証拠であるIgE抗体を誘導した。すなわちワング(Wang)ら(1996年)は、記載のOVAの暴露は、アトピー性皮膚炎のモデルであり、免疫の様式ではないと教示している。従ってこの文献の教示に従うと、抗原を用いる経皮的免疫は、これが皮膚を通過し免疫応答を誘導するなら、高レベルのIgE抗体を誘導することが予測できたであろう。その代わりに我々は、アジュバントとともに食塩水溶液で皮膚に置いた抗原は、高レベルのIgGと少量のIgAを誘導するが、IgEを誘導しないことを予想外にも見いだした。
【0009】
引用文献とは対照的に本発明者らは、抗原とアジュバントの皮膚への適用は、IgGまたはIgAの抗原特異的免疫応答を誘導することができる抗原の、経皮的送達システムを提供することを見いだした。アジュバントは好ましくは、ADP−リボシル化外毒素である。経皮的送達システム中には、随時、水分補給、通過増強物質または閉鎖包帯を使用してもよい。
【発明の概要】
【発明が解決しようとする課題】
【0010】
発明の要約
本発明の目的は、動物またはヒトで免疫応答(例えば、体液性および/または細胞性エフェクター)を誘導する経皮的免疫のシステムを提供することである。
【0011】
このシステムは、抗原に対する特異的免疫応答を誘導するための、抗原とアジュバントからなる製剤の、生物の無傷の皮膚への単純な適用を提供する。
【0012】
特にアジュバントは、免疫系の抗原提示細胞(例えば、表皮のランゲルハンス細胞、皮膚樹状細胞、樹状細胞、マクロファージ、Bリンパ球)を活性化するか、および/または抗原提示細胞を誘導して、抗原を貪食させる。次に抗原提示細胞は、T細胞およびB細胞に抗原を提示する。ランゲルハンス細胞では、抗原提示細胞が皮膚からリンパ節に遊走し、抗原をリンパ球(例えば、B細胞および/またはT細胞)に提示し、従って抗原特異的免疫応答を誘導する。
【0013】
免疫応答を誘導して、抗原特異的Bリンパ球および/またはTリンパ球(細胞毒性Tリンパ球(CTL)を含む)を生成する以外に、本発明の別の目的は、経皮的免疫システムを使用して免疫系の成分をポジティブまたはネガティブに制御して、抗原特異的ヘルパーTリンパ球(Th1、Th2または両方)に影響を与えることである。
【課題を解決するための手段】
【0014】
本発明の第1の実施態様において、抗原とアジュバントを含有する製剤が、生物の無傷の皮膚に適用され、抗原が免疫細胞に提示され、皮膚に穴をあけることなく抗原特異的免疫応答が誘導される。この製剤は、製剤の経皮的適用が、複数の抗原に対する免疫応答を誘導するように、追加の抗原を含有してもよい。このような場合、抗原は、同じ供給源から得られても得られなくてもよいが、抗原は、異なる抗原に対して特異的な免疫応答を誘導するように、異なる化学的構造を有するであろう。抗原特異的リンパ球は免疫応答に参加してもよく(参加する場合はB細胞により)、抗原特異的抗体は免疫応答の一部でもよい。
【0015】
本発明の第2の実施態様において、上記方法は生物を治療するのに使用される。抗原が病原体から得られるなら、治療により生物は、病原体による感染または毒素分泌により引き起こされるような病原性に対してワクチン化される。腫瘍抗原を含む製剤は癌治療を提供し、自己抗原を含む製剤は生物自身の免疫系により引き起こされる疾患(例えば、自己免疫疾患)の治療を提供し、アレルゲンを含む製剤は、アレルギー疾患を治療するための免疫療法で使用してもよい。
【0016】
本発明の第3の実施態様において、上記方法で使用されるパッチが提供される。パッチは、包帯と、有効量の抗原およびアジュバントとからなる。包帯は閉鎖性でも非閉鎖性でもよい。パッチは、その適用により複数の抗原に対する免疫応答が誘導されるように、追加の抗原を含有してもよい。このような場合抗原は、同じ供給源から得られても得られなくてもよいが、抗原は、異なる抗原に対して特異的な免疫応答を誘導するように、異なる化学的構造を有するであろう。有効な治療のために、複数のパッチが頻繁に適用されるかまたは長期間絶えず適用される。
【0017】
さらに本発明の第4の実施態様において、製剤は、単回または複数回の適用を使用して、2つ以上の排出性リンパ節場(draining lymph node field)にかぶさるように、無傷の皮膚に適用される。この製剤は、無傷の皮膚への適用が複数の抗原に対する免疫応答を誘導するように、追加の抗原を含有してもよい。このような場合抗原は、同じ供給源から得られても得られなくてもよいが、抗原は、異なる抗原に対して特異的な免疫応答を誘導するように、異なる化学的構造を有するであろう。
【0018】
本発明の方法の生成物は、既存の疾患の治療、疾患の予防、または疾患の重症度および/または持続期間を低下させるのに使用することができる。しかしアレルギー、アトピー性疾患、皮膚炎、または接触過敏症の誘導は好ましくない。
【0019】
抗原とアジュバント以外に、製剤は水分補給剤(例えば、リポソーム)、貫通増強剤、または両方を、さらに含有してもよい。例えば、抗原−アジュバント製剤は、アクアフォア(AQUAPHOR)(ペトロラタム、鉱物油、ミネラルワックス、ウールワックス、パンテノール(panthenol)、ビサボール(bisabol)、およびグリセリン)で作成した乳剤、乳剤(例えば、水性クリーム)、水中油型乳剤(例えば、油クリーム)、無水脂質および水中油型乳剤、無水脂質および油中水型乳剤、脂肪、ワックス、油、シリコーン、湿潤剤(例えば、グリセロール)、ゼリー(例えば、スルギルベ(SURGILUBE)、KYゼリー)、またはこれらの組合せを含んでよい。製剤は、水溶液として提供されてよい。
【0020】
この製剤は好ましくは、有機溶媒を含有しない。製剤は皮膚をアルコールでふき取った後に適用してもよい。しかし製剤の適用前に、脱毛剤で達成される程度までケラチン細胞層を除去することは好ましくない。
【0021】
抗原は、生物(例えば、細菌、ウイルス、真菌、または寄生虫)、または細胞(例えば、腫瘍細胞または正常細胞)を感染することができる病原体由来でもよい。抗原は、腫瘍抗原または自己抗原でもよい。化学的には、抗原は、炭水化物、糖脂質、糖タンパク質、脂質、リポタンパク質、リン脂質、ポリペプチド、またはこれらの化学的または組換え型結合体でもよい。抗原の分子量は、500ダルトンより大きく、好ましくは800ダルトンより大きく、およびより好ましくは1000ダルトンより大きい。
【0022】
抗原は、組換え手段、化学合成、または天然起源からの精製により得られる。タンパク質性抗原、または多糖との結合体が好適である。抗原は少なくとも部分的に精製された、無細胞型である。あるいは抗原は、生きたウイルス、弱毒化した生きたウイルス、または不活性化ウイルスの型で提供される。
【0023】
アジュバントを含有させると、免疫応答の増強または調節が可能になる。さらに適当な抗原またはアジュバントの選択は、体液性または細胞性免疫応答、特異的抗体イソタイプ(例えば、IgM、IgD、IgA1、IgA2、IgE、IgG1、IgG2、IgG3、IgG4、またはこれらの組合せ)、および/または特異的T細胞サブセット(例えば、CTL、Th1、Th2、TDTR、またはこれらの組合せ)の優先的誘導が可能になる。
【0024】
好ましくはアジュバントは、ADP−リボシル化外毒素またはそのサブユニットである。ランゲルハンス細胞のアクチベーターを随時使用することもできる。
【0025】
場合により、抗原、アジュバント、またはその両方は、適宜抗原またはアジュバントをコードする核酸(例えば、DNA、RNA、cDNA、cRNA)により製剤で提供されてよい。この技術は、遺伝子的免疫と呼ばれる。
【0026】
本明細書において「抗原」という用語は、生物の免疫細胞に提示された時、特異的免疫応答を誘導する物質を意味する。抗原は、単一の免疫原性エピトープ、またはB細胞受容体(すなわち、B細胞の膜上の抗体)もしくはT細胞受容体により認識される複数の免疫原性エピトープを含んでよい。分子は抗原とアジュバント(例えば、コレラ毒素)の両方でもよく、従って製剤は1つの成分のみを含有してもよい。
【0027】
本明細書において「アジュバント」という用語は、抗原に対する免疫応答の誘導を助ける、製剤に加えられる物質を意味する。ある物質が、免疫刺激および特異的抗体応答またはT細胞応答を誘導することにより、アジュバントおよび抗原の両方として作用することがある。
【0028】
本明細書において「有効量」という用語は、抗原特異的免疫応答を誘導する抗原の量を意味する。このような免疫応答の誘導は、例えば免疫防御、脱感作、免疫抑制、自己免疫疾患の調節、癌免疫監視の増強、または確立された感染症に対する治療的ワクチン化などの治療を提供し得る。
【0029】
本明細書において「排出性リンパ節場」という用語は、その上で集められたリンパ液が規定セットのリンパ節(例えば、子宮頸部、腋窩、鼠蹊部、滑車上、膝窩、腹部と胸部のリンパ節)を通してろ過される、解剖学的領域を意味する。
【図面の簡単な説明】
【0030】
【図1】図1は、コレラ毒素(CT)が、ランゲルハンス細胞(LC)上で主要組織適合遺伝子複合体(MHC)クラスII発現の増強、LC形態の変化、およびLCの喪失(おそらく遊走により)を誘導することを示す。BALB/cマウス(H−2)を、食塩水中の250gのコレラ毒素CTまたはそのBサブユニット(CTB)で、耳に経皮的免疫を行なった。従来の実験では、耳の皮膚を使用してマウスを容易に免疫できることが確立されていた(1回の免疫後に、7000抗CT ELISA単位)。16時間後、表皮シートを作成し、MHCクラスII分子について染色した(スケールバーは50μmである)。パネルは、(A)陰性対照として食塩水単独、(B)食塩水中のCTで経皮的免疫、(C)食塩水中のCTBで経皮的免疫、(D)陽性対照として腫瘍壊死因子−α(10μg)を皮内注射、を示す。
【発明を実施するための形態】
【0031】
発明の詳細な説明
経皮的免疫システムは、免疫応答を産生する特殊な細胞(例えば、抗原提示細胞、リンパ球)に物質を送達する(ボス(Bos)、1997年)。これらの物質はクラスとして抗原と呼ばれる。抗原は、例えば炭水化物、糖脂質、糖タンパク質、脂質、リポタンパク質、リン脂質、ポリペプチド、タンパク質、これらの結合体、または免疫応答を誘導することが知られている任意の他の物質からなってよい。抗原は、全生物(例えば、細菌またはウイルス粒子)として提供されてよく、抗原は、全細胞または膜のみから、抽出物または溶解物として得られるか、または抗原は、化学的に合成されるか、または組換え手段で産生されるか、またはウイルス不活性化により得られる。
【0032】
薬剤の調製方法は当該分野で公知であり、抗原とアジュバントは、薬剤学的に許容される担体ビヒクルと組合される。適当なビヒクルおよびその調製物は、例えば、イー・ダブリュー・マーチン(E.W.Martin)のレミントンの薬剤科学(Remington’s Pharmaceutical Sciences)に記載されている。このような製剤は、ヒトまたは動物への投与に適した薬剤学的に許容される組成物を調製するために、抗原とアジュバントを適当量のビヒクルとともに含有する。製剤は、クリーム剤、乳剤、ゲル剤、ローション剤、軟膏剤、ペースト剤、溶剤、懸濁剤、または当該分野の他の剤型で適用される。特に、皮膚の水分補給、貫通、またはその両方を増強する製剤が好適である。また他の薬剤学的に許容される添加剤(例えば、希釈剤、結合剤、安定剤、保存剤、および着色剤)も取り込まれる。
【0033】
角質層の水分補給の増加は、ある溶質の経皮的吸収を増加させる(ロバーツ(Roberts)とウォーカー(Walker)、1993年)。本明細書において「貫通増強剤」という用語は、例えば、皮膚に穴をあけない水、生理的緩衝液、食塩溶液、およびアルコールのような物質は含まない。
【0034】
本発明の目的は、皮膚に穴をあける必要がなく、無傷の皮膚を通して免疫する新規手段を提供することである。経皮的免疫システムは、免疫系、特に皮膚の下にある特殊な抗原提示細胞(例えば、ランゲルハンス細胞)に、抗原とアジュバントを送達することができる方法を提供する。
【0035】
理論に拘泥されないが、我々の観察結果を説明するために述べると、経皮的免疫送達システムは抗原を免疫系の細胞まで運搬し、ここで免疫応答が誘導されると考えられる。抗原は、皮膚の正常な防御的外層(例えば、角質層)を通過し、直接またはTリンパ球に、処理した抗原を提示する抗原提示細胞(例えば、マクロファージ、樹状細胞、皮膚樹状細胞、Bリンパ球、またはクプファー細胞)を介して、免疫応答を誘導する。場合により抗原は、毛嚢または皮膚の小器官(例えば、汗腺、脂腺)を介して角質層を通過してもよい。
【0036】
細菌のADP−リボシル化外毒素(bARE)を用いる経皮的免疫は、最も効率的な抗原提示細胞(APC)であることが知られている(ウデイ(Udey)、1997年)表皮ランゲルハンス細胞を標的とする。我々は、bAREは食塩水溶液で皮膚に適用するとランゲルハンス細胞を活性化することを見いだした。ランゲルハンス細胞は、抗原の貪食作用による免疫応答と移動をリンパ節に向け、ここでAPCとして作用して、抗原をリンパ球に提示(ウデイ(Udey)、1997年)し、従って強力な抗体応答を誘導する。皮膚は一般に、侵入する生物に対してバリアであると考えられているが、このバリアが不完全であることは、皮膚から侵入する生物に対して免疫応答を構築するために、表皮全体に無数のランゲルハンス細胞が分布していることにより証明される(ウデイ(Udey)、1997年)。
【0037】
ウデイ(Udey)、1997年によると:
「ランゲルハンス細胞は、すべての哺乳動物の重層扁平上皮中に存在する骨髄由来の細胞である。これらは、非炎症性の表皮中に存在するすべての付属細胞活性を含有し、現在は皮膚上に適用された抗原に対する免疫応答の開始と伝搬に必須である。ランゲルハンス細胞は、強力な付属細胞(「樹状細胞」)のファミリーのメンバーであり、上皮および固形臓器ならびにリンパ組織中に広く分布しているが、まれにしか現れない・・・。
【0038】
「ランゲルハンス細胞(およびおそらく他の樹状細胞)は、少なくとも2つの明瞭な段階を有する生活環を有することが、現在認識されている。表皮中のランゲルハンス細胞は、抗原捕捉「歩哨」細胞の正規のネットワークを構成する。表皮ランゲルハンス細胞は、微生物を含む顆粒を摂取し、複雑な抗原の効率的な処理体である。しかし、これらは、MHCクラスIとII抗原および同時刺激分子(ICAM−1、B7−1、およびB7−2)の発現レベルは低く、プライムされていないT細胞はあまり刺激しない。抗原と接触した後、ランゲルハンス細胞の一部は活性化され、表皮から出て、局所のリンパ節のT細胞依存性領域に遊走し、ここで成熟樹状細胞となる。表皮を出てリンパ節に遊走する過程で、抗原を有する表皮ランゲルハンス細胞(今は「メッセンジャー」)は、形態、表面表現型および機能の劇的な変化を示す。表皮ランゲルハンス細胞に対して、リンパ樹状細胞は基本的に非貪食性であり、タンパク質抗原の処理効率が低いが、高レベルのMHCクラスIおよびII抗原および種々の同時刺激分子を発現し、これまで同定されている未変性のT細胞のうちで最も協力である。」
【0039】
我々は、表皮ランゲルハンス細胞の強力な抗原提示能力は、経皮的に送達されるワクチンに利用できると考えている。皮膚の免疫系を使用する経皮的免疫応答は、受動拡散により角質層(角化細胞と脂質からなる皮膚の最外層)のランゲルハンス細胞のみへのワクチン抗原の送達と、抗原を摂取し、B細胞濾胞および/またはT細胞依存性領域へ遊走し、T細胞および/またはT細胞に抗原を提示するランゲルハンス細胞の、以後の活性化を必要とする(スティングル(Stingl)ら、1989年)。bARE以外の抗原(例えば、BSA)がランゲルハンス細胞により貪食されるなら、これらの抗原はまた、リンパ節に輸送されてT細胞に提示され、次にその抗原(例えば、BSA)に特異的な免疫応答を誘導することができるであろう。すなわち経皮的免疫の特徴は、おそらく細菌性ADP−リボシル化外毒素、ADP−リボシル化外毒素結合サブユニット(例えば、コレラ毒素Bサブユニット)、または他のランゲルハンス細胞活性化物質による、ランゲルハンス細胞の活性化である。
【0040】
ランゲルハンス細胞活性化、遊走および抗原提示による経皮的免疫の機構は、CTまたはCTBを経皮的免疫した表皮シートからの表皮ランゲルハンス細胞中の、MHCクラスII発現のアップレギュレーションにより明瞭に証明される。さらに経皮的免疫により誘導される抗体応答と主にIgGへのイソタイプスイッチングの程度は、一般にランゲルハンス細胞または樹状細胞(ジャネウェイ(Janeway)とトラバース(Travers)、1996年)のような抗原提示細胞により刺激されるT細胞ヘルプ、およびIgG1とIgG2aの産生により示唆されるようなTh1とTh2経路の両方の活性化(ポール(Paul)とセーダー(Seder)、1994年;セーダー(Seder)とポール(Paul)、1994年))により達成される。さらに抗原OVAに対するT細胞増殖は、CT+OVAで免疫したマウスで証明される。あるいは、B細胞を直接活性化する胸腺非依存性抗原タイプ1(TI−1)(ジャネウェイ(Janeway)とトラバース(Travers)、1996年)により、大きな抗体応答が誘導される。
【0041】
より一般的に知られている皮膚免疫応答の範囲は、接触皮膚炎とアトピーにより示される。LC活性化が病理的に現れた接触皮膚炎は、抗原を貪食し、リンパ節に遊走し、抗原を提示し、T細胞を感作して、皮膚の患部で起きる強い破壊性細胞応答を起こす、ランゲルハンス細胞により指令さる(ダール(Dahl)、1996年;レウング(Leung)、1997年)。アトピー性皮膚炎は同じような方法でランゲルハンス細胞を利用するが、Th2細胞と同じであり、一般的に高レベルのIgE抗体と関連している(ダール(Dahl)、1996年;レウング(Leung)、1997年)。
【0042】
一方コレラ毒素および関連するbAREを用いる経皮的免疫は、コレラ毒素で免疫した後の24、48、および120時間後にリンパ球浸潤の欠如により証明される、表面的および顕微鏡的免疫後皮膚知見(すなわち、非炎症皮膚)が欠如多、新規の免疫応答である。これは、ランゲルハンス細胞が「非炎症性の表皮中に存在するすべての付属細胞活性を含有し、現在は、皮膚上に適用された抗原に対する免疫応答の開始と伝搬に必須である」(ウデイ(Udey)、1997年)ことを示す。ここで経皮的免疫応答のユニークさはまた、高レベルの抗原特異的IgG抗体と産生される抗体のタイプ(例えば、IgM、IgG1、ig2a、ig2b、IgG3およびIgA)、および抗CT IgE抗体の欠如の両方により示される。
【0043】
すなわち我々は、皮膚の表面に適用された細菌由来の毒素は、ランゲルハンス細胞または他の抗原提示細胞を活性化することができ、高レベルの抗原特異的循環IgG抗体により示されるような、強力な免疫応答を誘導することができると考える。このようなアジュバントは、経皮的免疫で使用して、皮膚に置いた時それ自身では免疫原性はないタンパク質に対するIgG抗体応答を増強することができる。
【0044】
ランゲルハンス細胞の経皮的ターゲティングはまた、その抗原提示能力を脱活性化するのに使用でき、従って免疫または感作を防止する。ランゲルハンス細胞を脱活性化する技術は、例えばインターロイキン−10(ペグエット−ナバッロ(Peguet−Navarro)ら、1995年)、インターロイキン−1βのモノクローナル抗体(エンク(Enk)ら、1993年)の使用、またはブドウ球菌エンテロトキシン−A(SEA)誘導性表皮ランゲルハンス細胞欠乏(シャンカー(Shankar)ら、1996年)を介するようなスーパー抗原による欠乏がある。
【0045】
経皮的免疫は、CT、LT、またはCTBのようなサブユニット(クレイグ(Craig)とクアトレカサス(Cuatrecasas)、1975年)のガングリオシドGM1結合活性により誘導される。ガングリオシドGM1は、すべての哺乳動物細胞中に存在する遍在性の細胞膜である(プロトキン(Plotkin)とモルチマー(Mortimer)、1994年)。5量体CT Bサブユニットが細胞表面に結合すると、親水性の穴が形成され、これはAサブユニットが脂質二重層を通過することを可能にする(リビ(Ribi)ら、1988年)。
【0046】
我々は、CTまたはCTBによる経皮的免疫が、ガングリオシドGM1結合活性を必要とすることがあることを示した。マウスをCT、CTA、およびCTBで経皮的免疫すると、CTとCTBのみが免疫応答を引き起こした。CTAはADP−リボシル化外毒素活性を有するが、結合活性を有するCTとCTBのみが、免疫応答を誘導することができ、皮膚を通して免疫するのにBサブユニットが必要かつ充分であることを示している。我々は、ランゲルハンス細胞または他の抗原提示細胞が、その細胞表面へのCTBの結合により活性化されると結論する。
【0047】
抗原
本発明の抗原は、組換え手段(好ましくはエピトープ標識に対する親和性を有する融合体として発現され(サマーズ(Summers)とスミス(Smith)、1987年;ゲデル(Goeddle)、1990年;アウスベル(Ausubel)ら、1996年))、本発明の抗原を得るのに、オリゴペプチドの化学合成(遊離または担体タンパク質との結合体として)を使用することができる(ボダンスキー(Bodanszky)、1993年;ウィズダム(Wisdom)、1994年)。オリゴペプチドは、ポリペプチドの一種であると考えられている。
【0048】
6残基〜20残基の長さのオリゴペプチドが好ましい。ポリペプチドはまた、米国特許第5,229,490号および5,390,111号に開示されているような分岐構造として合成されてもよい。抗原性ポリペプチドは、例えば、1つの生物または疾患からの、合成または組換えB細胞およびT細胞エピトープ、普遍的なT細胞エピトープ、および混合T細胞エピトープ、および別の生物または疾患からのB細胞エピトープを含有してもよい。
【0049】
組換え手段またはペプチド合成により得られる抗原、ならびに天然の供給源または抽出物から得られる本発明の抗原は、抗原の物理的および化学的特徴を利用して精製(好ましくは、分画またはクロマトグラフィー(ジャンソン(Janson)とライデン(Ryden)、1989年;ドイチャー(Deutscher)、1990年;スコープス(Scopes)、1993年))されてよい。
【0050】
同時に2つ以上の抗原に対する免疫応答を誘導するために、多価抗原製剤を使用してもよい。複数の抗原に対する免疫応答を誘導するか、免疫応答を増強するか、またはこの両方のために、結合体を使用してもよい。さらに、トキソイド、または毒素を使用して増強されたトキソイドを使用して、毒素を増強してもよい。まず他の免疫経路(例えば、注射、または経口または経鼻)により誘導した応答を増強するのに、経皮的免疫を使用してもよい。
【0051】
抗原は例えば、毒素、トキソイド、これらのサブユニット、またはこれらの組合せ(例えば、コレラ毒素、破傷風トキソイド)を含有する。
【0052】
抗原は、水、溶媒(例えば、メタノール)または緩衝液中に可溶化してもよい。適当な緩衝液には、Ca++/Mg++の無いリン酸緩衝化生理食塩水(PBS)、正常な食塩水(150mM NaCl水溶液)、およびトリス緩衝液があるが、これらに限定されない。中性緩衝液に溶解しない抗原は、10mMの酢酸で可溶化し、次に中性の緩衝液(例えばPBS)で所望の容量に希釈される。酸性pHでのみ溶解する抗原の場合は、希酢酸で可溶化した後、酸性pHで酢酸−PBSを希釈剤として使用してもよい。グリセロールは、本発明で使用するための適当な非水性緩衝液であり得る。
【0053】
例えばA型肝炎ウイルスのような抗原がそれ自体が不溶性である場合、抗原は懸濁物またさらには凝集物の調製物中で存在してもよい。
【0054】
疎水性抗原(例えば、膜を横切るドメインを含有するポリペプチド)は、界面活性剤中で可溶化される。さらにリポソームを含有する製剤については、界面活性剤溶液(例えば、細胞膜抽出物)中の抗原を脂質と混合し、次に希釈、透析、またはカラムクロマトグラフィーにより、界面活性剤を除去してリポソームを形成してもよい。例えばウイルス(例えば、A型肝炎ウイルス)からのようないくつかの抗原は、それ自体が可溶性である必要はなく、ビロソーム(virosome)(モレイン(Morein)とシモンズ(Simons)、1985年)の形でリポソーム中に直接取り込むことができる。
【0055】
プロトキン(Plotkin)とモルチマー(Mortimer)(1994年)は、動物またはヒトをワクチン化して、特定の病原体に対して特異的な免疫応答を誘導できる抗原、ならびに抗原の調製法、抗原の適量の決定法、免疫応答の誘導の測定法、および病原体(例えば、細菌、ウイルス、真菌、または寄生虫)による感染を治療する方法を提供する。
【0056】
細菌には、例えば、炭疽菌、キャンピロバクター、コレラ菌、ジフテリア菌、毒素原性大腸菌、ジアルジア、淋菌、ヘリコバクター・ピロリ(Helicobacter pylori)(リー(Lee)とチェン(Chen)、1994年)、ヘモフィルス・インフルエンザ・ビー(Hemophilus influenza B)、型別不可能なヘモフィルス・インフルエンザ(Hemophilus influenza non−typable)、髄膜炎菌、百日咳菌、肺炎球菌、サルモネラ菌、赤痢菌、連鎖球菌B、A群連鎖球菌、破傷風菌、ビブリオ・コレラ(Vibrio cholerae)、エルシニア菌、ブドウ球菌、シュードモナス種およびクロストリジア種がある。
【0057】
ウイルスには、例えば、アデノウイルス、デング(dengue)血清型1〜4(デレンダ(Delenda)ら、1994年;フォンセカ(Fonseca)ら、1994年;スムクニイ(Smucny)ら、1995年)、エボラ(ヤーリング(Jahrling)ら、1996年)、エンテロウイルス、肝炎血清型A〜R(ブルム(Blum)、1995年;カトコフ(Katkov)、1996年;リーバーマン(Lieberman)とグリーンバーグ(Greenberg)、1996年;マスト(Mast)、1996年;シャファラ(Shafara)ら、1995年;スメジラ(Smedila)ら、1994年;米国特許第5,314,808号および5,436,126号)、単純ヘルペスウイルス1または2、ヒト免疫不全症ウイルス(デプレツ(Deprez)ら、1996年)、インフルエンザ、日本ウマ脳炎、はしか、ノーウォーク、パピローマウイルス、パルボウイルスB19、ポリオ、狂犬病、ロタウイルス、風疹、麻疹、ワクシニア、マラリア抗原のような他の抗原をコードする遺伝子を含有するワクシニア作製体、水痘、および黄熱がある。
【0058】
寄生虫には、例えば、赤痢アメーバ(Entamoeba histolytica)(ザング(Zhang)ら、1995年)、プラスモジウム(バサースト(Bathurst)ら、1993年;チャン(Chang)ら、1989年、1992年、1994年;フリース(Fries)ら、1992年a、1992年b;ヘリントン(Herrington)ら、1991年;クスミス(Khusmith)ら、1991年;マリック(Malik)ら、1991年;ミグリオリーニ(Migliorini)ら、1993年;ペッシ(Pessi)ら、1991年;タム(Tam)、1988年;ブレデン(Vreden)ら、1991年;ホワイト(White)ら、1993年;ウィーズミューラー(Wiesmueller)ら、1991年)、リーシュマニア(Leishmania)(フランケンブルグ(Frankenburg)ら、1996年)、トキソプラスマ、および回虫がある。
【0059】
抗原はまた、リシンのような生物学的戦いに使用されるもの(抗体により、これに対して防御能が達成される)を含有してもよい。
【0060】
アジュバント
製剤はまたアジュバントを含有するが、一つの分子がアジュバントおよび抗原性の両方を含有してもよい(例えば、コレラ毒素)(エルソン(Elson)とデルツバウ(Dertzbaugh)、1994年)。アジュバントは、抗原特異的免疫応答を特異的または非特異的に増強するのに使用される物質である。通常アジュバントと製剤は、抗原の提供前に混合されるが、あるいは短時間の間に別々に提供してもよい。
【0061】
アジュバントは、例えば油乳剤(例えば、完全または不完全フロイントアジュバント)、ケモカイン(例えば、デフェンシン1または2、ランテス(RANTES)、MIP1−α、MIP−2、インターロイキン−8)、またはサイトカイン(例えば、インターロイキン−1β、−2、−6、−10、または−12;γ−インターフェロン;腫瘍壊死因子−α;または顆粒球−単球−コロニー刺激因子)(ノーリア(Nohria)とルービン(Rubin)の総説、1994年)、ムラミルジペプチド誘導体(例えば、ムラブチド(murabutide)、スレオニル−MDPまたはムラミルトリペプチド)、熱ショックタンパク質または誘導体、リーシュマニア・メージャー(Leishmania major)LeIFの誘導体(スケイキイ(Skeiky)ら、1995年)、コレラ毒素またはコレラ毒素B、リポ多糖(LPS)誘導体(例えば、脂質Aまたはモノホスホリル脂質A)、またはスーパー抗原(サロガ(Saloga)ら、1996年)がある。また、免疫に有用なアジュバントについては、リチャーズ(Richards)ら(1995年)を参照されたい。
【0062】
アジュバントは、抗体または細胞エフェクター、特異的抗体イソタイプ(例えば、IgM、IgD、IgA1、IgA2、分泌性IgA、IgE、IgG1、IgG2、IgG3、および/またはIgG4)、または特異的T細胞サブセット(例えば、CTL、Th1、Th2、および/またはTDTR)を、優先的に誘導するように選択される(グレン(Glenn)ら、1995年)。
【0063】
コレラ毒素は、ADP−リボシル化外毒素(bAREと呼ぶ)のファミリーの細菌性外毒素である。ほとんどのbAREは、1つの結合性BサブユニットとADP−リボシルトランスフェラーゼを含有するAサブユニットの、A:Bダイマーとして構築される。このような毒素には、ジフテリア毒素、シュードモナス外毒素A、コレラ毒素(CT)、大腸菌熱不安定性エンテロトキシン(LT)、百日咳毒素、シー・ボツリヌム(C.botulinum)毒素C2、シー・ボツリヌム(C.botulinum)毒素C3、シー・リモスム(C.limosum)エキソエンザイム、ビー・セレウス(B.cereus)エキソエンザイム、シュードモナス外毒素S、黄色ブドウ球菌(Staphylococcus aureus)EDIN、ビー・スファエリクス(B.sphaericus)毒素がある。
【0064】
コレラ毒素は、AサブユニットとBサブユニットにより構築されるbAREの一例である。Bサブユニットは結合性サブユニットであり、Aサブユニットに非共有結合するBサブユニット5量体からなる。Bサブユニット5量体は、対称形のドーナツ型構造であり、これが標的細胞上のGM−ガングリオシドに結合する。Aサブユニットは、Gsタンパク質を含むヘテロトリマーGTPタンパク質(Gタンパク質)のサブセットのアルファサブユニットをADP−リボシル化し、その結果サイクリックAMPの細胞内レベルを上昇させる。これは、コレラの場合は小腸細胞からイオンと液体の放出を刺激する。
【0065】
コレラ毒素(CT)とそのBサブユニット(CTB)は、筋肉内または経口免疫原として使用されるとアジュバント性を有する(エルソン(Elson)とデルツバウ(Dertzbaugh)、1994年;トラク(Trach)ら、1997年)。別の抗原である大腸菌の熱不安定性エンテロトキシン(LT)は、CTとアミノ酸レベルで80%相同であり、類似の結合性を有する。これはまた、腸管内のGM−ガングリオシド受容体に結合するようであり、類似のADP−リボシル化外毒素活性を有する。別のbAREであるシュードモナス外毒素A(ETA)は、α−マクログロブリン受容体−低密度リポタンパク質受容体関連タンパク質(コウナス(Kounnas)ら、1992年)に結合する。bAREは、クルーガー(Krueger)とバルビエリ(Barbieri)の総説がある(1995年)。
【0066】
経口、経鼻、および筋肉内経路によるCTの毒性が、アジュバントとして使用される投与量を制限している。筋肉内注射されたCTの比較試験で、注射部位で広範な腫脹が誘導された。これに対して、皮膚に置いた等量またはより多量のCTは、毒性を示さなかった。
【0067】
以下の例は、コレラ毒素(CT)、そのBサブユニット(CTB)、大腸菌熱不安定性エンテロトキシン(LT)および百日咳毒素は、経皮的免疫の強力なアジュバントであり、高レベルのIgG抗体を誘導するがIgE抗体は誘導しないことを示す。また、CTの無いCTBはまた、高レベルのIgG抗体を誘導することも示される。すなわち、bAREとその誘導体の両方とも、単純な溶液で皮膚上に適用されると、有効に免疫することができる。さらにこれらの例は、CT、CTBおよびbAREが、アジュバントおよび抗原の両方として作用することができることを示す。
【0068】
CTのようなアジュバントが、皮膚に適用しても通常は免疫原性でないタンパク質であるBSAと混合されると、抗BSA抗体が誘導される。アジュバントとして百日咳毒素を使用して、ジフテリアトキソイドに対する免疫応答が誘導されたが、ジフテリアトキソイド単独では誘導されなかった。すなわちbAREは、経皮的免疫システムにおいて非免疫原性タンパク質のアジュバントとして作用することができる。
【0069】
他のタンパク質もまた、アジュバントおよび抗原として作用する。例えば、分離したウイルス粒子インフルエンザAとBであるフルゾン(FLUZONE)(レダリー(Lederle))は、免疫原性が非常に強いノイラミニダーゼとヘマグルチニンを含有し、防御能を与え、自身のアジュバントおよび抗原として作用して、皮膚を介して有効に免疫する。ホルマリンを使用して変性毒素化したジフテリアトキソイド、過酸化水素を使用して変性毒素化させた百日咳トキソイド、またはリボシルトランスフェラーゼを破壊するために遺伝的技術を使用して変性毒素化したコレラまたは大腸菌の熱不安定性エンテロトキシンのような突然変異毒素、のようなトキソイドは、アジュバント性を保持し続け、抗原およびアジュバントとして作用することができる。
【0070】
生命を脅かす感染症であるジフテリア、百日咳および破傷風(DPT)に対する防御は、高レベルの循環性抗毒素抗体を誘導することにより達成することができる。侵入する生物の他の部分に対する抗体が、防御に必要であると感じている研究者がいるため、百日咳は例外かも知れないが、多くの新しい世代の無細胞百日咳ワクチンは、ワクチンの成分としてPTを持っている(クルーガー(Krueger)とバルビエリ(Barbieri)、1995年)。DPTにより引き起こされる疾患の病理は、これらの毒素の作用に直接関連しており、抗毒素抗体は、確かに防御において役割を果たしている(シュネーソン(Schneerson)ら、1996年)。
【0071】
一般に毒素は、化学的に不活性化されて、毒性はより低いが免疫原性を保持しているトキソイドを生成することができる。我々は、毒素ベースの免疫原とアジュバントを使用する経皮的免疫システムは、これらの疾患に対する防御が充分な抗毒素レベルを達成することができると考えている。抗毒素抗体は、毒素、または遺伝的に脱毒素化したトキソイド、またはトキソイドとアジュバント(例えばCT)、またはトキソイド単独で免疫して、誘導することができる。改変されたADP−リボシル化外毒素活性を有するが結合活性を持たない、遺伝的に変性毒素化した毒素は、経皮的免疫で使用される抗原提示細胞の非毒性アクチベーターとして特に有用であると考えられる。
【0072】
我々は、CTはまた、アジュバントとして作用して、経皮的免疫により抗原特異的CTLを誘導することができると考えている(経口免疫においてアジュバントとしてのCTの使用については、ボーウェン(Bowen)ら、1994年;ポルガドール(Porgador)ら、1997年を参照されたい)。
【0073】
bAREアジュバントは、例えば、炭水化物、ポリペプチド、糖脂質、および糖タンパク質抗原を含む他の抗原に、化学的に結合してもよい。毒素、そのサブユニット、またはトキソイドとの、これらの抗原の化学的結合は、皮膚上に適用されるとこれらの抗原に対する免疫応答を増強すると予測される。
【0074】
毒素の毒性の問題(例えば、ジフテリア毒素は非常に毒性が強く、1つの分子が1つの細胞を死滅させることができる)を克服するため、および破傷風のような強力な毒素を扱うことの困難さを克服するために、何人かの研究者は組換えアプローチにより遺伝子的に産生したトキソイドを作成している。これは、遺伝子的欠失によるADP−リボシル化トランスフェラーゼの触媒活性の不活性化に基づく。これらの毒素は、結合能力を保持するが、天然の毒素の毒性が欠如している。このアプローチは、ブルネッテ(Burnette)ら(1994年)、ラップオリ(Rappuoli)ら(1995年)、およびラップオリ(Rappuoli)ら(1996年)に記載されている。このような遺伝子的に変性毒素化した外毒素は、毒素がなく安全性の心配がないため、経皮的免疫システムに有用であろう。これらは、抗原およびアジュバントの両方として作用し、これら自身または添加された抗原に対する免疫応答を増強する。さらに、同じ問題に関する、化学的に変性毒素化した毒素に対して、いくつかの技術が存在する(シュネーソン(Schneerson)ら、1996年)。あるいは、毒素またはトキソイドの断片は、例えば破傷風のC断片として使用してもよい。これらの技術は、いくつかの応用、特に、摂取された毒素(例えば、ジフテリア毒素)が副作用を引き起こす可能性のある小児への応用において重要であろう。
【0075】
場合によりランゲルハンス細胞のアクチベーターは、アジュバントとして使用してもよい。そのようなアクチベーターの例には:熱ショックタンパク質のインデューサー;接触感作物質(例えば、トリニトロクロロベンゼン、ジニトロフルオロベンゼン、ナイトロジェンマスタード、ペンタデシルカテコール);毒素(例えば、シガ(Shiga)毒素、スタフ(Staph)エンテロトキシンB);リポ多糖;脂質A、またはこれらの誘導体;細菌性DNA(スタセイ(Stacey)ら、1996年);サイトカイン(例えば、腫瘍壊死因子−α、インターロイキン−1β、−10、−12);およびキモカイン(例えば、デフェンシン1または2、ランテス(RANTES)、MIP−1α、MIP−2、インターロイキン−8)がある。
【0076】
異なるアジュバントの組合せは、本発明に使用することができる。例えば、DpGヌクレオチド配列を含有する細菌性DNAとADP−リボシル化外毒素の組合せは、T−ヘルパー応答を経皮的に投与された抗原に向けるのに使用できるであろう。すなわち、CT−アジュバント化抗原に対するTh1またはTh2様応答は、非メチル化CpG細菌性DNA、または他のタンパク質(例えば、LeIF)またはカルシウムチャネルブロッカーの使用によりスイッチすることができるであろう。
【0077】
CpGは、免疫系がその病原性起源を認識して、適応性免疫応答に至る内在的な免疫応答を刺激することを可能にするパターンを有する構造のクラスの1つである。(メドジトフ(Medzhitov)とジャネウェイ(Janeway)、Curr.Opin.Immunol.,9:4−9,1997年)。これらの構造は、病原体関連分子パターン(PAMP)と呼ばれ、リポ多糖、テイコ酸、非メチル化CpGモチーフ、2本鎖RNAおよびマンニンを含む。
【0078】
PAMPは、炎症性応答を仲介することができる内因性シグナルを誘導し、T細胞機能の同時刺激物質として作用し、そしてエフェクター機能を調節する。これらの応答を誘導するPAMPの能力は、アジュバントとしてのその可能性において役割を果たし、その標的は、マクロファージや樹状細胞のようなAPCである。皮膚の抗原提示細胞は同様に、皮膚で伝搬されるPAMPにより刺激される。例えばランゲルハンス細胞(樹状細胞の一種)は、経皮的には免疫原性が弱い分子を用いて皮膚へのPAMP溶液により活性化され、誘導されて遊走し、この免疫原性の弱い分子をリンパ節中のT細胞に提示し、免疫原性の弱い分子に対する抗体応答を誘導する。PAMPはまた、コレラ毒素のような他の皮膚アジュバントとともに使用されて、異なる同時刺激分子を誘導し、異なるエフェクター機能を調節して免疫応答(例えば、Th2からTh1応答)を導く。
【0079】
免疫抗原が、充分なランゲルハンス細胞活性化能力を有するなら、抗原でありアジュバントであるCTの場合のように、別のアジュバントは必要ないであろう。全細胞調製物、生きたウイルス、弱毒化ウイルス、DNAプラスミド、および細菌性DNAは、経皮的に免疫するのに充分であると考えられる。低濃度の接触感作物質または他のランゲルハンス細胞のアクチベーターを使用して、皮膚の病変を引き起こすことなく免疫応答を誘導することが可能であるかも知れない。
【0080】
リポソームとその調製
リポソームは、内部の水性スペースの周りの閉じた小胞である。内部コンパートメントは、不連続な脂質分子からなる脂質二重層により、外部媒体から分離されている。本発明において、抗原は無傷の皮膚を通して、免疫系の特殊な細胞に送達され、ここで抗原特異的免疫応答が誘導される。経皮的免疫は、リポソームを使用して達成されるが、例に示すように、リポソームは、抗原特異的免疫応答を誘導するのに必要ではない。
【0081】
リポソームは、種々の技術および膜脂質を使用して調製される(グレゴリアディス(Gregoriadis)、1993年に総説がある)。リポソームは、あらかじめ作成し、次に抗原と混合してもよい。抗原は、溶解または懸濁され、次に(a)凍結乾燥状態のあらかじめ作成されたリポソーム、(b)膨潤溶液または懸濁液としての乾燥脂質、または(c)リポソームを作成するのに使用される脂質の溶液、に加えられる。これらはまた、角質層から抽出された脂質から形成され、例えばセラミド(ceramide)およびコレステロール誘導体か形成される。
【0082】
クロロホルムは、脂質の好適な溶剤であるが、保存では有害な場合がある。従って、1〜3ヶ月の間隔で、クロロホルムはリポソームを形成する溶剤として使用する前に再蒸留される。蒸留後、0.7%のエタノールが保存剤として加えられる。エタノールおよびメタノールは、他の好適な溶媒である。
【0083】
リポソームを形成するために使用される脂質溶液は、丸底フラスコ中に入れられる。ナシ型沸騰フラスコは好ましいが、特にルレックス・サイエンティフィック(Lurex Scientific)(バインランド(Vineland)、ニュージャージー州、カタログNo.JM−5490)が販売しているものが好ましい。フラスコの容量は、リポソーム生成中の正しい攪拌を可能にするために、予測されるリポソームの水性懸濁液の容量の10倍以上である。
【0084】
ロータリーエバポレーターを使用して、溶媒は37℃で陰圧で、水道の蛇口に取り付けたろ過アスピレータで、10分間除去する。さらにフラスコを低真空下(すなわち、50mmHg未満)でデシケータ中で1時間乾燥する。
【0085】
抗原をリポソーム中にカプセル化するために、抗原を含有する水溶液を、リポソーム脂質に関して約200mMの濃度になるような容量で、凍結乾燥リポソーム脂質に加え、すべての乾燥リポソーム脂質が湿るまで振盪するかまたはボルテックス混合する。次にリポソーム−抗原混合物を、4℃で18時間〜72時間インキュベートする。リポソーム−抗原製剤は、直ちに使用するかまたは数年間保存してもよい。非カプセル化抗原を除去することなく、そのような製剤を経皮的免疫で直接使用することが好ましい。リポソームのサイズを小さくする(これは、経皮的免疫を増強することがある)ために、浴超音波処理のような方法が使用される。
【0086】
リポソームは上記したように形成されるが、抗原は水溶液に添加されない。次に抗原を、あらかじめ形成したリポソームに加え、従って抗原は、溶液中および/またはリポソームに会合している(しかし、リポソームにカプセル化されていない)であろう。リポソーム含有製剤のこの製造法は、簡便であるため好ましい。浴超音波処理のような技術を使用して、リポソームのサイズおよび/または層状態を改変して、免疫を増強してもよい。
【0087】
本発明を実施するのに必須ではないが、角質層の水分補給は、製剤にリポソームを加えることにより増強される。リポソームはアジュバントとともに、リポソームと混合した、その中にカプセル化された、結合した、または会合した抗原に対する免疫応答を増強するために、担体として使用されている。
【0088】
抗原の経皮的送達
抗原の経皮的送達はランゲルハンス細胞を標的とするため、効率的な免疫が本発明により達成される。これらの細胞は、皮膚に豊富に存在し、効率的な抗原提示細胞であり、T細胞記憶と強力な免疫応答を引き起こす(ウデイ(Udey)、1997年)。皮膚には多数のランゲルハンス細胞が存在するため、経皮的送達の効率は、抗原とアジュバントに暴露された表面積に関連する。実際、経皮的免疫が有効な理由は、これが筋肉内免疫より多くのこれらの効率的な抗原提示細胞をターゲティングしているためかも知れない。しかし少数のランゲルハンス細胞または樹状細胞であっても、免疫には充分かも知れない。
【0089】
我々は、本発明は免疫のしやすさを向上させ、一方強力な免疫応答を誘導すると考えている。経皮的免疫は、皮膚を貫通することなく、そのための合併症や苦痛がなく、熟練者、無菌的技術、および無菌装置の必要性が減少する。さらに複数の部位で免疫に対するバリアまたは複数の免疫に対するバリアが減少する。製剤の単回適用による免疫もまた意図される。
【0090】
免疫は、閉鎖パッチでガーゼ中に含浸させた抗原とアジュバントの簡単な溶液の皮膚上適用を使用するか、または他のパッチ技術を使用して行われる。クリーム、浸漬、軟膏および噴霧は、他の可能な適用法である。免疫は、非熟練者でも可能であり、自己適用もしやすい。免疫がしやすいなら、大規模な免疫が可能であろう。さらに、簡便な免疫法により、小児患者、老人、および第三世界のヒトの免疫のしやすさも改善されるであろう。
【0091】
同様に、本発明を使用して動物も免疫できるであろう。耳、下腹部、つま先、結膜、間擦性領域、または肛門領域への適用、または沈下もしくは浸漬による適用が使用できるであろう。
【0092】
従来のワクチンの製剤は、針を用いて皮膚に注射された。針を使用してワクチンを注射することは、注射に伴う痛み、無菌の針やシリンジの必要性、ワクチンを投与するための熟練した医療従事者、注射の不快感、および針で皮膚を穿刺することによりもたらされる合併症の可能性などのいくつかの欠点がある。針を使用せずに皮膚から免疫(すなわち、経皮的免疫)できることは、上記欠点を避けることにより、ワクチン送達の大きな進歩である。
【0093】
本発明の経皮的送達システムはまた、音または電気エネルギーによる無傷の皮膚の貫通にも関係しない。角質層の絶縁破壊を誘導するために電解を使用するシステムは、米国特許第5,464,386号に開示されている。
【0094】
さらに経皮的免疫は、皮膚の広い表面積を標的とするいくつかの位置を使用し、より多くの免疫細胞が標的となるため、針を使用する免疫より優れている。免疫応答を誘導するのに充分な抗原の治療上有効量は、皮膚の1つの部位、または複数の排出性リンパ節場(例えば、子宮頸部、腋窩、鼠蹊部、滑車上、膝窩、腹部と胸部のリンパ節)を覆う無傷の皮膚の領域にわたって、経皮的に送達される。少量の抗原が皮膚内、皮下または筋肉内注射により1つの位置に注射される時、全身の位置で多くの異なるリンパ節に近いそのような位置は、免疫系に対してより広範な刺激を提供するであろう。
【0095】
皮膚を通過するかまたは皮膚内に入る抗原は、抗原提示細胞に遭遇し、これは、免疫応答を誘導するように抗原を処理する。複数の免疫部位は、抗原提示細胞のより大きな集団を集め、この集められたより大きな集団は、免疫応答のより大きな誘導を引き起こすであろう。経皮的免疫はリンパ節排出部位のすぐ近くに適用することを可能にし、従って免疫の効率または効力を改善する。皮膚を通して吸収されると、抗原は、皮膚の貪食細胞(例えば、皮膚樹状細胞、マクロファージ、および他の皮膚抗原提示細胞)に送達され、抗原はまた、肝臓、脾臓、および骨髄の食細胞(これらは、血流またはリンパ系を介して抗原提示細胞として機能することが知られている)にも送達される。結果は、現在の免疫法では、できたとしてもまれにしか達成されない程度に、抗原が抗原提示細胞に広範に分布するであろう。
【0096】
経皮的免疫システムは、皮膚との接触を最大にするために、皮膚に直接適用して空気乾燥;皮膚または逃避に擦り込む;包帯、パッチ、または吸収性材料で固定;ストッキング、スリッパ、手袋、またはシャツなどで固定;または皮膚に噴霧してもよい。製剤は、吸収性包帯またはガーゼで適用してもよい。製剤は、例えばアクアフォア(AQUAPHOR)(バイヤスドルフ(Beiersdorf)からの、ペトロラタム、鉱物油、ミネラルワックス、ウールワックス、パンテノール(panthenol)、ビサボール(bisabol)、およびグリセリン)、プラスチックフィルム、含浸ポリマー、コムフェール(COMFEEL)(コロプラスト(Coloplast))、またはワセリンのような閉鎖性包帯;または例えば、ヅオダーム(DUODERM)(スリーエム(3M))又はオプシテ(OPSITE)(スミス・アンド・ナフュー(Smith & Napheu))のような非閉鎖性包帯でカバーしてもよい。閉鎖性包帯は、水の通過を完全に排除する。あるいはテガダーム(TEGADERM)のような物理的に閉鎖性の包帯を適用して水分補給をし、パッチをより長期に適用するか、または皮膚がふやけるのを防ぐこともできる。
【0097】
この製剤は、1つのまたは複数の部位に適用するか、1つのまたは複数の四肢、または完全に浸漬して皮膚の大きな表面積に適用してもよい。製剤は、皮膚に直接適用してもよい。
【0098】
遺伝子的免疫は、米国特許第5,589,466号および5,593,972号に記載されている。製剤中に含有される核酸は、抗原、アジュバント、またはその両方をコードしてもよい。核酸は、複製可能であっても不可能であってもよい。これは非組み込み性および非感染性でもよい。核酸はさらに、抗原またはアジュバントをコードする配列に機能的に結合した制御領域(例えば、プロモーター、エンハンサー、サイレンサー、転写開始部位および転写停止部位、RNAスプライスアクセプター部位およびドナー部位、ポリアデニル化シグナル、内部リボゾーム結合部位、翻訳開始部位および翻訳停止部位)を含有してもよい。核酸は、トランスフェクションを促進する物質(例えば、陽イオン性脂質、リン酸カルシウム、DEAEデキストラン、ポリブレン−DMSO、またはこれらの組合せ)と複合体を形成することができる。核酸は、ウイルスゲノム由来の領域を含んでもよい。このような材料および技術は、クリーグラー(Kriegler)(1990年)とムレイ(Murray)(1991年)に記載されている。
【0099】
免疫応答は、体液性(すなわち、抗原特異的抗体)および/または細胞性(すなわち、抗原特異的リンパ球、例えばB細胞、CD4T細胞、CD8T細胞、CTL、Th1細胞、Th2細胞、および/またはTDTH細胞)エフェクターアームを含む。さらに免疫応答は、抗体依存性細胞障害(ADCC)に介在するNK細胞を含んでよい。
【0100】
本発明の製剤により誘導される免疫応答には、抗原特異的抗体および/または細胞毒性リンパ球(CTL、アルビング(Alving)とワセフ(Wassef)、1994年の総説がある)の誘導がある。抗体は、免疫測定法により検出され、種々のイソタイプ(例えば、IgM、IgD、IgA1、IgA2、分泌性IgA、IgE、IgG1、IgG2、IgG3、またはIgG4)の検出が予想される。免疫応答はまた、中和測定法により検出することもできる。
【0101】
抗体はBリンパ球により産生される防御性タンパク質である。これは特異性が高く、一般に抗原の1つのエピトープを標的とする。抗体はしばしば、疾患を引き起こす病原体由来の抗原と特異的に反応して、疾患に対する防御に重要な役割を果たす。免疫は、免疫抗原(例えば、コレラ毒素)に特異的な抗体を誘導する。これらの抗原特異的抗体は、抗原がリポソームにより皮膚に送達される時誘導される。
【0102】
CTLは、病原体による感染に対して防御するために産生される、特定の防御性免疫細胞である。これらは特異性が高い。免疫は、自己主要組織適合遺伝子複合体抗原とともに、マラリアタンパク質に基づく合成オリゴペプチドのような、抗原に特異的なCTLを誘導する。経皮的送達システムを用いて免疫により誘導されるCTLは、病原体感染細胞を死滅させる。免疫はまた、抗体やCTLの応答の強化、抗原で刺激したリンパ球の培養によるリンパ球増殖、および抗原単独の皮内抗原投与に対する遅延型過敏症応答、により示されるような記憶応答も生成する。
【0103】
経皮的免疫により誘導されるTヘルパー応答は、抗原異化と表皮ランゲルハンス細胞による以後の提示を阻害することにより、接触過敏症反応を抑制するカルシウムチャネルブロッカーを使用するにより、操作することができる。カルシウムチャネルブロッカーの経皮的適用は、同時刺激分子(例えば、B7−関連ファミリー)の表面発現と以後のTヘルパー応答の生成に影響を与えることが予測されるであろう。また、カルシウムチャネルブロッカーの添加は、遅延型過敏症応答を阻害し、主に細胞性または体液性応答である免疫応答を選択するのに使用できることが、予測される。
【0104】
ウイルス中和測定法において、血清の連続希釈物が宿主細胞に加えられ、次にこれは、感染性ウイルスで抗原投与後に、感染について観察される。あるいは血清の連続希釈物を感染性力価のウイルスとともにインキュベートした後動物に接種して、次に接種した動物を感染の兆候について観察する。
【0105】
本発明の経皮的免疫システムは、動物またはヒトで抗原投与モデル(これは、被験体を疾患から防御するための抗原による免疫の能力を評価する)を使用して評価される。このような防御は、抗原特異的免疫応答を証明する。抗原投与の代わりに、5IU/ml 以上の抗ジフテリア抗体力価を達成することは、一般に最適の防御を示し、防御の代理マーカーとして作用すると推定される(プロトキン(Plotkin)とモルチマー(Mortimer)、1994年)。
【0106】
さらに熱帯熱マラリア原虫(Plasmodium faciparum)抗原投与モデルは、ヒトで抗原特異的免疫応答を誘導するように使用される。ヒト志願者を、マラリア寄生虫由来のオリゴペプチドまたはタンパク質(ポリペプチド)を含有する経皮的免疫システムを使用して免疫し、次に実験的にまたは自然の状況でマラリアに暴露する。プラスモジウム・ヨエリイ(Plasmodium yoelii)マウスマラリア抗原投与モデルを使用して、マラリアに対するマウスの防御を評価する(ワング(Wang)ら、1995年)。
【0107】
アルビング(Alving)ら(1986年)は、ウサギでコレラ毒素(CT)に対する免疫応答を誘導するためのアジュバントとしての脂質Aと、BSAに結合した4つのテトラペプチド(Asn−Ala−Asn−Pro)を含有するマラリアオリゴペプチドからなる合成タンパク質を含むリポソームを注射した。著者らは、コレラ毒素に対するまたは合成マラリアタンパク質に対する免疫応答は、脂質Aを含有するリポソーム内に抗原をカプセル化することにより、脂質Aが欠如した同様のリポソームと比較して著しく上昇することを見いだした。熱帯熱マラリア原虫(Plasmodium faciparum)のサーカムスポロゾイト(circumsporozoite)タンパク質(CSP)またはメロゾイト(merozoite)表面タンパク質由来のいくつかの抗原が、脂質Aを含有するリポソーム内にカプセル化されている。脂質Aを含有するリポソーム中にカプセル化されたすべてのマラリア抗原は、体液性エフェクター(すなわち、抗原特異的抗体)を誘導し、一部は細胞性応答も誘導することが証明されている。マラリア抗原をワクチン投与された動物の免疫応答および免疫防御の発生は、CSPでトランスフェクションされた標的細胞の全体、固定マラリアスポロゾイトまたはCTL死滅に対する免疫蛍光により測定される。
【0108】
コレラ毒素で経皮的免疫されたマウスは、20μgのコレラ毒素で鼻内抗原投与に対して防御される。マレット(Mallet)ら(私信)は、C57B1/6マウスは、CTの鼻内抗原投与に応答して、致命的な出血性肺炎を発症することを見いだした。あるいはマウスは、CTの腹腔内投与で抗原投与される(ドラグンスキー(Dragunsky)ら、1992年)。コレラ毒素特異的IgGまたはIgA抗体は、コレラ毒素抗原投与に対して防御となる(ピアス(Pierce)、1978年;ピアス(Pierce)とレイノルズ(Reynolds)ら、1974年)。
【0109】
LTまたはCTで免疫し、それぞれLT分泌性大腸菌またはCT分泌性ビブリオ・コレラ(Vibrio cholerae)で抗原投与したヒトで、同様の防御作用が予測される。さらにCTとLT免疫被験体とCTおよびLT介在疾患の間で、交差防御が証明された。
【0110】
以下の例に示すように、経皮的経路により粘膜免疫が達成される。粘膜IgGおよびIgAは、CTで経皮的免疫したマウスで検出することができる。これは、粘膜部位でLTまたはCT介在疾患のような病気が起き、粘膜部位で病原体生物の侵入が起き、または粘膜感染が病理に重要である、疾患での防御に重要である。
【0111】
インフルエンザのような疾患に対する経皮的免疫は、粘膜免疫または全身性免疫を誘導することにより、または体液性、細胞性または粘膜性のような免疫の組合せにより、有効であることが期待される。
【0112】
ワクチンは、抗セクエストリン抗体を誘導することにより、マラリアの血管内皮への赤血球の結合のような宿主の作用に対して有効かも知れない。
【0113】
抗肝炎A、Bまたは肝炎E抗体のような防御性抗体は、全不活性化ウイルス、ウイルス由来サブユニットまたは組換え産物を使用して、経皮的経路により誘導される。
【0114】
破傷風、ジフテリアおよび他の毒素介在疾患に対する防御は、経皮的に誘導した抗毒素抗体により付与される。CTのようなアジュバント、および破傷風およびジフテリアのようなトキソイド、または破傷風C断片のような断片を含有する、破傷風「追加免疫」パッチが意図される。追加免疫は、同じであるかまたは類似の抗原を注射または経皮的免疫することにより、一次免疫後に行われる。免疫を誘導するが追加免疫で副作用の可能性のある注射免疫については、経皮的追加免疫が好ましい。経口または経鼻免疫も、経皮的経路を使用して追加免疫されると考えられる。注射性および経皮的免疫の同時使用も使用できるであろう。
【0115】
ワクチン投与もまた、癌や自己免疫疾患の治療として使用されている。例えば腫瘍抗原(例えば、前立腺特異的抗原)によるワクチン化は、抗体、CTLおよびリンパ球増殖(これは、体の免疫系が腫瘍細胞を認識し死滅させることを可能にする)の形で免疫応答を誘導する。樹状細胞(この中で、ランゲルハンス細胞が具体的なサブセットである)を標的とすることは、癌免疫療法において重要な方策であることが証明されている。ワクチン化に有用な腫瘍抗原は、黒色腫(米国特許第5,102,663号、5,141,742号および5,262,177号)、前立腺癌(米国特許第5,538,866号)、およびリンパ腫(米国特許第4,816,249号、5,068,177号、および5,227,159号)について記載されている。T細胞受容体オリゴペプチドを用いるワクチン化は、自己免疫疾患の進行を止める免疫応答を誘導し得る(米国特許第5,612,035号、および5,614,192号;アンテル(Antel)ら、1996年;バンデンバーク(Vandenbark)ら、1996年)。また米国特許第5,552,300号は、自己免疫疾患の治療に有用な抗原を記載している。
【0116】
以下は、本発明の例示を目的とするものである。しかし本発明の実施は、決してこれらの例に限定または制限されるものではない。
【実施例】
【0117】

#40のバリカンで6〜8週間令のBALB/cマウスの毛を剃った。この剃毛は、皮膚に傷をつけることなくできた。これは、胸の真ん中から首の項部のすぐ下まで行なった。次にマウスを24時間安静にさせた。この前に、マウスには認識のために耳に標識を付け、あらかじめ採血して免疫前血清の試料を得た。また、剃毛することなく、各耳に50μlの免疫溶液を適用して、マウスをまた経皮的に免疫した。
【0118】
次に、以下の方法でマウスを免疫した。マウスをキシラジンの20mg/ml溶液0.03〜0.06mlと100mg/mlケタミンの0.5mlで麻酔し、マウスを約1時間この用量の麻酔で固定化した。暖かい毛布の上に、マウスをうつぶせにして置いた。
【0119】
次に、以下の方法でマウスの背側の剃毛した皮膚の上に免疫溶液を置いた。ポリスチレン製の1.2cm×1.6cmのステンシルを、背面に静かに置き、食塩水を湿らせた無菌のガーゼを使用して、皮膚を部分的に湿らせ(これは、免疫溶液の適用を可能にした)、次に免疫溶液を、ステンシルで周囲を書いた領域にピペットで適用して、免疫溶液の2cmパッチを作成した。あるいは、免疫溶液の一定量を、剃毛した領域または耳に均等に適用した。ピペットの先で皮膚を引っ掻いたりこすったりしないように注意した。この周りに免疫溶液を広げて、ピペットの先のなめらかな方でカバーした。
【0120】
免疫溶液(約100μl〜約200μl)を、マウスの背面の左に60〜180分間放置した。60分の最後に、マウスを首の項部と尾でぬるま湯を充分流して固定し、10秒間洗浄した。次にマウスを無菌ガーゼで静かにたたいて乾燥し、第2回目の洗浄を10秒間行なった。次にマウスを第2回目の乾燥を行い、ケージに入れた。マウスは、麻酔、免疫、洗浄工程、または外毒素由来の毒性からの有害な作用を示さなかった。免疫後、皮膚刺激、腫脹または発赤は見られず、マウスは生長しているようであった。耳を使用する免疫は、免疫の前に剃毛しなかった他は前記したように行った。
【0121】
抗原
免疫およびELISAのために以下の抗原を使用し、そして無菌PBSまたは普通の生理食塩液を使用して混合した。コレラ毒素すなわちCT(リスト・バイオロジカルズ(List Biologicals)、カタログ#101B、ロット#10149CB)、CT Bサブユニット(リスト・バイオロジカルズ(List Biologicals)、カタログ#BT01、ロット#CVXG−14E)、CT Aサブユニット(リスト・バイオロジカルズ(List Biologicals)、カタログ#102A、ロット#CVXA−17B)、CT Aサブユニット(カルビオケム(Calbiochem)、カタログ#608562);百日咳毒素、無塩(リスト・バイオロジカルズ(List Biologicals)、ロット#181120a);破傷風トキソイド(リスト・バイオロジカルズ(List Biologicals)、ロット#1913aと#1915a);シュードモナス(Pseudomonas)外毒素A(リスト・バイオロジカルズ(List Biologicals)、ロット#ETA25a);ジフテリアトキソイド(リスト・バイオロジカルズ(List Biologicals)、ロット#15151);大腸菌(E.coli)からの熱不安定性エンテロトキシン(シグマ(Sigma)、ロット$9640625);ウシ血清アルブミンすなわちBSA(シグマ(Sigma)、カタログ#3A−4503、ロット#31F−0116);およびインフルエンザ菌(Hemophilus influenza)B結合体(コノート(Connaught)、ロット#6J81401)。
【0122】
ELISA−IgG(H+L)
CT、LT、ETA、百日咳毒素、ジフテリアトキソイド、破傷風トキソイド、インフルエンザ菌B結合体、インフルエンザ、セクエストリン(sequestrin)、およびBSAに特異的な抗体は、グレン(Glenn)ら(1995年)に類似した方法でELISAを用いて測定した。全ての抗原は、2μg/mlの濃度で無菌食塩水に溶解した。1ウェル当たり50μlのこの溶液(0.1μg)を、イムロン−2(IMMULON−2)ポリスチレンプレート(ダイナテック・ラボラトリーズ(Dynatech Laboratories)、シャンティイ(Chantilly)、バージニア州)に載せて、室温で一晩インキュベートした。次にプレートを、0.5%カゼイン/0.05%ツイーン20ブロッキング緩衝液で1時間ブロックした。血清は、0.5%カゼイン/0.05%ツイーン20希釈液で希釈した;連続希釈はプレート上の列に行った。インキュベーションは室温で2時間行った。
【0123】
次にプレートを、PBS−0.05%ツイーン20洗浄液で4回洗浄し、ヤギ抗マウスIgG(H+L)西洋ワサビペルオキシダーゼ(HRP)結合(バイオ−ラッド・ラボラトリーズ(Bio−Rad Laboratories)、リッチモンド、カリホルニア州、カタログ#170−6516)二次抗体をカゼイン希釈液に1/500の希釈率で希釈して、室温で1時間プレート上に放置した。次にプレートをPBS−ツイーン洗浄液で4回洗浄した。100μlの2,2’−アジノ−ジ(3−エチル−ベンゾチアゾロン)スルホン酸基質(キルケガード・アンド・ペリー(Kirkegaard and Perry))を各ウェルに加えて、20〜40分の発色後プレートを405nmで読んだ。結果は、ELISA単位(吸光度が1.0に等しい血清希釈)の個々の血清の幾何平均と平均の標準誤差として、またはELISA単位の個々の抗体応答として報告される。
【0124】
ELISA−IgG(γ)、IgM(μ)およびIgA(α)
IgG(γ)、IgM(μ)およびIgA(α)抗CT抗体レベルは、グレン(Glenn)ら(1995年)に類似した方法でELISAを用いて測定した。CTは、2μg/mlの濃度で無菌食塩水に溶解した。1ウェル当たり50μlのこの溶液(0.1μg)を、イムロン−2(IMMULON−2)ポリスチレンプレート(ダイナテック・ラボラトリーズ(Dynatech Laboratories)、シャンティイ(Chantilly)、バージニア州)に載せて、室温で一晩インキュベートした。次にプレートを、0.5%カゼイン−ツイーン20ブロッキング緩衝液で1時間ブロックした。血清をカゼイン希釈液で希釈し、連続希釈はプレート上で行った。これを室温で2時間インキュベートした。
【0125】
次にプレートを、PBS−ツイーン洗浄液で4回洗浄し、ヤギ抗マウスIgG(γ)HRP結合(バイオ−ラッド・ラボラトリーズ(Bio−Rad Laboratories)、リッチモンド、カリホルニア州、カタログ#172−1038)、ヤギ抗マウスIgM(μ)HRP結合(バイオ−ラッド・ラボラトリーズ(Bio−Rad Laboratories)、リッチモンド、カリホルニア州、カタログ#172−1030)、またはヤギ抗マウスIgA HRP結合(シグマ(Sigma)、セントルイス、ミズーリ州、カタログ#1158985)二次抗体を、カゼイン希釈液で1/1000の希釈率で希釈して、室温で1時間プレート上に放置した。次にプレートをPBS−ツイーン洗浄液で4回洗浄した。100μlの2,2’−アジノ−ジ(3−エチル−ベンゾチアゾロン)スルホン酸基質(キルケガード・アンド・ペリー(Kirkegaard and Perry)、ゲーサーズバーグ、メリーランド州)をウェルに加えて、プレートを405nmで読んだ。結果は、ELISA単位(吸光度が1.0に等しい血清希釈)の個々の血清の幾何平均と平均の標準誤差として報告される。
【0126】
ELISA−IgGサブクラス
CT、LT、ETA、およびBSAに対する抗原特異的IgG(IgG1、IgG2a、IgG2b、およびIgG3)サブクラス抗体は、グレン(Glenn)ら(1995年)に記載されたように行なった。固相ELISAは、イムロン−2(IMMULON−2)ポリスチレンプレート(ダイナテック・ラボラトリーズ(Dynatech Laboratories)、シャンティイ(Chantilly)、バージニア州)で行なった。食塩水中に各抗原(0.1μg/50μl)を含むウェルを一晩インキュベートして、0.5%カゼイン−ツイーン20でブロックした。0.5%カゼインに希釈した各マウス血清を連続希釈し、室温で4時間インキュベートした。二次抗体は、西洋ワサビペルオキシダーゼ結合ヤギ抗マウスイソタイプ特異的抗体(IgG1、IgG2a、IgG2b、IgG3、ザ・バインディング・サイト(The Binding Site)、サンジエゴ、カリホルニア州)からなった。各サブクラスの標準曲線は、マウスミエローマIgG1、IgG2a、IgG2b、およびIgG3(ザ・バインディング・サイト(The Binding Site)、サンジエゴ、カリホルニア州)を使用して求めた。標準ウェルは、連続希釈液に加えられるミエローマIgGサブクラス標準物質を捕捉するために、ヤギ抗マウスIgG(H+L)(バイオ−ラッド・ラボラトリーズ(Bio−Rad Laboratories)、リッチモンド、カリホルニア州、カタログ#170−1054)でコーティングした。ミエローマIgGサブクラスはまた、ペルオキシダーゼ結合ヤギ抗マウスサブクラス特異的抗体を使用して検出した。試験血清とミエローマ標準物質の両方とも、2,2’−アジノ−ジ(3−エチル−ベンゾチアゾロン)スルホン酸(キルケガード・アンド・ペリー(Kirkegaard and Perry)、ゲーサーズバーグ、メリーランド州)を基質として使用して検出した。吸光度は405nmで読んだ。個々の抗原特異的サブクラスは、ミエローマ標準曲線に対して計算した線形力価曲線からの値を使用して定量して、μg/mlとして報告した。
【0127】
ELISA−IgE
抗原特異的IgE抗体の定量は、ファーミンゲンテクニカルプロトコール(Pharmingen Technical Protocols)、研究製品カタログ(Research Products Catalog)、1996年〜1997年の541頁からのプロトコールを用いて行った。50μlの、0.1M NaHCO(pH8.2)中の2μg/ml精製抗マウスIgE捕捉mAb(ファーミンゲン(Pharmingen)、カタログ#021111D)をイムノ(IMMUNO)プレート(ヌンク(Nunc)、カタログ#12−565−136)に加えた。プレートは室温で一晩インキュベートし、PBS−ツイーン20で3回洗浄し、PBS中の3%BSAで2時間ブロックし、そしてPBS−ツイーンで3回洗浄した。血清は、PBS中の1%BSAに希釈し、1/100の希釈率で加え、そして列に沿って連続希釈した(例えば、1/100、1/200など)。精製したマウスIgE標準物質(ファーミンゲン(Pharmingen)、カタログ#0312D)を、0.25μg/mlの開始希釈率で加え、列に沿って連続希釈した。プレートは、2時間インキュベートして、PBS−ツイーンで5回洗浄した。
【0128】
ビオチン化抗マウスIgE mAB(ファーミンゲン(Pharmingen)、カタログ#02122D)をPBS中の1%BSAで2μg/mlにし、45分間インキュベートして、PBS−ツイーンで5回洗浄した。アビジン−ペルオキシダーゼ(シグマ(Sigma)A3151、1:400の1mg/ml溶液)を30分間で加えて、プレートをPBS−ツイーンで6回洗浄した。試験血清とIgE標準物質の両方とも、2,2’−アジノ−ジ(3−エチル−ベンゾチアゾロン)スルホン酸(キルケガード・アンド・ペリー(Kirkegaard and Perry)、ゲーサーズバーグ、メリーランド州)を基質として使用して検出した。吸光度は405nmで読んだ。個々の抗原特異的サブクラスは、IgE標準曲線に対して計算した線形力価曲線からの値を使用して定量して、μg/mlとして報告した。
【0129】
リポソーム調製
リポソームが経皮免疫のための製剤に含まれる場合、ジミリストイルホスファチジルコリン、ジミリストイルホスファチジルグリセロール、コレステロールからなる多層リポソームを、アルビング(Alving)ら(1993年)により調製した。ジミリストイルホスファチジルコリン、ジミリストイルホスファチジルグリセロール、およびコレステロールは、アバンティ・ポーラー・リピッド社(Avanti Polar Lipids Inc.)(アラバスター、アラバマ州)から購入した。クロロホルム中の脂質のストック溶液は、−20℃フリーザーでの貯蔵から取り出した。
【0130】
脂質は、ナシ型フラスコで0.9:0.1:0.75のモル比でジミリストイルホスファチジルコリン、ジミリストイルホスファチジルグリセロール、およびコレステロールを混合した。ロータリーエバポレーターを使用して、溶媒を37℃で陰圧で10分間除去した。フラスコは、低真空下で2時間デシケーターでさらに乾燥して、残りの溶媒を除去した。リポソームは、無菌水を用いて37mMリン脂質に増量し、凍結乾燥して−20℃で保存した。これらのリポソームは、その凍結乾燥状態で生理食塩液(pH7.0)と混合して、指定される食塩水中のリン脂質濃度を達成した。あるいは、乾燥した脂質は、リポソームを作るために生理食塩水(pH7.0)で増量して、凍結乾燥しなかった。
【0131】
例1
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して免疫した:「リポソームの調製」で前記したように調製したリポソームを食塩水と混合して、リポソームを形成した。次に前もって形成されたリポソームを食塩水(リポソーム単独群)中に、または食塩水中のCTと共に希釈して、100μlの免疫溶液当たり100μgのCTと共に10〜150mMのリン脂質で、リポソームを含有する免疫溶液を得た。CTは食塩水中で混合して、CT単独投与群の100μgの溶液当たり100μgのCTを含有する免疫溶液を作成した。溶液は免疫の前に10秒間ボルテックス混合した。
【0132】
マウスを、0および3週目に経皮的に免疫した。抗体レベルは、追加免疫の3週後、「ELISA IgG(H+L)」で前記したようにELISAを使用して求め、免疫前血清に対して比較した。表1に示すように、リポソームなしのCTにより誘導される抗CT抗体のレベルは、150mMリポソームを使用する場合のマウスを除いて、リポソームを使用して生成した抗CT抗体のレベルと異なった。食塩水中のCT単独は、CTに対してマウスを免疫して高力価抗体を産生させることができた。
【表1】

【0133】
例2
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して0および3週目に免疫した:BSA単独投与群について、BSAを食塩水中で混合して、BSA単独投与群の100μlの食塩水当たり200μgのBSAを含有する免疫溶液を作成した。BSAとCT投与群について、BSAとCTを食塩水中で混合して、100μlの食塩水当たり200μgのBSAと100μgのCTを含有する免疫溶液を作成した。リポソームを使用する場合、リポソームは、「リポソームの調製」で前記したように調製し、最初に食塩水と混合してリポソームを形成した。次にこれらを食塩水中のBSAまたはBSAとCTに希釈して、100μlの免疫溶液当たり200μgのBSA、または100μlの免疫溶液当たり200μg BSA+100μg CTと共に、50mMリン脂質でリポソームを含有する免疫溶液を得た。溶液は免疫の前に10秒間ボルテックス混合した。
【0134】
抗体を、「ELISA IgG(H+L)」で前記したようにELISAを使用して、二次免疫の3週後の血清で測定した。結果は表2に示す。リポソームを伴うかまたは伴わないBSA単独では、抗体応答を引き起こすことができなかった。しかし、CTの添加は、BSAに対する免疫応答を刺激した。CTは、BSAに対する免疫応答のアジュバントとして作用し、高力価の抗BSA抗体が産生した。
【表2】

【0135】
例3
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して0および3週目に免疫した:LTは、食塩水中で混合して、LT単独投与群の100μlの食塩水当たり100μgのLTを含有する免疫溶液を作成した。リポソームを使用する場合、リポソームは、「リポソームの調製」で前記したように調製し、最初に食塩水と混合して、リポソームを形成した。次に前もって形成されたリポソームを食塩水中のLTに希釈して、100μlの免疫溶液当たり100μgのLTと共に、50mMリン脂質でリポソームを含有する免疫溶液を得た。溶液は免疫の前に10秒間ボルテックス混合した。
【0136】
抗LT抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して、二次免疫の3週後に測定した。結果は表3に示す。LTは、リポソームを伴うかまたは伴わない両方で明らかに免疫原性であり、かつ群の間に有意な差は検出できなかった。LTとCTは、細菌ADP−リボシル化外毒素(bARE)のファミリーのメンバーである。これらは、Aサブユニットに含まれるADP−リボシルトランスフェラーゼ活性およびBサブユニットの標的細胞結合機能と共に、A:Bプロ酵素として構築される。LTは、アミノ酸レベルでCTと80%相同であり、非共有結合したサブユニットの組織、化学量論比(A:B 5)、同じ結合標的、ガングリオシドGM1を有しており、そして大きさも同程度である(MW 〜80,000)。LTとCTの類似性は、CTとLT両方に対する抗体応答の同様な大きさにより反映されるように、経皮的経路によるその免疫原性に影響しているようである(表1と3)。
【表3】

【0137】
例4
6〜8週齢のC57B1/6マウスを、マウス5匹の群で、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して1回免疫した:LTは、食塩水中で混合して、100μlの食塩水当たり100μgのLTを含有する免疫溶液を作成した。溶液は免疫の前に10秒間ボルテックス混合した。
【0138】
抗LT抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して、単回免疫の3週後に測定した。結果は表4に示す。LTは、単回免疫で明らかに免疫原性であり、かつ抗体は3週間で産生された。単回免疫に対する抗体力価と応答の迅速な増強は、経皮免疫法の有用な側面であろう。迅速な単回免疫は、流行病において、旅行者にとって、および医療を利用しにくい場合には有用であろうと考えられる。
【表4】

【0139】
例5
8〜12週齢のC57B1/6マウスを、マウス5匹の群で、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して1回免疫した:CTは、食塩水中で混合して、100μlの食塩水当たり100μgのCTを含有する免疫溶液を作成した。溶液は免疫の前に10秒間ボルテックス混合した。
【0140】
抗CT抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して、単回免疫の3週後に測定した。結果は表5に示す。CTは、単回免疫で免疫原性が高かった。単回免疫に対する抗体力価と応答の迅速な増強は、経皮免疫法の有用な側面であろう。迅速な単回免疫は、流行病において、旅行者にとって、および医療を利用しにくい場合には有用であろうと考えられる。
【表5】

【0141】
例6
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して0および3週目に免疫した:ETAは、食塩水中で混合して、ETA単独投与群の100μlの食塩水当たり100μgのETAを含有する免疫溶液を作成した。リポソームを使用する場合、リポソームは、「リポソームの調製」で前記したように調製し、最初に食塩水と混合して、リポソームを形成した。次に前もって形成されたリポソームを食塩水中のETAで希釈して、100μlの免疫溶液当たり100μgのETAと共に、50mMリン脂質でリポソームを含有する免疫溶液を得た。溶液は免疫の前に10秒間ボルテックス混合した。
【0142】
抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して、二次免疫の3週後の血清で測定した。結果は表6に示す。ETAは、リポソームを伴うかまたは伴わない両方で明らかに免疫原性であり、群の間に有意な差は検出できなかった。ETAは、同ペプチド上のAおよびBドメインを有する単一の613アミノ酸ペプチドであり、そして全く異なる受容体、α2−マクログロブリン受容体/低密度リポタンパク質受容体関連タンパク質(コウナス(Kounnas)ら、1992年)に結合するため、CTおよびLTとは異なる。大きさ、構造、および結合標的においてETAとCTでは似ていないが、ETAも経皮抗体応答を誘導した。
【表6】

【0143】
例7
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して免疫した:CTは、食塩水中で混合して、100μlの免疫溶液当たり100μgのCTを作成し、LTは、食塩水中で混合して、100μlの免疫溶液当たり100μgのLTを作成し、ETAは、食塩水中で混合して、100μlの免疫溶液当たり100μgのETAを作成し、そしてCTとBSAは、食塩水中で混合して、100μlの免疫溶液当たり100μgのCTおよび100μlの免疫溶液当たり200μgのBSAを作成した。溶液は免疫の前に10秒間ボルテックス混合した。
【0144】
マウスは、0および3週目に経皮的に免疫し、そして抗体レベルは、追加免疫の3週後、「ELISA IgGサブクラス」で前記したようにELISAを使用して求め、免疫前血清に対して比較した。CT、BSAおよびLTに対するIgGサブクラス応答は、IgG1とIgG2aと同様なレベルであり、これはTh1とTh2リンパ球両方からのT helpの活性化を反映しており(セダー(Seder)とポール(Paul)、1994年)、一方ETAに対するIgGサブクラス応答は、ほぼ独占的にIgG1とIgG3からなっており、Th2様応答と一致していた(表7)。すなわち、全てのIgGサブクラスは経皮免疫を用いて産生することができると考えられる。
【表7】

【0145】
例8
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して免疫した:LTは、食塩水中で混合して、LT単独投与群について100μlの食塩水当たり100μgのLTを含有する免疫溶液を作成し、CTは、食塩水中で混合して、CT単独投与群について100μlの食塩水当たり100μgのCTを含有する免疫溶液を作成し、ETAは、食塩水中で混合して、ETA単独投与群について100μlの食塩水当たり100μgのETAを含有する免疫溶液を作成し、そしてBSAとCTは、食塩水中で混合して、BSAとCT投与群について100μlの食塩水当たり100μgのBSAと100μgのCTを含有する免疫溶液を作成した。溶液は免疫の前に10秒間ボルテックス混合した。
【0146】
マウスは、0および3週目に経皮的に免疫し、そして抗体レベルは、追加免疫の1週後、「ELISA IgE」で前記したようにELISAを使用して求め、免疫前血清に対して比較した。表8に示すように、検出の感度が0.003μg/mlであったが、IgE抗体は見い出されなかった。IgG抗体は、二次免疫の3週後の血清で「ELISA IgG(H+L)」を使用して、同じマウスにおいて測定した。LT、ETA、CTおよびBSAに対するIgG抗体応答は、マウスの免疫が成功し、各抗原に対する高力価の抗体で応答したことを証明している。
【表8】

【0147】
例9
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100mlの免疫溶液を使用して0および3週目に免疫した:CTは、食塩水中で混合して、100mlの免疫溶液当たり100mgのCTを含有する免疫溶液を作成した。免疫溶液は免疫の前に10秒間ボルテックス混合した。
【0148】
マウスは、0および3週目に経皮的に免疫し、そして抗体レベルは、「ELISA IgG(H+L)」および「ELISA IgG(γ)」で前記したようにELISAを使用して求めた。測定は、最初の免疫の1および4週後に行い、免疫前血清に対して比較した。表9に示すように、食塩水中のCTにより、高レベルの抗CT IgG(γ)抗体が誘導された。少量のIgMは、IgM(μ)特異的二次抗体を使用することにより検出することができた。4週目までは、抗体応答は主としてIgGであった。データはELISA単位で報告される。
【表9】

【0149】
例10
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して1回免疫した:CTは、食塩水中で混合して、100μlの食塩水当たり100μgのCTを含有する免疫溶液を作成した。溶液は免疫の前に10秒間ボルテックス混合した。マウスは、0および3週目に経皮的に免疫した。抗体レベルは、追加免疫の5週後、「ELISA IgG(H+L)」で前記したようにELISAを使用して求め、免疫前血清に対して比較した。表10に示すように、血清抗CT IgA抗体が検出された。
【表10】

【0150】
例11
6〜8週齢の1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、以下のように調製した100μlの免疫溶液を使用して免疫した:CTは、食塩水中で混合して、100μlの免疫溶液当たり100μgのCTを含有する免疫溶液を作成した。免疫溶液は免疫の前に10秒間ボルテックス混合した。
【0151】
マウスは、100μlの免疫溶液で0および3週目に経皮的に免疫し、抗体レベルは、「ELISA IgG(H+L)」および「ELISA IgG(γ)」で前記したようにELISAを使用して求めた。抗体測定は、最初の免疫の8週後に行い、免疫前血清に対して比較した。表11に示すように、食塩水中のCTにより高レベルの血清抗CT抗体が誘導された。肺洗浄液IgGは、IgG(H+L)またはIgG(γ)特異的抗体を使用してELISAにより検出することができた。肺粘膜表面上に見い出される抗体は、粘膜抗体を回収するために使用される洗浄法で希釈し、従って、検出される抗体の正確な量は、検出可能な抗体が単に存在すること以上に有意なものではない。
【0152】
肺洗浄液は、マウスを屠殺後に得られた。気管と肺は穏やかな切開により露出させて、気管は分岐点の上で横に切開した。22ゲージのポリプロピレンチューブを挿入して、気管上で縛って縁に堅い封を形成した。チューブに取り付けた1mlシリンジを使用して0.5ミリリットルのPBSを注入し、肺を流体で穏やかに膨張させた。流体を回収して、全体で3ラウンドの洗浄液を再注入した。次に肺洗浄液を−20℃で凍結した。
【0153】
表11は、8週目の血清と肺洗浄液で、コレラ毒素に対するIgG(H+L)とIgG(γ)抗体応答を示している。データは、ELISA単位で表現される。抗体は、全てのマウスの肺洗浄液で明白に検出可能であった。粘膜中の抗体の存在は、粘膜で活性な疾患に対する防御のために重要である。
【表11】

【0154】
例12
BALB/cマウスを、マウス4匹の群で、「免疫工程」で前記したように0および3週目に経皮的に免疫した。リポソームは、「リポソームの調製」で前記したように調製し、最初に食塩水と混合してリポソームを形成した。前もって形成されたリポソームは、次に食塩水中のCT、CTAまたはCTBのいずれかで希釈して、100μlの免疫溶液当たり50μgの抗原(CT、CTAまたはCTb)と共に50mMリン脂質でリポソームを含有する免疫溶液を得た。溶液は免疫の前に10秒間ボルテックス混合した。
【0155】
抗体は、追加免疫の1週後、「ELISA IgG(H+L)」で前記したようにELISAを使用して求め、免疫前血清に対して比較した。結果は、表12に示す。CTとCTBは明らかに免疫原性であったが、一方CTAはそうではなかった。すなわち、CTのBサブユニットが、強力な抗体応答を誘導するには必要かつ充分である。
【表12】

【0156】
例13
1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、100μlの食塩水当たり100μgのジフテリアトキソイドと10μgの百日咳毒素で0および3週目に免疫した。溶液は免疫の前に10秒間ボルテックス混合した。
【0157】
抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して定量した。抗ジフテリアトキソイド抗体は、百日咳毒素とジフテリアトキソイドの両方で免疫した動物でのみ検出された。最高応答マウスは、1,038の抗ジフテリアトキソイド抗体ELISA単位であった。すなわち、少量の百日咳毒素が、ジフテリアトキソイド抗原のアジュバントとして作用する。トキソイド単独では免疫応答を誘導しなかったが、このことは、トキソイド化プロセスが、ADP−リボシル化外毒素に見い出されるアジュバント作用を担当する分子の部分に影響したことを示唆している。
【表13】

【0158】
例14
1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、100μlの食塩水当たり50μgの百日咳毒素(リスト(List)、カタログ#181、ロット#181−20a)で0、8および20週目に免疫した。
【0159】
抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して定量した。抗百日咳毒素抗体は、百日咳で免疫したマウスにおいて最後の追加免疫の1週後に検出された。全5匹のマウスは、最後の免疫後、抗百日咳毒素抗体のレベルが上昇した。すなわち、百日咳毒素は、それ自体のアジュバントとして作用して、PT特異的IgG抗体を誘導する。PTのアジュバント作用は、ジフテリア/百日咳/破傷風/Hibのような組合せワクチンにおいて、PTそれ自体に対してと同様に同時投与された抗原に対して抗体応答を増強する上で有用であろう。
【表14】

【0160】
例15
1群5匹のBALB/cマウスを、「免疫工程」で前記したように経皮的に免疫した。マウスは、100μlの食塩水当たり50μgの破傷風トキソイドと100μgのコレラ毒素で0週目に1回免疫した。
【0161】
抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して定量した。抗破傷風トキソイド抗体は、マウス5173において8週目に443ELISA単位で検出された。
例16
【0162】
経口免疫が、表皮適用後の毛繕いとそれに続く適用部位の洗浄により起こる可能性を、抗原/アジュバントの運命を追跡するための125I標識CTを使用して評価した。マウスに麻酔をかけ、「免疫工程」で前記したように100μgの125I標識CT(150,000cpm/μg CT)で経皮的に免疫した。対照のマウスは、6時間麻酔をかけたままにして毛繕いをさせず、実験マウスは1時間麻酔をかけ、次に洗浄後毛繕いを可能にした。マウスを6時間目に屠殺して、臓器を秤量し、パッカード(Packard)ガンマカウンターで125Iを計測した。剃毛した皮膚の免疫部位において全部で2〜3μgのCTが検出された(14,600cpm/μg組織)が、一方最大の0.5μgのCTは胃(661cpm/μg組織)および腸(9cpm/μg組織)で検出された。
【0163】
0および3週目での食塩水中の10μgのCTによる経口免疫(n=5)は、<1,000ELISA単位の6週平均IgG抗体応答を誘導したが、一方洗浄後の皮膚に5μg未満のCTが残ることが前記で証明された100μgのCTによる経皮免疫は、6週目には42,178ELISA単位の抗CT応答をもたらした。経口的に取り込まれたCTに対する免疫応答の誘導には、免疫溶液へのNaHCOの添加が必要である(ピース(Piece)、1978年;ライク(Lycke)とホルムグレン(Holmgren)、1986年)。すなわち、経口免疫は、CTが皮膚の上に適用されるとき検出される抗体には有意に寄与しない。
【0164】
例17
ランゲルハンス細胞活性化のインビボの証拠は、皮膚(具体的にはマウスの両耳)に表皮から適用された食塩水中のコレラ毒素(CT)を使用して得られたが、ここで、ランゲルハンス細胞の大きな集団は容易に視覚化することができ(エンク(Enk)ら、1993年;バッチ(Bacci)ら、1997年)、そして主要組織適合遺伝子複合体(MHC)クラスII分子の染色は、活性化ランゲルハンス細胞においてアップレギュレーションされる(シマダ(Shimada)ら、1987年)。
【0165】
BALB/cマウスの耳を、食塩水中の100μgのCT、食塩水中の100μgのCTB、食塩水単独のいずれかにより背側でコーティングしたか、またはマウスに麻酔をかけながら1時間、陽性対照の100pg LPSまたは10μg TNFαの皮内注射を行った。次に耳を完全に洗浄して、24時間後、耳を取り出し、表皮シートを採収して、コーマン(Caughman)ら(1986年)に記載されるようにMHCクラスII発現について染色した。表皮シートは、MKD6(抗I−A)または陰性対照Y3P(抗I−A)で染色し、ヤギ抗マウスFITC F(ab)を第2工程試薬として使用した。耳を経皮的に免疫したマウス(前記のように剃毛していない)は、単回免疫の3週後に7,000ELISA単位の抗CTabを有することが以前に見い出された。
【0166】
染色強度により検出されるようにMHCクラスII分子の発現の増強、ランゲルハンス細胞の数の低下(特にコレラ毒素で)、およびランゲルハンス細胞形態の変化は、対照に匹敵してCTとCTBで免疫されたマウスの表皮シートにおいて見い出された(図1)が、これは、ランゲルハンス細胞が、皮膚の上に適用されたコレラ毒素により活性化されたことを示唆している(アイバ(Aiba)とカッツ(Katz)、1990年;エンク(Enk)ら、1993年)。
【0167】
例18
ランゲルハンス細胞は、「樹状細胞」と呼ばれる強力な補助細胞のファミリーの表皮部分である。ランゲルハンス細胞(および、恐らく真皮内の関連細胞)は、皮膚で遭遇する外来抗原に向けられる免疫応答に必要であると考えられる。ランゲルハンス細胞の「生活環」は、少なくとも2つの別個の段階を特徴とする。表皮のランゲルハンス細胞(「歩哨」)は、粒子を取り込んで、効率よく抗原を処理することができるが、プライムされていないT細胞の弱い刺激物質である。対照的に、表皮の抗原との接触後にリンパ節への遊走を誘導しているランゲルハンス細胞(「メッセンジャー」)は、食細胞作用が少なく、抗原処理能力が限定されているが、未処理のT細胞の強力な刺激物質である。ランゲルハンス細胞がその「歩哨」と「メッセンジャー」の役割の両方を満たすものであれば、これらは表皮に残存しうる必要があり、また抗原への暴露後には制御された様式で表皮を出ていくことができる必要がある。すなわち、ランゲルハンス細胞−ケラチン細胞接着の制御は、ランゲルハンス細胞トラフィッキングと機能において重要な調節点である。
【0168】
ランゲルハンス細胞は、上皮で顕著に現れるホモフィリックな接着分子であるE−カドヘリン(ブラウベルト(Blauvelt)ら、1995年)を発現する。ケラチン細胞はまたこの接着分子を発現し、E−カドヘリンは、インビトロでのマウスのランゲルハンス細胞のケラチン細胞への接着を、明らかに仲介する。E−カドヘリンが、表皮でのランゲルハンス細胞の局在化に関与していることは知られている。ランゲルハンス細胞とケラチン細胞の性状解析と性質の総説については、スティングル(Stingl)ら(1989年)を参照されたい。
【0169】
皮膚から排出性リンパ節への表皮ランゲルハンス細胞(LC)の遊走と抗原の輸送は、皮膚の免疫応答(例えば、接触感作)の誘導において重要であることが知られている。リンパ節への移動において、ランゲルハンス細胞は、皮膚からの移動と抗原提示の能力の獲得のために必要な、多くの表現型の変化を受ける。MHCクラスII分子のアップレギュレーション以外に、周りの組織マトリックスとのおよびTリンパ球との相互作用を制御する接着分子の発現の変化がある。ランゲルハンス細胞の遊走は、E−カドヘリンの発現の顕著な低下に関連していることが知られている(シュワルツェンバーガー(Schwarzenberger)とウデイ(Udey)、1996年、およびICAM−1の平行アップレギュレーション(ウデイ(Udey)、1997年))。
【0170】
細菌性ADP−リボシル化外毒素(bARE)による経皮的免疫は、表皮中のランゲルハンス細胞を標的とする。bAREはランゲルハンス細胞を活性化し、これをその歩哨としての役割からメッセンジャーとしての役割に変換する。次に、摂取された抗原は、リンパ節に取られ、ここでB細胞とT細胞に提示される(ストレイレイン(Streilein)とグラマー(Grammer)、1989年;クリプケ(Kripke)ら、1990年;チュー(Tew)ら、1997年)。この過程で、表皮ランゲルハンス細胞は、リンパ節中で成熟して抗原提示樹状細胞になる(シューラー(Shuler)とシュタインマン(Steinman)、1985年)。リンパ節に入るリンパ球は、B細胞濾胞とT細胞領域に分離する。ランゲルハンス細胞が活性化されて遊走性ランゲルハンス細胞になることは、MHCクラスII分子の顕著な増加だけでなく、E−カドヘリンの発現とICAM−1のアップレギュレーションの顕著な低下に関連していることが知られている。
【0171】
我々は、コレラ毒素(CT)とそのBサブユニット(CTB)は、ICAM−1の発現をアップレギュレーションし、ランゲルハンス細胞上のE−カドヘリンの発現をダウンレギュレーションし、ランゲルハンス細胞上のMHCクラスII分子の発現をアップレギュレーションすると考える。CTまたはCTBは、歩哨であるランゲルハンス細胞を解放して、CTまたはCTB(これらがアジュバントとして作用している時)との遭遇の同じ位置と時間にランゲルハンス細胞により貪食されるBSAまたはジフテリアトキソイドのような抗原を提示させる。ICAM−1の発現をアップレギュレーションしE−カドヘリンの発現をダウンレギュレーションするようにランゲルハンス細胞を活性化することは、表皮細胞またはランゲルハンス細胞自身からのサイトカイン(TNFαおよびIL−1βを含む)放出により仲介される。
【0172】
経皮的免疫のこの補助方法は、ランゲルハンス細胞を活性化する任意の化合物について作用すると考えられる。活性化は、E−カドヘリンをダウンレギュレーションしICAM−1をアップレギュレーションするように起きる。次にランゲルハンス細胞は、このようなランゲルハンス細胞活性化化合物と抗原(例えば、ジフテリアトキソイドまたはBSA)の混合物から作成された抗原を、リンパ節に運搬し、ここで抗原はT細胞に提示され、免疫応答を誘導する。すなわち、bAREのような活性化物質は、ランゲルハンス細胞を活性化して、ジフテリアトキソイドのような抗原を貪食させ、リンパ節に遊走し、成熟して樹状細胞になり、そしてT細胞に抗原を提示することにより、本来は経皮的には非免疫原性である抗原(例えば、ジフテリアトキソイド)のアジュバントとして使用することができる。
【0173】
経皮的免疫で使用される抗原に対するT細胞ヘルパー応答は、サイトカインおよび/またはケモカインの適用により影響を受ける。例えばインターロイキン−10(IL−10)は、抗体応答をTh2 IgG1/IgE応答に向け、抗IL−10はIgG2aの産生を増強し得る(ベリングハウゼン(Bellinghausen)ら、1996年)。
【0174】
例19
セクエストリン(sequestrin)は、マラリアが寄生した赤血球を血管内皮に固定するように機能する、マラリア感染赤血球の表面上に発現される分子である。これは、寄生体の生存に必須であり、脳マラリアで死ぬ児童における熱帯熱マラリア原虫(P.faciparum)の病原性に直接寄与する。脳マラリアでは、セクエストリン分子と宿主内皮受容体CD36との特異的相互作用のために、脳の毛細管が無数の寄生体化赤血球で詰まる。オッケンハウゼ(Ockenhouse)らは、この受容体リガンド相互作用を仲介する、宿主受容体CD36と寄生体分子(セクエストリン)の両方を同定した。オッケンハウゼ(Ockenhouse)らは、CD36受容体と相互作用するセクエストリン分子のドメインを、大腸菌産生組換えタンパク質としてクローン化し発現した。端を切り取った79アミノ酸であるセクエストリン生成物は、以下の例で使用した。
【0175】
組換えセクエストリンまたはセクエストリンの遺伝子をコードするDNAによる能動免疫は、マラリアが寄生した赤血球の宿主内皮CD36への接着をブロックし、従って内皮に結合することができないため、寄生体が死に至り寄生体の生活環の完了を妨害する抗体を誘導する。この方策は、高力価のブロッキング抗体を誘導する免疫法を開発することである。このような方法の1つは、ワクチンを経皮的に送達することである。総抗体力価ならびにブロッキング活性とオプソニン作用の両方の測定は、経皮的免疫を用いるこのアプローチの基礎である。本実験で使用される組換えセクエストリンタンパク質は、79アミノ酸の長さ(〜18kDa)であり、分子のCD36結合ドメインを含む。我々はまた、このドメインからなる裸のDNA作製体を作製し、表皮遺伝子銃送達を使用して抗体を誘導した。
【0176】
「免疫法」で前記したように、BALB/cマウス(n=3)を経皮的に免疫した。以下のように調製した免疫溶液120μlを使用して、0および8週にマウスを免疫した。熱帯熱マラリア原虫(P.faciparum)セクエストリンについてコードされるプラスミドを食塩水中で混合して、100μlの食塩水中80μgのプラスミド、80μgのCT(リスト・バイオロジカルズ(List Biologicals))を含有する免疫溶液を作成した。アルコール綿棒(トリアド・アルコール(Triad Alcohol)パッド、780%イソプロピルアルコール)で耳を静かに洗浄した後、標識していない耳に120μlを適用した。免疫溶液は、洗浄によって除去しなかった。
【0177】
一次免疫の3、4、7、および9週後に尾静脈から採取した血清について、「ELISA IgG(H+L)」で前記したようにELISAを使用して、セクエストリンに対する抗体を測定した。結果を表15に示す。
【0178】
CTを有するセクエストリンDNAは、2回目の追加免疫後に発現されたタンパク質に対して検出可能な抗体応答を誘導した。免疫が起きるためには、タンパク質は、免疫系により発現され処理される必要がある。すなわち、CTは、セクエストリンをコードするプラスミドにより発現されたセクエストリンタンパク質に対する免疫応答のアジュバントとして作用した。
【0179】
DNAワクチンは、非ヒト霊長類において、マラリア(グラムジンスキー(Gramzinski)、Vaccine 15:913−915、1997年)およびHIV(シュライバー(Shriver)ら、Vaccine 15:884−887、1997年)のような疾患に対する中和抗体とCTLを誘導することが証明されており、いくつかのモデル(マクレメンツ(McClements)ら、Vaccine 15:857−60、1997年)で異なる程度に防御を示した。皮膚を介するDNA免疫は、皮膚の免疫系を標的とする遺伝子銃の応答と同様の応答を誘導すると予測される(プラヤガ(Prayaga)ら、Vaccine 15:1349−1352、1997年)。
【表15】

【0180】
例20
「免疫法」で前記したように、1群5匹のBALB/cマウスをセクエストリンを使用して経皮的に免疫した。以下のように調製した免疫溶液100μlを使用して、0、2および8週にマウスを免疫した:0週に、セクエストリンとCTを投与した群については、マウスを410μl中の59μgのCTと192μgのセクエストリンで免疫し、セクエストリン単独については410μl中192μgで、そしてセクエストリンとCTBを投与した群については520μl中120μgのCTBと250μgのセクエストリンで免疫した。2週間後、マウスを、セクエストリン単独群については163μgのセクエストリンを含有する345μlの食塩水で、CT+セクエストリン群については163μgのセクエストリンと60μgのCTを含有する345μlの食塩水で、セクエストリン+CTB群については163μgのセクエストリンと120μgのCTBを含有する345μlの食塩水で、免疫した。2回目の追加免疫ではマウスを、セクエストリン単独群については120μgのセクエストリンを、CT+セクエストリン群については120μgのセクエストリンと120μgのCTを、セクエストリン+CTB群については120μgのセクエストリンと120μgのCTBを、投与した。
【0181】
抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して、最初の免疫後の3、5、7、8、10、11および15週目の血清について測定した。結果を表16に示す。セクエストリン単独では、小さいが検出可能な抗体応答が誘導された。しかしCTの添加は、セクエストリンに対してはるかに強い免疫応答を刺激し、CTBは、セクエストリン単独より強い免疫応答を誘導した。CTとCTBは、組換えタンパク質であるセクエストリンに対する免疫応答のアジュバントとして作用した。
【表16】

【0182】
例21
「免疫法」で前記したように、1群5匹でBALB/cマウスを経皮的に免疫した。以下のように調製した免疫溶液100μlを使用して、0週にマウスを免疫した:フラッシールド(FLUSHIELD)(ワイエス−アエルスト(Wyeth−Ayerst)、精製サブウイルス粒子、1997−98製剤、ロット#U0980−35−1)を凍結乾燥し、食塩水で混合して、インフルエンザウイルス単独投与群については、100μlの食塩水に90μgのフラッシールド(FLUSHIELD)製サブウイルス粒子を含有する免疫溶液を、インフルエンザウイルスとCT投与群については、インフルエンザとCTを食塩水で混合して、100μlの食塩水に90μgのフラッシールド(FLUSHIELD)抗原と100μgのCTを含有する免疫溶液を、作成した。
【0183】
抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して、最初の免疫後3週目の血清について測定した。結果を表17に示す。インフルエンザ単独では、抗体応答は誘導されなかった。しかしCTの添加は、インフルエンザ単独で観察されたものよりはるかに強い免疫応答を刺激した。すなわちCTは、フラッシールド(FLUSHIELD)(サブウイルス粒子インフルエンザワクチン)(ウイルス由来の抗原の混合物)に対する免疫応答のアジュバントとして作用した。
【表17】

【0184】
例22
LTはADP−リボシル化外毒素のファミリーであり、分子量がCTに似ており、ガングリオシドGM1に結合し、CTと80%相同であり、類似のA:B5化学量論を有する。すなわちLTも、経皮的免疫におけるDTのアジュバントとして使用した。BALB/cマウス(n=5)を前記したように0、8、および18週目に、100μlの食塩水中100μgのLT(シグマ(Sigma)、カタログ#E−8015、ロット17hH12000)と100μgのCT(リスト・バイオロジカルズ(List Biologicals)、カタログ#101b)を含有する食塩水溶液で免疫した。LTは表18に示すようにDTに対する中程度の応答を誘導した。
【0185】
ETA(リスト・バイオロジカルズ(List Biologicals)、ロット#ETA 25A)は、ADP−リボシル化外毒素のファミリーであるが、異なる受容体に結合する単一のポリペプチドである。100μgのETAを、100μgのCTを含有する100μlの食塩水溶液中で、前記したように0、8、および18週目にBALB/cマウスの背面に送達した。ETAを追加免疫すると20週目にDTに対する応答が強化された。すなわち他のADP−リボシル化外毒素は、同時投与したタンパク質のアジュバントとして作用することができた(表18)。
【表18】

【0186】
例23
「免疫法」で前記したように、1群5匹でBALB/cマウスを経皮的に免疫した。0週、8週および18週に、100μgのコレラ毒素(リスト・バイオロジカルズ(List Biologicals)、カタログ#101B)、50μgの破傷風トキソイド(リスト・バイオロジカルズ(List Biologicals)、カタログ#191B、ロット#1913aおよび1915b)そして83μgのジフテリアトキソイド(リスト・バイオロジカルズ(List Biologicals)、カタログ#151、ロット#15151)を含有する100μlの食塩水で免疫した。
【0187】
CT、DT、およびTTに対する抗体を「ELISA IgG(H+L)」で前記したようにELISAを使用して定量した。一次免疫後23週目に、抗CT、DT、またはTT抗体が検出された。すべての免疫マウスで抗ジフテリアトキソイドおよびコレラ毒素抗体が上昇していた。最も高い応答を示したものは、抗破傷風トキソイド抗体ELISA単位342であり、非免疫動物で検出された抗体レベルの約80倍であった。すなわち非関連抗原の組合せ(CT/TT/DT)は、個々の抗原に対して免疫するのに使用できる。これは、コレラ毒素が多価ワクチンのアジュバントとして使用できることを証明する。
【表19】

【0188】
例25
CTを使用する経皮的免疫は、強力な免疫応答を誘導する。筋肉内注射および経口免疫に対する免疫応答を、CTをアジュバントおよび抗原として使用する経皮的免疫と比較した。食塩水に溶解した25μgのCT(リスト・バイオロジカルズ(List Biologicals)、カタログ#101b)を、200μlのピペットの先端を使用して、BALB/cマウス(n=5)に25μl経口投与した。マウスは免疫溶液を容易に飲み込んだ。食塩水中の25μlの1mg/mlCTを、前記したように経皮的とした群に投与した。食塩水中25μlのCTを、筋肉内とした群の大腿前部の筋肉内注射した。
【0189】
CTを筋肉内注射したマウスは、注射部位で顕著な腫脹と圧痛を示し、高レベルの抗CT抗体を示した。経皮的免疫したマウスは、免疫の部位に発赤や腫脹はなく、高レベルの抗CT抗体を示した。経口投与免疫したマウスは、経皮的免疫したマウスと比較してはるかに低いレベルの抗体を示した。これは、経皮的免疫マウスにおける毛繕いによる経口免疫は、経皮的免疫により誘導された高レベルの抗体の原因ではないことを示す。全体として、経皮的経路の免疫は、免疫に対する副作用無しで高レベルの抗体が達成されるため、経口または筋肉内免疫より優れている。
【表20】

【0190】
例26
「免疫法」で前記したように、1群5匹でBALB/cマウスを経皮的に免疫した。0週、8週および20週に、以下のように調製した100μlの免疫溶液でマウスを免疫した:抗体を濃縮するためにHib結合体(コノート(Connaught)、ロット#6J81401、86μg/ml)を凍結乾燥した。凍結乾燥生成物を食塩水と混合して、Hib結合体単独投与群については、100μlの食塩水に50μgのHib結合体を含有する免疫溶液を、Hib結合体とCT投与群については、Hib結合体とCTを食塩水で混合して、100μlの食塩水に50μgのHib結合体と100μgのCTを含有する免疫溶液を、作成した。
【0191】
抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して、2回目の免疫後3週目の血清について測定した。結果を表21に示す。Hib結合体単独では、小さいが検出可能な抗体応答を誘導した。しかしCTの添加は、Hib結合体に対するはるかに強い免疫応答を刺激した。CTは、Hib結合体に対する免疫応答のアジュバントとして作用した。これは、多糖結合体抗原が、記載した方法により経皮的抗原として使用できることを示す。
【表21】

【0192】
例27
乳剤、クリーム剤およびゲル剤は、皮膚表面に、髪または身体のしわ中に免疫化合物を便利に広げるための、実際的な利点を提供するであろう。さらにこのような製剤は、免疫の効率を増強しうる閉鎖または水分補給のような利点を提供しうる。
【0193】
大腸菌(E.coli)の熱不安定性エンテロトキシン(LT)(シグマ(Sigma)、カタログ#E−8015、ロット17hH1200)を使用して、単純な食塩水と一般的に利用可能な石油基剤の軟膏、アクアホア(AQUAPHOR)(これは、「単独で、または水溶液を用いる事実上任意の軟膏を合成して、または他の油性物質と全ての普通の局所用医薬と組合せて使用することができる」(507頁ピーディーアール(PDR)、非処方箋薬剤(Non−prescriptions Drugs)用、1994年、第15版))を用いて経皮免疫の効率を比較した。マウスは、比較賦形剤中の低下する用量に対する相対抗体応答を評価するために、ある範囲の用量で処理した。
【0194】
BALB/cマウスは、免疫溶液を背面に3時間適用した他は前記のように免疫した。LTの食塩水は、それぞれ2mg/ml、1mg/ml、0.5mg/mlまたは0.2mg/ml溶液を使用して、50μl用量の溶液、および溶液中の100μg、50μg、25μgまたは10μgの抗原を送達するように調製した。3時間後、湿らせたガーゼを用いて背面を穏やかに拭って、免疫溶液を除去した。
【0195】
油中水型の調製は、以下のように行った:等容量のアクアホア(AQUAPHOR)と食塩水中の抗原を、1mlのルアー錠の付いたガラスツベルクリンシリンジ中で、2つのシリンジをつなぐ15ゲージの乳化針を使用して、混合物が均質になるまで混合した。それぞれ食塩水中のLTの4mg/ml、2mg/ml、1mg/mlまたは0.5mg/ml溶液を使用して、等容量のアクアホア(AQUAPHOR)と混合した。50μlのこの混合物を剃毛した背面に3時間適用し、次にガーゼで拭うことにより穏やかに除去した。50μlを送達するために、油中水型LT含有乳剤の抗原の用量を秤量した。重量対容量比は、食塩水(1.00g/ml)とアクアホア(AQUAPHOR)(0.867g/ml)の比重を加えて、合計を2で割り、0.9335g/mlの最終比重を求めることにより計算した。約47mgのLTを含有する油中水型乳剤を、免疫のためにマウスに送達した。
【0196】
用量応答の関係は、LTを送達する食塩水と油中水型乳剤の両方で明らかだった(表22)。100μgで最高レベルの抗体が誘導され、そして10μgではこれより低いが強力な免疫応答が誘導された。油中水型に乳化したLTは、食塩水中のLTと同程度の応答を誘導し、経皮免疫の便利な送達機作を提供しているようである。同様に、ゲル剤、クリーム剤または油中水中油型のようなさらに複雑な製剤を使用して、経皮免疫のために抗原を送達することができた。このような組成物は、パッチ、閉鎖型包帯、またはリザーバーと一緒に使用することができ、そして免疫抗原とアジュバントの長期適用または短期適用を可能にする。
【表22】

【0197】
例28
マウスを1群5匹で、「免疫工程」で前記したように経皮的に免疫した。マウスは、0、8および18週目に、50μg破傷風トキソイド(リスト・バイオロジカルズ(List Biologicals)、カタログ#191B、ロット#1913aと#1915b)および83μgジフテリアトキソイド(リスト・バイオロジカルズ(List Biologicals)、カタログ#151、ロット#15151)を単独で、または100μgのコレラ毒素(リスト・バイオロジカルズ(List Biologicals)、カタログ#101B、ロット#10149CB)と組合せて含有する100μl食塩水で免疫した。
【0198】
抗ジフテリアトキソイド抗体は、「ELISA IgG(H+L)」で前記したようにELISAを使用して定量した。TT/DTまたはCT/TT/DTのいずれかで免疫した所定のマウスにおいて、抗トキソイド抗体のレベルの上昇が検出された。しかし、抗体力価は、アジュバントとしてCTを含めた動物においてはるかに優っていた。この抗トキソイド力価は、各免疫後(8および18週目)に両方の群において明らかに上昇した。すなわち、DTはそれ自体に対する小さいが有意な応答を誘導することができるが、応答の程度は、1)アジュバントとしてコレラ毒素を含め、そして2)アジュバントのコレラ毒素と抗原(ジフテリアトキソイド)により追加免疫をかけることにより増大させることができる。古典的な追加免疫応答は、T細胞記憶に依存性であり、この実験における抗DT抗体の追加免疫は、T細胞が経皮免疫により関与していることを示している。
【表23】

【0199】
例29
C57B1/6マウスを、マウスの剃毛した背面で、前記のようにCT(アジド不含、カルビオケム(Calbiochem))により、経皮的に免疫した。マウスは、免疫の6週後、致死的抗原投与モデルを使用して抗原投与した(マレー(Mallet)ら、マウスのコレラ毒素鼻内抗原投与モデルにおけるコレラ菌(Vibrio cholerae)毒素の非毒性変異体(CTK63)および大腸菌(Escherichia coli)熱不安定性毒素(LTK63)の免疫予防効果、Immunology Lettersに投稿中)。抗原投与において、マウスを20μlのケタミン−ロンピン(rompin)で麻酔しながら、食塩水に溶解した20μgのCT(カルビオケム(Calbiochem)、アジド不含)を、プラスチックピペットチップにより鼻内投与した。試験#1では、12/15の免疫マウスが14日後の抗原投与後も生存し、そして1/9の非免疫対照マウスが生存した。5匹の対照マウスは麻酔のために抗原投与の前に死んだ。抗原投与#1のマウスは、15,000ELISA単位(幾何平均)の抗CT血清抗体を有しており、そして抗原投与の時点で屠殺された5匹の免疫マウスは5/5のマウスに肺洗浄液IgGが検出された。肺洗浄液は、前記したように採取した。
【0200】
免疫と抗原投与を未処理のC57B1/6マウスについて繰り返し、そして7/16の免疫マウスが抗原投与後も生存したが、非免疫マウスでは抗原投与後2/17だけしか生存しなかった。抗原投与#2のマウスは、41,947 ELISA単位(幾何平均)の抗CT IgG抗体を有していた。抗原投与の時点で屠殺された5匹のマウスからの肺洗浄液には、抗CT IgGとIgAの両方が証明された(表24)。8/9のマウスからの糞便試料には、抗CT IgGとIgAの両方が証明された(表25)。糞便試料は、抗原投与の時点で自発的に排便している動物から新たに採取した。糞便は−20℃で凍結した。ELISAの時点で糞便を解凍し、100μlのPBS中で均質化し、遠心分離して上清についてELISAを実施した。免疫マウスの組合せた生存率は、19/31、すなわち61%であったが、一方非免疫マウスの組合せた生存率は3/26、すなわち12%であった。
【表24】


【表25】

【0201】
例30
C57B1/6メスマウスは、チャールズ・リバー・ラボラトリーズ(Charles River Laboratories)から入手した。マウスを、200μgのオバルブミン(OVA)(シグマ(Sigma)、ロット#14H7035、PBS中2mg/mlのストック濃度)と50μgのコレラ毒素(リスト・バイオロジカルズ(List Biologicals)、ロット#101481B、5mg/mlのストック濃度)で免疫した。パッカード・コブラ・ガンマ・カウンター(Packard Cobra Gamma Counter)を使用して(連続番号102389)放出された51Crの量を測定した。
【0202】
C57B1/6マウスを、0.03mlのケタミン−ロンピン(rompin)で麻酔をかけ、皮膚に外傷を負わせることなくバリカンで背部を剃毛して、24時間休息させた。マウスに麻酔をかけ、次に剃毛した皮膚に2時間2cmの面積にわたり150μlの免疫溶液を載せて、0および28日目に免疫した。次にマウスを湿らせたガーゼで2回拭った。マウスは、麻酔、免疫、または洗浄工程のいずれからも有害な影響を示さなかった。この操作を、3週間、毎週繰り返した。
【0203】
追加免疫の1週後に脾臓リンパ球を採取した。細胞は、抗原を含むかまたは含まない、IL−2の供給源として5%ラットコンカナバリンA上清を加えて、RPMI−1640と10% FBS(ペニシリン−ストレプトマイシン、グルタミン、非必須アミノ酸、ピルビン酸ナトリウムおよび2−メルカプトエタノールを含む)中で6日間インビトロ培養した。標的細胞は、同系遺伝子(H−2)EL4細胞単独、およびCTLペプチドSINFEKKLを適用したEL4細胞、異系遺伝子(H−2k)L929細胞およびEG7細胞からなる。標的細胞(1ウェル当たり1×10細胞)を、1ウェル当たり0.1mCiの51Cr(NaCrO供給源、アマーシャム(Amersham))で1時間標識して、3:1〜100:1の範囲の比でエフェクター細胞に加えた。細胞混合物は、96ウェルの丸底組織培養プレート(コスター(Costar)、カタログ#3524)で、0.2mlの完全RPMI−1640、10% FBS培地中で37℃で5% CO加湿雰囲気で5時間インキュベートした。5時間培養の終点で、上清は綿ガーゼにより吸収して、51Cr放出の測定のために処理した。比溶解は、以下のように求めた:
%比溶解=100×[(実験的放出−自発放出)/(最大放出−自発放出)]。
【0204】
表26のパート1に示すように、CTLは、100:1のE:T比のCT+OVAで免疫された群でEL4ペプチドをパルス適用した細胞に対して検出された。CTL測定は、比溶解のパーセントが10%、すなわち培地が刺激した効果器バックグラウンド溶解パーセントを明らかに上回らないならば陽性ではない。同様に、表26のパート2に示すように、CTLは、100:1のE:T比のCT+OVAで免疫した群でEG7(OVAトランスフェクション細胞)に対して検出された。すなわち、CTは経皮的経路によりCTLの生成にアジュバントとして作用した。
【表26】

【0205】
例31
C57B1/6マウス(n=6)を、「免疫工程」で前記したように経皮的に免疫した。マウスは、100μgのコレラ毒素(リスト・バイオロジカルズ(List Biologicals)、カタログ#101B、ロット#10149CB)と250μgのオバルブミンタンパク質(シグマ(Sigma)、アルブミン鶏卵、等級V、カタログ#A5503、ロット#14H7035)を含有する100μlの食塩水により、0および4週目に免疫した。
【0206】
単細胞懸濁液は、最初の免疫の8週後にマウスから取り出した脾臓から調製した。脾臓細胞は、所定の濃度でOVAタンパク質または無関係のタンパク質コンアルブミンを含有する200μlの容量で、ウェル当たり8×10細胞で培養に組み込んだ。培養液はCOインキュベーターで37℃で72時間インキュベートし、このとき0.5μCi/ウェルのHチミジンを各ウェルに加えた。12時間後、プレートを回収して、液体シンチレーション計測により、取り込まれた放射標識チミジンを定量して増殖を評価した。H取り込みの生の値はcpmで示し、上昇倍率(実験cpm/培地cpm)は各試料の左に示す。3より大きな上昇倍率は、有意であると考えられる。
【0207】
脾臓細胞がタンパク質、オバルブミンにより刺激されたときにのみ有意な増殖が検出され、このタンパク質に対して動物はインビボで免疫されたが、無関係なタンパク質のコンアルブミンでは免疫されなかった。すなわち、コレラ毒素とオバルブミンタンパク質による経皮免疫は、インビトロで脾臓細胞の抗原特異的増殖を誘導し、このことは、細胞免疫応答がこの方法により引き起こされることを示している。
【表27】

【0208】
本明細書に引用される、全ての特許、さらには全ての他の印刷物の開示は、その全体が参照により本明細書に組み込まれる。このような参照文献は、技術の現状を示すものとして引用される。
【0209】
本発明は、現在実用的であると考えられるもの、および好ましい実施態様に関連して記載されているが、本発明は開示される実施態様に限定または制限されるものと理解すべきでなく、反対に、添付される請求の範囲の精神と範囲内に含まれる種々の変法と同等な組合せに及ぶことが意図される。
【0210】
すなわち、記載される発明における変法は、本発明の新規な側面から逸脱することなく、当業者には明白であり、およびそのような変法は、以下の請求の範囲に包含されると意図されることを理解すべきである。
【0211】
参照文献








【特許請求の範囲】
【請求項1】
抗原とアジュバントを含んでなる経皮的免疫のための製剤であって、無傷の皮膚への製剤の適用が、皮膚に穴をあけることなく、抗原に特異的な免疫応答を誘導する、上記製剤。
【請求項2】
経皮的免疫のためのパッチを形成するための包帯をさらに含む、請求の範囲第1項記載の製剤。
【請求項3】
包帯は閉鎖性包帯である、請求の範囲第2項記載の製剤。
【請求項4】
包帯は2つ以上の排出性リンパ節場をカバーする、請求の範囲第2項記載の製剤。
【請求項5】
アジュバントはリンパ球への抗原の提示を増強する、請求の範囲第1項記載の製剤。
【請求項6】
アジュバントは抗原提示細胞を活性化する、請求の範囲第1項記載の製剤。
【請求項7】
抗原提示細胞は、ランゲルハンス細胞または皮膚樹状細胞である、請求の範囲第6項記載の製剤。
【請求項8】
アジュバントは、抗原提示細胞上の主要組織適合遺伝子複合体クラスII発現を増加させる、請求の範囲第1項記載の製剤。
【請求項9】
抗原提示細胞は、ランゲルハンス細胞または皮膚樹状細胞である、請求の範囲第8項記載の製剤。
【請求項10】
アジュバントは、適用部位の下の抗原提示細胞を排出性リンパ節に遊走させる、請求の範囲第1項記載の製剤。
【請求項11】
抗原提示細胞は、ランゲルハンス細胞または皮膚樹状細胞である、請求の範囲第10項記載の製剤。
【請求項12】
アジュバントは、ランゲルハンス細胞にシグナルを与えて樹状細胞に成熟させる、請求の範囲第1項記載の製剤。
【請求項13】
本質的に抗原とアジュバントとからなる、請求の範囲第1項記載の製剤。
【請求項14】
製剤の成分は抗原とアジュバントの両方である、請求の範囲第1項記載の製剤。
【請求項15】
水溶液である、請求の範囲第1項記載の製剤。
【請求項16】
有機溶媒を含有しない、請求の範囲第1項記載の製剤。
【請求項17】
貫通エンハンサーを含有しない、請求の範囲第1項記載の製剤。
【請求項18】
乳剤として形成される、請求の範囲第1項記載の製剤。
【請求項19】
抗原は、細菌、ウイルス、真菌、および寄生虫よりなる群から選択される病原体から得られる、請求の範囲第1項記載の製剤。
【請求項20】
抗原は腫瘍抗原である、請求の範囲第1項記載の製剤。
【請求項21】
抗原は自己抗原である、請求の範囲第1項記載の製剤。
【請求項22】
抗原はアレルゲンである、請求の範囲第1項記載の製剤。
【請求項23】
抗原は、分子量が500ダルトンより大きい、請求の範囲第1項記載の製剤。
【請求項24】
少なくとも2つの異なる別の抗原を含む、請求の範囲第1項記載の製剤。
【請求項25】
抗原は、抗原をコードする核酸として提供される、請求の範囲第1項記載の製剤。
【請求項26】
核酸は、非組み込み性および非複製性である、請求の範囲第25項記載の製剤。
【請求項27】
核酸は、抗原をコードする配列に機能的に結合した制御領域をさらに含む、請求の範囲第25項記載の製剤。
【請求項28】
貫通エンハンサー、ウイルス粒子、リポソーム、または荷電脂質を含有しない、請求の範囲第25項記載の製剤。
【請求項29】
アジュバントはADP−リボシル化外毒素である、請求の範囲第1〜28項までのいずれか1項に記載の製剤。
【請求項30】
ADP−リボシル化外毒素は、コレラ毒素またはその機能性誘導体である、請求の範囲第29項記載の製剤。
【請求項31】
ADP−リボシル化外毒素は、大腸菌熱不安定性エンテロトキシン、百日咳毒素、またはこれらの機能性誘導体である、請求の範囲第29項記載の製剤。
【請求項32】
アジュバントは、ADP−リボシル化外毒素をコードする核酸として提供される、請求の範囲第29項記載の製剤。
【請求項33】
製剤の適用は、無傷の皮膚に穴をあける物理的、電気的、または音波的エネルギーを用いない、請求の範囲第1〜28項までのいずれか1項に記載の製剤。
【請求項34】
免疫応答は、アレルギー反応、皮膚炎、またはアトピー反応ではない、請求の範囲第1〜28項までのいずれか1項に記載の製剤。
【請求項35】
前記請求の範囲のいずれか1項に記載の製剤の製造法。
【請求項36】
非ヒト動物において免疫応答を誘導するための、前記請求の範囲のいずれか1項に記載の製剤の使用。

【図1】
image rotate


【公開番号】特開2010−59201(P2010−59201A)
【公開日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2009−280493(P2009−280493)
【出願日】平成21年12月10日(2009.12.10)
【分割の表示】特願平10−522942の分割
【原出願日】平成9年11月14日(1997.11.14)
【出願人】(509340894)
【Fターム(参考)】