説明

触媒反応装置

【課題】縦型の煙道3内に配置される触媒反応層5の下流側に付着するダストを除去すること。
【解決手段】本発明の触媒反応装置1は、排ガスが上下方向に流れる煙道内3に該排ガスの流れ方向9に沿って複数段設けられる触媒反応層5と、各触媒反応層5の下流側に設けられ、触媒反応層5の下流側へ向けて圧縮気体を噴射するスートブロア7a〜7bとを有してなること。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、触媒反応装置に係り、特に、排ガスが上下方向に流れる煙道内に設けられた触媒反応層の下流側に付着するダストの除去に適した触媒反応装置に関する。
【背景技術】
【0002】
ボイラ等の燃焼設備から排出される排ガス中には、光化学スモッグや酸性雨の原因物質である窒素酸化物(NOx)や硫黄酸化物(SOx)等が含まれている。排ガス中のNOxを除去する方法としては、煙道内を横切るように触媒反応層を配置し、アンモニア等の還元剤の存在下で排ガスを触媒反応層の脱硝触媒と接触させることによりNOxを無害化する接触還元の排煙脱硝法が知られている。触媒反応層は、例えば、板状又はハニカム状の触媒エレメントを枠体内に積層して触媒ユニットを形成し、この触媒ユニットを煙道内に設けられた支持部材(サポート梁)の上に多数敷き詰めて構成される。このような触媒反応層は、煙道内のガス流れ方向に間隔を開けて複数段配置されている。
【0003】
この種の燃焼設備において例えば石炭焚きボイラは、重油焚きボイラ等と比べて燃焼中に多くのダスト(例えば灰)を発生することから、煙道内や触媒反応層へのダストの堆積が問題になる。触媒反応層にダストが堆積すると、触媒閉塞が生じて触媒が有効に脱硝反応に寄与しなくなり、或いはダスト中の成分による触媒劣化を引き起こすおそれがある。また、ダストの堆積が脱硝触媒層の圧力上昇を引き起こし、プラントの運転に影響を与えるおそれがある。
【0004】
触媒反応層に堆積するダストを除去する方法として、縦型の煙道内に触媒反応層を設け、その上流側に設けたスートブロアから、排ガスの流れ方向に沿って圧縮気体を触媒反応層に噴射することにより、触媒反応層の上流側に堆積したダストを吹き飛ばし、目詰まりを防止する方法が知られている(例えば、特許文献1、2参照。)。
【0005】
また、横型の煙道内に触媒反応層を設け、その下流側に設けたスートブロアから排ガス流に抗して圧縮気体を触媒反応層の下流側に吹き込み、触媒反応層の孔を通過させることにより、孔内に付着したダストを吹き飛ばすダストの除去方法が開示されている(特許文献3参照。)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平3−249922号公報
【特許文献2】特開昭58−150418号公報
【特許文献3】特公昭59−15691号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところで、引用文献3のように横型の煙道内を流れる排ガス中のダストは、縦型の煙道内を流れるダストとは異なる挙動を示す。横方向に流れる排ガス中のダストは、排ガス流に同伴されて横方向に移動しながら縦方向の重力の作用を受けるため、触媒反応層を通過する際に一部のダストが排ガスの流れ方向から外れて触媒反応層の下流側に付着する。一方、縦型の煙道内では、排ガス中のダストに作用する重力方向とガス流の方向がほぼ一致しているため、ダストは排ガスの流れに同伴して触媒ユニット内を通過する。このため、縦型の煙道内に配置される触媒反応層の下流側にはダストが付着しにくいものと考えられていた。
【0008】
しかしながら、本発明者らが縦型の煙道内に配置される触媒反応層について調査したところ、上流側だけでなく、下流側にもダストが堆積していることが確認された。ここで、特許文献1、2に記載される方法によれば、触媒反応層の上流側に付着するダストは、圧縮気体で比較的容易に吹き飛ばすことができるが、触媒反応層の下流側に付着するダストには上流側に吹き付けた圧縮空気の効果が及びにくいため、圧縮空気で除去することができず、付着が次第に成長して固化していく。このようにして固化したダストの塊が、例えば下流側に配置された他の触媒反応層の上に落下した場合、目詰まり等の原因となる。
【0009】
本発明は、縦型の煙道内に配置される触媒反応層の下流側に付着するダストを除去することを課題とする。
【課題を解決するための手段】
【0010】
本発明者らは、触媒反応層の下流側にダストが堆積する理由を探るべく、排ガスの流れについて解析したところ、触媒反応層を通過する排ガスが、触媒反応層の下流側の端面付近で乱流を形成していることを知見した。すなわち、触媒反応層の下流側のダストの堆積は、排ガス中のダストが排ガスの乱流に巻き込まれ、触媒反応層の下流側の端面付近に連続して接触し、付着することにより形成される。
【0011】
このダストの付着は、触媒反応層の下流側の端面付近の形状(例えば、板状やハニカム状の触媒エレメントの形状)とは関係なく起こる。この付着したダスト(主として灰)は、プラントの起動停止による吸湿や灰中の成分の硫酸塩化等により灰の粒子間の結合力が強くなり、氷柱状に成長する。こうして固化した付着物は、何らかの衝撃や起動停止時の温度変化等により端面から剥離し、この剥離した付着物は、例えば下方の触媒反応層の上に落下して捕集される。ここで、ダスト中に含まれる灰等は硬質な塊を形成することから、落下の衝撃や圧縮空気の衝撃では粉砕されず、触媒反応層の上流面でブリッジを形成し、目詰まりの原因となる。
【0012】
このようなダストによる触媒反応層の目詰まりを防ぐべく、本発明者らは、圧縮気体を触媒反応層の下流側に直接吹き付けることを着想し、本発明に至った。すなわち、本発明は、上記課題を解決するため、排ガスが上下方向に流れる煙道内に該排ガスの流れ方向に沿って複数段設けられる触媒反応層と、各触媒反応層の下流側の空間内に設けられ、該触媒反応層の下流側へ向けて圧縮気体を噴射する噴射ノズルとを有してなることを特徴とする。
【0013】
これによれば、触媒反応層の下流側にダストが付着しても、その付着した部分に圧縮気体を直接吹き付けることにより、ダストが付着して成長するまでの初期の段階、つまり固化する前の段階で除去できるため、触媒反応層の目詰まりを防ぐことができる。本発明は、煙道内を排ガスが下方へ向かって流れる場合だけでなく、上方へ向かって流れる場合にも適用できる。
【0014】
この場合において、触媒反応層は、排ガスが下方へ向けて流れる煙道内に支持部材の上に支持された状態で設けられ、噴射ノズルは、上方の触媒反応層の下側とこれを支持する支持部材の下側へ向けて圧縮気体を噴射するように構成してもよい。
【0015】
すなわち、下方へ向けて流れる排ガス中のダストは、触媒反応層の下側に付着するのと同様に、触媒反応層を下から支持する支持部材等の構造体の下側にも付着する。そして、構造体の下側に付着するダストは、触媒反応層の下側に付着するダストと同様、下方に位置する触媒反応層の上に落下して目詰まりの原因となる。そのため、触媒反応層と構造体の下側へ向けて、下方の噴射ノズルから圧縮気体を直接吹き付けることにより、触媒反応層の目詰まりを確実に防止することができる。
【0016】
ところで、各触媒反応層の下流側の空間内の同一平面内に複数の噴射ノズルを配置する場合、これらの噴射ノズルから排ガス流に抗して圧縮気体が一斉に噴射されると、煙道内の圧力が一時的に上昇し、上流側や下流側の機器に影響が生じるおそれがある。そこで、このように複数の噴射ノズルを配置する場合には、各噴射ノズルから圧縮気体を噴射するタイミングを互いにずらすように構成する。
【0017】
具体的には、噴射ノズルは、煙道内を横切る同一平面内に配置される複数の管と、この管の外周面に形成され圧縮気体が噴射される複数の孔とを有してなり、この管には圧縮気体を供給する供給管がそれぞれ接続されるとともに各供給管には開閉弁が設けられ、これらの開閉弁は、弁が開いている時間帯が互いに異なるように弁の開閉が制御されてなるものとする。このように弁の開閉を制御することにより、煙道内の一時的な圧力上昇を抑え、通常運転と大きな変化のない状態で運転を継続することができるため、機器への影響を少なくできる。
【0018】
また、噴射ノズルは、煙道の壁に回動可能に支持されて触媒反応層の下流側の面に沿って延在する管と、この管の外周面に形成されて圧縮気体が噴射される複数の孔とを有し、この噴射ノズルの上流側と下流側の触媒反応層に圧縮気体が同時或いは交互に噴射するように管の回動が制御されてなるものとする。
【0019】
このように一つの噴射ノズルで上流側と下流側の触媒反応層に圧縮気体を噴射できるように構成すれば、少ない設備でダストを効率的に除去することが可能になる。ここで、噴射ノズルから圧縮気体が噴射される領域は、噴射ノズルの管の外周面に形成される孔の位置と管の回動角度等で決められる。例えば、管の外周面の互いに対向する位置に孔が形成されている場合には、管の回動角度を小さく設定しても、上流側と下流側の触媒反応層に圧縮気体を同時に噴射することができる。逆に、管の外周面の狭い角度領域に孔が形成されている場合には、管の回動角度を大きく設定することで、上流側と下流側の触媒反応層に圧縮気体を交互に噴射することができる。
【発明の効果】
【0020】
本発明によれば、縦型の煙道内に配置される触媒反応層の下流側に付着するダストを除去することができる。
【図面の簡単な説明】
【0021】
【図1】本発明の実施形態における触媒反応装置の断面図である。
【図2】図1のA−A矢視断面図である。
【図3】本発明の他の実施形態における触媒反応装置の断面図である。
【図4】本発明の他の実施形態における触媒反応層及びスートブロアの斜視図である。
【図5】サポート梁にダストが堆積する状態を説明する図である。
【図6】整流板にダストが堆積する状態を説明する図である。
【図7】触媒反応層とそのサポート梁にダストが堆積する状態を説明する図である。
【発明を実施するための最良の形態】
【0022】
以下、本発明を適用してなる触媒反応装置の実施形態について図面を参照して説明する。なお、本実施形態の触媒反応装置は、排ガス中のNOxを脱硝処理する脱硝触媒反応装置に適用する例を説明するが、この例に限られるものではなく、例えば、排ガス中のSOxを脱硫処理する脱硫触媒反応装置に適用することも可能である。
【0023】
図1に示すように、本実施形態の触媒反応装置1は、石炭焚ボイラ等の燃焼設備の排ガス出口に連通された煙道3と、煙道3内に設けられた触媒反応層5と、触媒反応層5の下流側に設けられたスートブロア7(噴射ノズル)を備えて構成される。触媒反応層5は、垂直流型の反応器であり、ほぼ鉛直方向に延在する煙道3内を横切るように、上下方向に所定の間隔を開けて上段側と下段側にそれぞれ配置されている。排ガスは、矢印9で示すように、煙道3内を上方から下方へ流れるようになっている。上段側の触媒反応層5aの上方には、煙道3内を横切るように整流板11が配設され、整流板11と触媒反応層5aとの間には、スートブロア7が設けられている。触媒反応層5は2段に限られるものではなく、1段又は3段以上で構成されていてもよい。
【0024】
各触媒反応層5と整流板11は、煙道3内の横断面全体に渡ってそれぞれ配置されている。整流板11は、排ガスの流れ方向と平行な複数の流路13を有して形成され、煙道3内を横切るように渡して配置される複数のサポート梁15の上に支持されている。触媒反応層5は、板状又はハニカム状の多数の触媒エレメント17を枠体内に積層させた状態で収容して触媒ユニット19を形成し、この触媒ユニット19を、煙道3内を横切るように渡して配置される複数のサポート梁15の上に多数敷き詰めて構成される。触媒ユニット19の枠体内には、脱硝触媒が担持された触媒エレメント17が煙道3内を流れる排ガスの流れ方向と平行になるように配置され、隣り合う触媒エレメント17の隙間を排ガスが上下方向に流れるようになっている。本実施形態では、触媒ユニット19を水平方向に1段の高さで敷き詰めて形成しているが、高さ方向に複数段積み重ねた状態で水平方向に敷き詰めるようにしてもよい。また、複数の触媒ユニット19をさらに枠体内に充填して触媒ブロックを形成してもよい。
【0025】
スートブロア7は、外周壁面に複数の孔21が形成された管23を各触媒反応層5の下面に沿って延在させ、管23の両端側が煙道3の壁に回動可能に支持されて構成される。この管23は、整流板11又は各触媒反応層5の下端面に沿って延在し、かつ煙道3内を横切る同一平面内に複数配置されている。管壁の孔21は、管23の長手方向の各触媒ユニット19に対応する位置(図2)に、それぞれ周方向に所定の間隔を開けて複数形成されている。図2では、孔位置を簡略化するため、管23の長手方向の各触媒ユニット19の中央と対向する位置にそれぞれ3個ずつ孔を形成する例を示しているが、この例に限られるものではなく、管の長手方向のさらに多くの位置にそれぞれ3個以上の孔が形成されていてもよい。また、管23は、触媒ユニット19の列に対応させて煙道3内の同一平面内に3本ずつ配置されているが、この例に限られるものではなく、さらに多くの管23が配置されていてもよい。
【0026】
スートブロア7は、管23の一端が閉塞される一方、他端側には圧縮気体を管23内に供給する図示しない供給管が接続されている。供給管は、圧縮気体を吐出する図示しないポンプ等の吐出口に接続されている。また、供給管には、圧縮気体の流路を遮断する図示しない開閉弁が配設されており、弁の開閉動作は図示しない制御装置により制御されるようになっている。なお、本実施形態では、圧縮気体として圧縮空気を用いるが、これに限られるものではなく、例えば水蒸気等を用いることも可能である。
【0027】
スートブロア7は、図示しない回転駆動手段から回転力が付与されるように構成されており、回転駆動手段の駆動により、管23は軸中心に所定の回転角度で正回転と逆回転を行うようになっている。より具体的には、図1に示すように、孔21から噴射する圧縮空気の噴射方向が所定角度の範囲で振れるように正回転と逆回転を交互に行い、例えば、触媒反応層5の下端面全体に圧縮空気が当たるように回転角度が設定されている。
【0028】
このような構成において、燃焼設備から排出された排ガスは、例えば図示しない集じん機で排ガス中のダストが除去された後、アンモニア等の還元剤が導入された煙道3内を通り、触媒反応装置1を上方から下方へ向かって流れる。触媒反応装置1においては、排ガスは、先ず、整流板11の流路13を通り、整流された状態で上段側の触媒反応層5aへ流入し、続いて下段側の触媒反応層5bへ流入することにより、脱硝が行われる。触媒反応装置1には、整流板11で整流された排ガスが流入するために、特に上段側の触媒反応層5aには、ガス流の乱れがない状態で、排ガスが流入する。
【0029】
ここで、本発明者らが各段の触媒反応層5a,5bと整流板11、及びこれらを支持するサポート梁15についてダストの堆積状況を調査したところ、各段の触媒反応層5a,5bと整流板11及び各サポート梁15のそれぞれ下流側端面付近に、ダストが堆積していることが確認された。この堆積するダストは、大半が灰の粒子であり、集じん機で除去しきれなかった排ガス中の灰が排ガスの流れに同伴されて触媒反応装置1内に流入し、下流側端面付近に付着した結果、これを起点として経時的に付着が進行して堆積したものと考えられる。
【0030】
サポート梁15や触媒反応層5の下流側端面付近にダストが付着する原理とダストの付着状況について、図5乃至図7を参照して説明する。
【0031】
図5に示すように、灰を含んだ排ガス流9の中にサポート梁15を所定時間配置したところ、排ガス流9と対向するサポート梁15の上流側端面には、灰が経時的に付着した結果生じる比較的固い堆積灰25の付着が確認され、下流側端面には、下流側に向かって延びる比較的軟らかい柱状の付着灰27が確認された。
【0032】
また、図6に示すように、灰を含んだ排ガス流の中に所定時間配置された整流板11の断面を観察したところ、整流板11の下流側端面には、図5と同様の下流側に向かって延びる柱状の付着灰27が確認された。
【0033】
このように各構造物の下流側端面には、構造物の形状とは関係なく、付着灰27が排ガスの下流側に向かって成長する現象が見られた。すなわち、図5、6に示すように、構造物の下流側端面付近で乱流が生じていることから、排ガス中のダストは、この乱流に巻き込まれることで下流側端面付近と接触し、これを起点として付着が進行するために堆積する。この灰付着は、図7に示すように、触媒反応装置1において、サポート梁15に限られず、触媒ユニット19を支持する他の構造物、例えば触媒ブロック29等においても同様に発生する。
【0034】
このような付着灰27は、経時的に固化するため、これが何らかの衝撃や起動停止時の温度変化等により端面から剥離した場合、例えば、下方の触媒反応層5a,5bの上に落下する。このように固化した状態で触媒反応層5の上に落下した灰の塊は、落下の衝撃でも砕けにくく、スートブロア7から吹き付けられた圧縮気体による衝撃でも容易に粉砕されない。その結果、灰の塊は、例えば、触媒反応層5の上流側端面、つまり排ガスの入口側でブリッジを形成し、これを起点として灰が堆積して目詰まりを引き起こす原因となる。
【0035】
本実施形態では、このような下流側端面に付着する付着物27による触媒反応層5の目詰まりを防ぐため、整流板11及び各触媒反応層5a,5bの下流側にそれぞれ配置されたスートブロア7から、その上流側に配置された整流板11及び各触媒反応層5a,5bにそれぞれ圧縮空気を吹き付けることにより、各構造物の下流側の端面に付着する付着物27を吹き飛ばして除去するようにしている。
【0036】
スートブロア7には、図示しない供給管(開閉弁は開)を通じて圧縮空気が管23内に送り込まれ、その圧縮空気が複数の孔21から煙道3内の各構造物の下流側端面に所定の流速(例えば、約50m/s)で吹き込まれる。ここで、各スートブロア7は、圧縮気体が構造物の下流側端面全体に吹き付けられるように、管23の本数、配列ピッチ、孔21のピッチ等が適正化されている。
【0037】
本実施形態のスートブロア7は、管23の回動方向を所定角度の範囲で切り換えることにより、圧縮空気の噴射方向が所定角度の範囲で振れるため、整流板11と各触媒反応層5a,5bの下流側端面、これらを支持するサポート梁15の下流側端面の全体に、圧縮空気を確実に当てることができる。これにより、各構造物の下流側端面における灰の付着や固化成長を抑制することができ、灰の塊が触媒反応層5a,5bに落下することによる目詰まりを防ぐことができる。
【0038】
ところで、本実施形態のスートブロア7は、煙道3内の同一平面内に3本のスートブロア7a,7b,7cを配置している。この3本のスートブロア7a,7b,7cから圧縮空気が同時に噴射された場合、煙道3内の圧力が上昇するだけでなく、排ガスの流れが滞留し、或いは、排ガスの流れ方向が変化する。煙道3内の急激な圧力上昇は、煙道3内の上流側や下流側の機器に影響を与えることがあり、また、排ガスの流れが変化すると、脱硝効率の低下やダストの付着を促進させるおそれがある。
【0039】
これに対し、本実施形態では、煙道3内の各平面内に配置されるスートブロア7a,7b,7cに対して、圧縮空気の噴射時間帯が互いにずれるように、開閉弁の開閉を制御している。具体的には、例えば、スートブロア7a,7b,7cの順に圧縮空気を順次噴射させるようにする。例えば、各平面内のスートブロア7aから圧縮空気を同時に噴出させ、この噴出が停止した後、各平面内のスートブロア7bから同時に圧縮空気を噴出させ、この噴出が停止した後、さらに各平面内のスートブロア7cから同時に圧縮空気を噴出させるように制御する。また、最上段の平面内、つまり、整流板11と上段側の触媒反応層5aの間に配置されるスートブロア7a,7b,7cから圧縮空気を順に噴出させた後、その下の平面内、つまり上段の触媒反応層5aと下段の触媒反応層5bの間に配置されるスートブロア7a,7b,7cから圧縮空気を順に噴出させ、さらに下段の触媒反応層5bの下の平面内のスートブロア7a,7b,7cから圧縮空気を順に噴出させるように制御してもよい。このように圧縮空気を噴射する時間帯(噴射開始から停止までの時間帯)が互いに重ならないようにずらして制御することにより、安定した運転を継続することができ、機器の損傷等を防止することができる。
【0040】
このようにして各スートブロア7a,7b,7cからの圧縮空気の吹き付けを所定時間(例えば、30秒以上)、定期的に行うことにより、整流板11と各触媒反応層5a,5bの下流側端面、及び、これらを支持するサポート梁15の下流側端面等への灰堆積を防ぐことができ、その結果、触媒反応層5の上面側への灰の塊の落下を防ぐことができる。これにより、従来のように、触媒反応層の上流側に設けたスートブロアから、排ガスの流れ方向に沿って圧縮気体を触媒反応層の上面側へ噴射する方法と比べて、触媒反応層5の灰堆積及び目詰まりをより確実に抑制することができる。そのため、脱硝触媒の活性表面積を有効に利用することができ、脱硝効率をより安定化することができる。
【0041】
次に、本発明を適用してなる触媒反応装置の他の実施形態について図面を参照して説明する。なお、本実施形態では、上記の実施形態と同一の構成等については同一の符号を付して説明を省略し、相違する特徴点を中心に説明する。
【0042】
本実施形態では、図3、4に示すように、スートブロア7の回動が停止した状態で、圧縮空気を上流側と下流側の両方に同時に噴射できるように、管23の外周面の互いに対向する位置に複数の孔21を形成している。管23は、一方向だけに回動するように制御されているが、上記の実施形態と同様、回動方向が所定角度の範囲で切り換えられるように制御してもよい。各スートブロア7は、圧縮気体が構造物の上流側端面と下流側端面の全体にそれぞれ吹き付けられるように、管23の本数、配列ピッチ、孔21のピッチ等が適正化されている。
【0043】
本実施形態では、定期的に圧縮空気の吹き付けを上流側と下流側の構造物に対して所定の流速(例えば、約50m/s)で所定時間(例えば、30秒以上)吹き付けることにより、上流側の構造物(整流板11又は触媒反応層5a)の下流側端面に付着するダストを除去するとともに、下流側の触媒反応層5の上流側端面に付着するダストを除去することができる。これにより、上流側の構造物の下流側端面に付着したダストは、これが成長する前に圧縮空気で吹き飛ばされ、かつ下流側の触媒反応層5の上に落ちたときには細かい粒子となっているため、圧縮空気で容易に除去することができる。
【0044】
また、本実施形態によれば、一つのスートブロア7で上流側と下流側の構造物に付着するダストを、ほぼ同時に除去することができるため、少ない設備でダストをより効率的に除去することができる。
【0045】
また、本実施形態では、管23の外周面に孔21を互いに対向するように配置しているが、例えば、狭い回転角度の領域に複数の孔21を形成するようにしてもよい。この場合、上流側の構造物と下流側の構造物に対して同時に圧縮空気を吹き付けることはできないが、管23を一方向に回動させることにより、上流側の構造物と下流側の構造物に対して圧縮空気を交互に吹き付けることができるため、本実施形態と同様の効果を得ることができる。
【符号の説明】
【0046】
1 触媒反応装置
3 煙道
5 触媒反応層
7 スートブロア
9 排ガス流
11 整流板
15 サポート梁
17 触媒エレメント
19 触媒ユニット
21 孔

【特許請求の範囲】
【請求項1】
排ガスが上下方向に流れる煙道内に該排ガスの流れ方向に沿って複数段設けられる触媒反応層と、各触媒反応層の下流側の空間内に設けられ、該触媒反応層の下流側へ向けて圧縮気体を噴射する噴射ノズルとを有してなる触媒反応装置。
【請求項2】
前記触媒反応層は、前記排ガスが下方へ向けて流れる前記煙道内に支持部材の上に支持された状態で設けられ、
前記噴射ノズルは、上方の前記触媒反応層の下側とこれを支持する前記支持部材の下側へ向けて前記圧縮気体を噴射するものである請求項1に記載の触媒反応装置。
【請求項3】
前記噴射ノズルは、前記煙道内を横切る同一平面内に配置される複数の管と、この管の外周面に形成され前記圧縮気体が噴射される複数の孔とを有し、前記管には前記圧縮気体を供給する供給管がそれぞれ接続されるとともに各供給管には開閉弁が設けられてなり、これらの開閉弁は、弁が開いている時間帯が互いに異なるように弁の開閉が制御されてなる請求項1に記載の触媒反応装置。
【請求項4】
前記噴射ノズルは、前記煙道の壁に回動可能に支持され前記触媒反応層の下流側の面に沿って延在する管と、この管の外周面に形成され前記圧縮気体が噴射される複数の孔とを有し、該噴射ノズルの上流側と下流側の前記触媒反応層に前記圧縮気体が同時或いは交互に噴射するように前記管の回動が制御されてなる請求項1に記載の触媒反応装置。
【請求項5】
請求項1に記載の触媒反応装置の運転方法であって、
前記噴射ノズルは、前記煙道内を横切る同一平面内に複数設けられ、この同一平面内の各噴射ノズルから互いにずらした時間帯で前記圧縮気体を噴射させる触媒反応装置の運転方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−161403(P2011−161403A)
【公開日】平成23年8月25日(2011.8.25)
【国際特許分類】
【出願番号】特願2010−29368(P2010−29368)
【出願日】平成22年2月12日(2010.2.12)
【出願人】(000005441)バブコック日立株式会社 (683)
【Fターム(参考)】