説明

蓄熱装置

【課題】大きい伝熱面積密度を保持しつつ装置全体の大型化を回避して、装置全体の蓄熱密度を増大させることのできる蓄熱装置を得る。
【解決手段】蓄熱材用プレート3、熱媒体用プレート4を積層して、潜熱蓄熱材9の充填空間と、熱媒体10の流路空間とを交互に設置した蓄熱装置1であって、潜熱蓄熱材9の充填空間に設けられた多孔性金属8を備えている。潜熱蓄熱材9は、多孔性金属8の細孔内部に充填されている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、潜熱蓄熱を利用した蓄熱装置に関し、特に複数の熱交換プレートを用いた蓄熱装置に関するものである。
【背景技術】
【0002】
一般に、蓄熱装置に用いられる蓄熱材としては、物質の温度変化のみを利用した顕熱蓄熱材と、物質の融解および凝固などの相変化にともなう吸放熱を利用した潜熱蓄熱材が知られている。また、潜熱は、顕熱に比較して蓄熱密度が高く、潜熱蓄熱材では大きな蓄熱が期待できることも知られている。
【0003】
しなしながら、潜熱蓄熱材は、相変化をともなうことから、伝熱面に固層が析出して時間とともに析出層が厚くなるので、熱抵抗が大きくなって熱出力が減少していくという問題がある。
上記問題を解消して熱出力を大きくするためには、伝熱面積密度の増大が有効であり、この代表例としてプレート式の積層型蓄熱装置が提案されている(たとえば、特許文献1参照)。
【0004】
特許文献1に記載の蓄熱装置においては、複数の熱交換プレートを積層したプレート式熱交換器の構造を有し、潜熱蓄熱材を充填する間隙と、熱媒体(水や空気など)を通過させる間隙とが交互に形成されている。このように、プレート間に狭い間隙を形成することにより、体積当たりの伝熱面積が増大し、固層が析出することによる熱伝達速度の低下を防止している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開昭60−162187号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来の蓄熱装置は、特許文献1のように、潜熱蓄熱材の固層析出による熱抵抗の増大を防止するために、蓄熱材充填空間(潜熱蓄熱材を充填する間隙)と熱媒体通過空間(熱媒体を通過させる間隙)とを交互に配置していることから、潜熱蓄熱材の充填率が半分程度に低下して、蓄熱装置の蓄熱密度も、蓄熱材の物性としての蓄熱密度の半分程度まで低下するので、装置全体が大型化してしまうという課題があった。
【0007】
この発明は、上記のような課題を解決するためになされたものであり、大きい伝熱面積密度を保持しつつ装置全体の大型化を回避して、装置全体の蓄熱密度を増大させることのできる蓄熱装置を得ることを目的とする。
【課題を解決するための手段】
【0008】
この発明に係る蓄熱装置は、複数のプレートを積層して、潜熱蓄熱材の充填空間と、熱媒体の流路空間とを交互に設置した蓄熱装置であって、潜熱蓄熱材の充填空間に設けられた多孔性金属を備え、潜熱蓄熱材は、多孔性金属の細孔内部に充填されたものである。
【発明の効果】
【0009】
この発明によれば、伝熱面積密度を大きく保ちつつ、潜熱蓄熱材の熱伝達速度の低下を防止しながら、潜熱蓄熱材の充填密度を増大することができ、蓄熱装置のコンパクト化を実現することができる。
【図面の簡単な説明】
【0010】
【図1】この発明の実施の形態1に係る蓄熱装置の外観を示す斜視図である。
【図2】図1の蓄熱装置の中央部の一部を拡大して示す側断面図である。
【図3】図1の蓄熱装置の各プレートの平面形状部を展開して示す正面図である。
【図4】この発明の実施の形態1で用いられる潜熱蓄熱材の層が厚い場合の熱伝達率の低下特性を示す説明図である。
【図5】この発明の実施の形態1における発泡金属の平均セルサイズおよび気孔率を示す説明図である。
【図6】この発明の実施の形態1における蓄熱材用プレート内の熱伝導率を示す説明図である。
【図7】この発明の実施の形態1における体積当たりの潜熱蓄熱量を示す説明図である。
【発明を実施するための形態】
【0011】
実施の形態1.
図1はこの発明の実施の形態1に係る蓄熱装置1の外観を示す斜視図である。
また、図2は蓄熱装置1の中央部の一部を拡大して示す側断面図であり、図3は蓄熱装置1を構成する各積層プレートの平面形状部を展開して示す正面図である。
【0012】
図1〜図3において、蓄熱装置1は、概して、端板2と、潜熱蓄熱材9が充填される蓄熱材用プレート3と、熱媒体10の流路となる熱媒体用プレート4と、の積層構造により構成されている。
【0013】
図1において、端板2には、潜熱蓄熱材9の導入部を兼ねた蓄熱部マニホールド入口部5と、熱媒体10が導入される熱媒体入口6と、熱媒体10が導出される熱媒体出口7と、が外部に突設されている。
【0014】
図1、図2において、蓄熱材用プレート3および熱媒体用プレート4は、蓋のない筐体形状からなり、平面板からなる端板2は積層構造体(端部の蓄熱材用プレート3)の蓋として機能する。
なお、図1、図2においては、一例として、4枚の蓄熱材用プレート3と、3枚の熱媒体用プレート4とを積層した例を示しているが、任意数の積層構造をすることが可能である。
【0015】
蓄熱材用プレート3および熱媒体用プレート4は、ステンレスなどの薄板をプレス加工することにより、その絞り深さを任意に設定することができる。
蓄熱材用プレート3および熱媒体用プレート4の各面上には、伝熱面積を拡大するために、凹凸部(図示せず)が形成されている。
【0016】
蓄熱材用プレート3および熱媒体用プレート4の内部には、温度センサ(図示せず)が設置されている。
また、蓄熱装置1の外周は、外部への熱損失を小さくするために、断熱材(図示せず)により覆われている。
【0017】
蓄熱材用プレート3および熱媒体用プレート4は、ともに断面コの字の収納形状を有しているが、図2においては、蓄熱材用プレート3および熱媒体用プレート4の中央部の平面形状部のみが示されている。
図2において、蓄熱材用プレート3の深さa(潜熱蓄熱材9の層の厚さ)は、熱媒体用プレート4の深さb(熱媒体10の流路空間の厚さ)よりも大きい値に設定されている。
【0018】
端板2の背面で封止される蓄熱材用プレート3内、および、熱媒体用プレート4の背面で封止される蓄熱材用プレート3内には、それぞれ、発泡金属などの多孔性金属8が設置されており、多孔性金属8の細孔内には、蓄熱部マニホールド入口部5からあらかじめ潜熱蓄熱材9が導入されている。
【0019】
一方、蓄熱装置1の使用時(後述する)において、蓄熱材用プレート3の背面で封止される熱媒体用プレート4内には、流体(たとえば、高温の水)からなる熱媒体10が、熱媒体入口6から熱媒体出口7へ向けて、図2内の破線矢印方向に通過する。
【0020】
多孔性金属8としては、厚さ方向に高効率に熱を伝えるという要求機能を満たすために、発泡金属、金属ウール、焼結金属、金属ハニカム、積層した金属メッシュなどが用いられる。
【0021】
図3において、端板2の端面には、蓄熱部マニホールド入口部5(図1参照)が接続される蓄熱材導入穴11Aと、熱媒体入口6が接続される熱媒体入口穴12Aと、熱媒体出口7が接続される熱媒体出口穴13Aとが設けられている。
【0022】
また、端板2の蓄熱材導入穴11A、熱媒体入口穴12Aおよび熱媒体出口穴13Aに対応した位置において、蓄熱材用プレート3には、蓄熱材導入穴11B、熱媒体入口穴12Bおよび熱媒体出口穴13Bが設けられている。
同様に、熱媒体用プレート4には、蓄熱材導入穴11C、熱媒体入口穴12Cおよび熱媒体出口穴13Cが設けられている。
【0023】
ただし、最外部(端板2とは反対側)に配置される蓄熱材用プレート3には、潜熱蓄熱材9や熱媒体10の外部流出を防ぐために、図3に示す蓄熱材導入穴11B、熱媒体入口穴12Bおよび熱媒体出口穴13Bが設けられていない。
【0024】
蓄熱材導入穴11A、11B、11Cは、端板2、蓄熱材用プレート3および熱媒体用プレート4の積層構造により連通され、蓄熱部マニホールドの一部を形成するとともに、蓄熱部マニホールド入口部5とも連通して、全体で蓄熱部マニホールドを形成する。
同様に、熱媒体入口穴12A、12B、12Cは熱媒体入口6と連通し、熱媒体出口穴13A、13B、13Cは熱媒体出口7と連通し、熱媒体10の流路を形成する。
【0025】
蓄熱材用プレート3には、潜熱蓄熱材9の空間を区分するためのパッキン14Bと、熱媒体10の空間を区分するためのパッキン15Bとが設けられている。
また、熱媒体用プレート4には、熱媒体10の区間を区分するためのパッキン14Cと、潜熱蓄熱材9の空間を区分するためのパッキン15Cとが設けられている。
【0026】
図3に示すように、各パッキン14B、14C、15B、15Cは、対称系でほぼ同一形状からなる。
パッキン14B、14C、15B、15Cの材料としては、合成ゴムや中空金属など、潜熱蓄熱材9に対して腐食性に優れた材料が選択される。
【0027】
図1の蓄熱装置1を構成する場合、まず、蓄熱材導入部を兼ねた蓄熱部マニホールド入口部5から、溶融した潜熱蓄熱材9を導入する。
潜熱蓄熱材9は、蓄熱材導入穴11A、11B、11Cで形成された蓄熱部マニホールドを通過し、4枚の蓄熱材用プレート3のパッキン14Bで区分された空間に流れ込み、蓄熱材用プレート3の内部に設けられた多孔性金属8の細孔内に充填される。
【0028】
蓄熱材用プレート3のパッキン14Bで区分された空間の多孔性金属8の内部に潜熱蓄熱材9が充填されると、続いて、蓄熱材導入穴11A、11B、11Cおよび蓄熱部マニホールド入口部5が形成する蓄熱部マニホールドの内部にも潜熱蓄熱材9が充填される。
この際、潜熱蓄熱材9は、蓄熱部マニホールドの全体に充填されるのではなく、蓄熱層の上部の一部にバッファ空間(空気層)が形成されるように、わずかに少なめに充填される。
【0029】
ここで、潜熱蓄熱材9の蓄熱層にバッファ空間を設けた場合の効果について説明する。
潜熱蓄熱材9の体積当たりの密度は、溶融時(液体時)では約1.3[kg/L]、固化時(固体時)では約1.5[kg/L]であり、溶融時と固化時とで約15%の体積変化が生じる。
【0030】
上記体積変化(15%)を吸収するために、蓄熱部マニホールドに空気層のバッファ空間が設けられている。
これにより、潜熱蓄熱材9の相変化により体積が増加した場合でも、上記バッファ空間により体積変化が吸収されるので、蓄熱材用プレート3や熱媒体用プレート4に印加される熱応力を低減することができ、装置の変形や破損を防止することができる。
【0031】
一方、熱媒体10は、熱媒体入口6から導入され、蓄熱材用プレート3の熱媒体入口穴12Bを通過して、熱媒体用プレート4のパッキン14Cで区分された空間に流入するとともに、熱媒体入口穴12Cを通過して、次の熱媒体用プレート4に流入する。
パッキン14Cで区分された空間を流れた熱媒体10は、熱媒体出口穴13Cを通り、熱媒体出口7から流出する。
【0032】
次に、図1〜図3に示したこの発明の実施の形態1に係る蓄熱装置1の使用時の動作について、さらに具体的に説明する。
まず、熱媒体10として、潜熱蓄熱材9の融点以上の高温水を熱媒体入口6から導入する。たとえば、潜熱蓄熱材9として酢酸ナトリウム三水和物を利用した場合には、潜熱蓄熱材9の融点が58℃であることから、熱媒体10として、70℃程度の温水が導入される。
【0033】
熱媒体10(高温水)は、図2のように、熱媒体用プレート4内を流れて、隣接する蓄熱材用プレート3の内部の潜熱蓄熱材9を溶融させる。
次に、蓄熱材用プレート3および熱媒体用プレート4の内部に設けられた各温度センサの検出値がほぼ近似した温度を示した時点で、潜熱蓄熱材9が溶融したものと判断して、熱媒体10(高温水)の導入を停止する。
【0034】
熱媒体10(高温水)の導入停止後も、蓄熱装置1を覆う断熱材の効果により、溶融した潜熱蓄熱材9の温度は低下しにくく、潜熱蓄熱材9が凝固するまでには長い時間を要する。
【0035】
なお、蓄熱装置1から熱を取り出すまでに長時間が経過して潜熱蓄熱材9が凝固した場合には、蓄熱材用プレート3の内部の温度センサにより凝固状態を検知可能なので、熱媒体10(高温水)を再度導入して潜熱蓄熱材9を溶融させればよい。
【0036】
一方、熱媒体10が熱を必要とする場合は、熱媒体入口6から潜熱蓄熱材9の融点以下(たとえば、20℃程度)の冷水を導入して、潜熱蓄熱材9の潜熱と熱交換し、潜熱蓄熱材9の融点(58℃)に近い高温水として熱媒体出口7から取り出す。
なお、熱を取り出す場合には、熱媒体10の流路を逆に設定し、冷水を熱媒体出口7から導入して熱媒体入口6から取り出す流れ経路としてもよい。
【0037】
次に、図4〜図6を参照しながら、蓄熱材用プレート3の内部の多孔性金属8の効果について、多孔性金属8として発泡金属を使用した場合を例にとって説明する。
発泡金属の材料としては、アルミニウム、銅、ニッケルなどが市販されており、熱伝導率の良さや潜熱蓄熱材9による腐食性などを考慮して適性材料が選択され得るが、ここでは、アルミニウムの発泡金属を用いた場合について説明する。
【0038】
また、ここでは、潜熱蓄熱材9として、酢酸ナトリウム三水和物を用いるものとする。
この場合、酢酸ナトリウム三水和物からなる潜熱蓄熱材9の熱伝導率は、溶融状態では0.41[W/(m・K)]、凝固状態では0.65[W/(m・K)]であり、いずれも小さな値である。
【0039】
また、潜熱蓄熱材9は、蓄熱材用プレート3の近傍で凝固が始まると、流動性が低下して熱抵抗が大きくなり、熱伝達速度を表す熱伝達率は徐々に低下する。
図4は潜熱蓄熱材9の層が厚い場合の熱伝達率の低下特性を示す説明図であり、横軸は経過時間[min]、縦軸は熱伝達率[W/m2℃]である。
【0040】
図4においては、潜熱蓄熱材9の代表例として、内径3mm、外径4mmの銅パイプの内部に冷水を流して、銅パイプ外周に酢酸ナトリウム三水和物を満たした場合の測定結果を示しており、時間経過とともに熱伝達率が徐々に低下していることが分かる。
【0041】
これに対し、酢酸ナトリウム三水和物をアルミニウムの発泡金属に満たした場合には、熱伝導率が改善する。
図5は発泡金属の仕様(平均セルサイズおよび気孔率)を示す説明図であり、図6は蓄熱材用プレート3内の熱伝導率を示す説明図である。
【0042】
図5に示す発泡金属の仕様(平均セルサイズ、気孔率)で、酢酸ナトリウム三水和物をアルミニウムの発泡金属に満たした場合の熱伝導率は、図6のように表される。
なお、純粋なアルミニウムの熱伝導率は、237[W/(m・K)]であるが、不純物が混じっている場合を想定して、ここでは、アルミニウムの熱伝導率を190[W/(m・K)]としている。
【0043】
図5に示すように、4種類の発泡金属A〜Dに関して、内部に酢酸ナトリウム三水和物を満たした場合、蓄熱材用プレート3の内部の熱伝導率は、それぞれ図6のようになる。
図6に示すように、アルミニウムの発泡金属を利用することにより、蓄熱材用プレート3の内部の熱伝導率は、2.39〜3.61[W/(m・K)]まで増加する。
したがって、酢酸ナトリウム三水和物を単独で使用した場合の熱伝導率(0.41〜0.65[W/(m・K)])と比較して、非常に大きな熱伝導率となることが分かる。
【0044】
このように、熱伝導率の大きな金属からなる発泡金属などの多孔性金属8を潜熱蓄熱材9と併用することにより、蓄熱材用プレート3の内部の熱伝導率を向上させることができるので、蓄熱材用プレート3の深さa(潜熱蓄熱材9の層の厚さ)を大きく設定しても、熱伝達速度の低下(図4参照)が発生することはない。
【0045】
次に、図7を参照しながら、蓄熱材用プレート3の深さaと熱媒体用プレート4の深さbとの関係(図2参照)について説明する。
図7は深さa、bと体積当たりの潜熱蓄熱量(潜熱蓄熱密度)[kJ/L]との関係を示す説明図である。
【0046】
図7においては、熱媒体用プレート4の深さbを基準として蓄熱材用プレート3の深さaを変更した場合の潜熱蓄熱量を示している。
また、深さa、bを図7のような割合に設定した場合、蓄熱装置1における潜熱蓄熱材9の充填率の値a/(a+b)も併記している。
【0047】
酢酸ナトリウム三水和物の体積当たりの潜熱蓄熱量は、約335[kJ/L]である。
図7において、充填率の値が「a/(a+b)=0.50(a=1、b=1)」である一般的なプレート式の積層型蓄熱装置では、蓄熱装置1の体積当たりの潜熱蓄熱量は、160[kJ/L]まで小さくなる。
【0048】
ここでは、多孔性金属8の気孔率が0.954である発泡金属B(図5参照)を酢酸ナトリウム三水和物と併用した場合を示している。
これに対して、充填率の値を「a/(a+b)=0.80(a=4、b=1)」まで大きく設定すると、蓄熱装置1の体積当たりの潜熱蓄熱量は、256[kJ/L]まで向上する。
【0049】
なお、多孔性金属8として金属ウールを利用する場合には、多少の弾性を有するので、蓄熱材用プレート3の深さaよりも金属ウールの厚さをやや大きく設定し、蓄熱材用プレート3および熱媒体用プレート4で圧縮して設置することにより、各プレートとの接触性を向上させることができる。
金属ウールとしては、スチールウールが代表例であるが、銅ウールや黄銅ウールやアルミウールなども適用可能である。
【0050】
また、多孔性金属8として焼結金属を利用する場合には、発泡金属と同様に扱う。
金属ウールや焼結金属は、発泡金属と同様に流れ方向(横方向)の気孔が連続しているので、溶融した潜熱蓄熱材9を蓄熱部マニホールド入口部5から流し込むことにより、蓄熱材導入穴11A、11B、11Cを介して、パッキン14Bの内部の多孔性金属8の全体に潜熱蓄熱材9を充填させることができる。
【0051】
また、多孔性金属8として金属ハニカムを利用する場合には、ハニカムの壁が厚さ方向への熱を伝えるための金属骨格が要求される。ハニカム構造では、流れ方向(横方向)への気孔が存在しないので、溶融した潜熱蓄熱材9を蓄熱部マニホールド入口部5から流し込む方法では、金属ハニカムの内部全体へと潜熱蓄熱材9を充填することができない。
したがって、この場合、あらかじめ金属ハニカム単体の状態で溶融した潜熱蓄熱材9をハニカムのすべてのセルに充填し、潜熱蓄熱材9を固化させて金属ハニカムと一体化した後に、蓄熱材用プレート3に設置する方法が適用される。
【0052】
さらに、多孔性金属8として積層した金属メッシュを利用する場合には、厚さ方向への熱を伝える金属骨格を形成するために、金属メッシュにランダムに多数の凹凸部を設けて積層する構成が適用される。
これにより、凹凸部が接触した金属メッシュ部分は、熱を伝える金属骨格となり、凹凸部の内部に潜熱蓄熱材9を充填することができる。
【0053】
以上のように、この発明の実施の形態1(図1〜図3)に係る蓄熱装置1は、複数のプレート(蓄熱材用プレート3、熱媒体用プレート4)が積層されて、潜熱蓄熱材9の充填空間と、熱媒体10の流路空間とが交互に設置されている。
潜熱蓄熱材9の充填空間には、多孔性金属8が設けられており、潜熱蓄熱材9は、多孔性金属8の細孔内部に充填されている。
【0054】
このように、蓄熱材用プレート3の内部(潜熱蓄熱材9を充填する空間)において、潜熱蓄熱材9の熱伝達速度を向上させる多孔性金属8を設置し、多孔性金属8(発泡金属や焼結金属など)と潜熱蓄熱材9とを併用することにより、潜熱蓄熱材9の内部の熱伝導率を大きくすることが可能となり、蓄熱効果を向上させることができる。
また、蓄熱材用プレート3の深さa(潜熱蓄熱材9の層の厚さ)を十分に大きく設定することが可能となり、蓄熱装置1の蓄熱密度を大きくすることができる。
【0055】
また、この発明の実施の形態1に係る蓄熱装置1は、プレート式の積層型構造からなるとともに、蓄熱材用プレート3の深さa(潜熱蓄熱材9の充填空間の層の厚さ)は、熱媒体用プレート4の厚さb(熱媒体10の流路空間の層の厚さ)よりも大きい値に設定されており、厚くなった潜熱蓄熱材9の熱伝達速度を向上させる多孔性金属8が設置されている。
【0056】
これにより、潜熱蓄熱材9の熱伝導率を大きくすることができるうえ、潜熱蓄熱材9の充填空間を厚く設定することが可能となるので、蓄熱装置1の全体に占める潜熱蓄熱材9の割合を大きくすることができ、蓄熱装置1の蓄熱密度を大きくすることができる。
【0057】
また、この発明の実施の形態1において、潜熱蓄熱材9の充填空間は、積層された複数の空間からなるとともに、蓄熱装置1は、潜熱蓄熱材9の充填空間のすべてを連通するマニホールド空間を備えており、マニホールド空間は、潜熱蓄熱材9が充填されないバッファ空間を有する。
【0058】
このように、潜熱蓄熱材9が充填されないバッファ空間を設けることにより、潜熱蓄熱材9の相変化によって体積が増加した場合でも、バッファ空間で体積変化が吸収されるので、蓄熱材用プレート3および熱媒体用プレート4にかかる熱応力を低減することが可能となり、蓄熱装置1の変形や破損を防止することができる。
【0059】
さらに、多孔性金属8は、発泡金属、金属ウール、焼結金属、金属ハニカム、または、積層された金属メッシュにより形成されている。
このように、潜熱蓄熱材9と比較して熱伝導率が大きい多孔性金属8を併用することにより、蓄熱層の熱伝導率を大きくすることができる。
【符号の説明】
【0060】
1 蓄熱装置、2 端板、3 蓄熱材用プレート、4 熱媒体用プレート、5 蓄熱部マニホールド入口部、6 熱媒体入口、7 熱媒体出口、8 多孔性金属、9 潜熱蓄熱材、10 熱媒体、11A、11B、11C 蓄熱材導入穴、12A、12B、12C 熱媒体入口穴、13A、13B、13C 熱媒体出口穴、14B、14C、15B、15C パッキン。

【特許請求の範囲】
【請求項1】
複数のプレートを積層して、潜熱蓄熱材の充填空間と、熱媒体の流路空間とを交互に設置した蓄熱装置であって、
前記潜熱蓄熱材の充填空間に設けられた多孔性金属を備え、
前記潜熱蓄熱材は、前記多孔性金属の細孔内部に充填されたことを特徴とする蓄熱装置。
【請求項2】
前記潜熱蓄熱材の充填空間の層の厚さは、前記熱媒体の流路空間の層の厚さよりも大きい値に設定されたことを特徴とする請求項1に記載の蓄熱装置。
【請求項3】
前記潜熱蓄熱材の充填空間は、積層された複数の空間からなるとともに、前記潜熱蓄熱材の充填空間のすべてを連通するマニホールド空間を備え、
前記マニホールド空間は、前記潜熱蓄熱材が充填されないバッファ空間を有することを特徴とする請求項1または請求項2に記載の蓄熱装置。
【請求項4】
前記多孔性金属は、発泡金属、金属ウール、焼結金属、または金属ハニカムからなることを特徴とする請求項1から請求項3までのいずれか1項に記載の蓄熱装置。
【請求項5】
前記多孔性金属は、積層された金属メッシュからなることを特徴とする請求項1から請求項3までのいずれか1項に記載の蓄熱装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−189245(P2012−189245A)
【公開日】平成24年10月4日(2012.10.4)
【国際特許分類】
【出願番号】特願2011−51889(P2011−51889)
【出願日】平成23年3月9日(2011.3.9)
【出願人】(000006013)三菱電機株式会社 (33,312)