説明

評価回路を較正する方法および評価回路

【課題】評価回路を較正する方法および評価回路を提供する。
【解決手段】方法は、評価回路のフィードバック分岐を遮断するステップ、トランスコンダクタンス増幅器の入力側に交流電圧を印加するステップ、電圧増幅器の出力側に印加される出力電圧を求めるステップ、トランスコンダクタンス増幅器の増幅係数を、電圧増幅器の出力側に印加される出力電圧が最小振幅を有するように選定された値に調整するステップ、評価回路のフィードバック分岐を閉じるステップを有する。評価回路においては、トランスコンダクタンス増幅器のフィードバック分岐内に該フィードバック分岐を切り離すスイッチが設けられており、トランスコンダクタンス増幅器の入力側は交流電圧源と接続可能であり、電圧増幅器の出力側は電圧測定器と接続可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気的な発振回路の共振周波数を検出する評価回路を較正する方法であって、評価回路は評価コイルと、トランスコンダクタンス増幅器と、補償回路とを有し、評価コイルは誘導的に電気的な発振回路と結合可能であり、トランスコンダクタンス増幅器の出力側はフィードバック分岐を介してトランスコンダクタンス増幅器の入力側と接続されており、評価コイルはトランスコンダクタンス増幅器のフィードバック分岐内に配置されており、補償回路はトランスコンダクタンス増幅器および評価コイルに並列に配置されている、評価回路を較正する方法に関する。
【0002】
さらに本発明は、電気的な発振回路の共振周波数を検出する評価回路であって、評価回路は評価コイルと、トランスコンダクタンス増幅器と、補償回路と、電圧増幅器とを有し、評価コイルは誘導的に電気的な発振回路と結合可能であり、トランスコンダクタンス増幅器の出力側はフィードバック分岐を介してトランスコンダクタンス増幅器の入力側と接続されており、評価コイルはトランスコンダクタンス増幅器のフィードバック分岐内に配置されており、補償回路はトランスコンダクタンス増幅器および評価コイルに並列に配置されており、電圧増幅器はトランスコンダクタンス増幅器のフィードバック分岐において評価コイルに直列に配置されている、評価回路に関する。
【背景技術】
【0003】
圧力、力、湿度および温度のような物理的な測定量を検出するために、その都度の測定量に依存して共振周波数が変化するLC発振回路を使用することが公知である。この種の受動的なセンサ発振回路は固有の給電部を必要とせず、また無接触の読み取りを実現する。共振周波数と物理的な測定量との関係は、例えば、物理的な測定量の影響下で電気キャパシタンス、電気インダクタンスまたは電気抵抗が変化する、LC発振回路内の容量性、誘導性または抵抗性の電子素子を使用することによって確立される。この種のセンサは例えばJ. C. Butler等によって(John C. Butler, Anthony J. Vigliotti, Fred W. VerdiおよびShawn M. Waish: Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor. Sensors and Actuators A: Physical, Vol. 102, Issues 1-2, pp. 61-66, 2002)またP. J. Chen等によって(Po-Jui Chen, Damien C. Rodger, Saloomeh Saati, Mark S. HumayunおよびYu-Chong Tai: Implantable Parylene-Based Wireless Intraocular Pressure Sensor. 21st IEEE Int. Conf. On MEMS 2008, pp. 58-61, 2008)説明されている。
【0004】
その種のLC発振回路を読み取るために、LC発振回路の共振周波数が求められなければならない。この共振周波数の変化から、対応する物理的な測定量の変化を推量することができる。LC発振回路の共振周波数をディップメータにより検出することが公知である。その種のディップメータは同調可能な発振器および外部から接近可能なコイルを有する。コイルは誘導結合を確立するために、読み取るべきLC発振回路に近付けられる。コイルを駆動させる発振器の周波数は所定の値範囲にわたり変化する。ディップメータの発振周波数とセンサ発振回路の共振周波数が一致すると、センサ発振回路はディップメータの発振器の振動エネルギを吸収し、これによりディップメータの発振器の振動エネルギの測定可能な低下が生じ、このようにしてLCセンサ発振回路の共振周波数を決定することができる。その種のディップメータの欠点は周波数領域を一通り通過させなければならないことであり、これは最大限に考えられる測定速度を制限することになる。別の欠点は、ディップメータのコイルとLC発振回路の誘導結合の結合が強いとLC発振回路の固有周波数に誤差が生じてしまうため、結合は弱いものでなければならないことである。
【0005】
M. Nowak等によって(M. Nowak, N. Delorme, F. Conseil, G. Jacquemod: A novel architecture for remote interrogation of wireless battery-free capacitive sensors. 13th IEEE Conf. on Electronics, Circuits and Systems 2006, pp. 1236-1239, 2006)、誘導結合されたLCセンサ発振回路を増幅器のフィードバックにおける周波数検出共振素子として使用する発振器回路の使用が提案されている。この回路の利点は測定量を電気的な振動の周波数に直接的に変換できる点にある。続いて、例えば水晶振動子の既知の共振振動により周波数を簡単且つ精確に検出することができる。もっともその種の評価系は、この評価系とLC発振回路の強い誘導結合を前提としている。誘導結合が過度に弱い場合には、評価コイルの周波数応答によってフィードバック分岐の実効インピーダンスが支配的になり、発振は生じない。したがってNowak等は、評価コイルの周波数応答を補償する能動的な補償回路の使用を提案している。回路を正確に機能させるためには補償回路の精確な寸法設計が必要とされる。この結果、製造公差、また寿命および温度に起因するパラメータの変化が回路の機能を著しく損なわせることになる。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】John C. Butler, Anthony J. Vigliotti, Fred W. VerdiおよびShawn M. Waish: Wireless, passive, resonant-circuit, inductively coupled, inductive strain sensor. Sensors and Actuators A: Physical, Vol. 102, Issues 1-2, pp. 61-66, 2002
【非特許文献2】Po-Jui Chen, Damien C. Rodger, Saloomeh Saati, Mark S. HumayunおよびYu-Chong Tai: Implantable Parylene-Based Wireless Intraocular Pressure Sensor. 21st IEEE Int. Conf. On MEMS 2008, pp. 58-61, 2008
【非特許文献3】M. Nowak, N. Delorme, F. Conseil, G. Jacquemod: A novel architecture for remote interrogation of wireless battery-free capacitive sensors. 13th IEEE Conf. on Electronics, Circuits and Systems 2006, pp. 1236-1239, 2006
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の課題は、評価回路を較正する方法を提供することである。本発明の別の課題は、電気的な発振回路の共振周波数を検出するための改善された評価回路を提供することである。
【課題を解決するための手段】
【0008】
評価回路を較正する方法に関する課題は、方法が、評価回路のフィードバック分岐を遮断するステップ、トランスコンダクタンス増幅器の入力側に交流電圧を印加するステップ、電圧増幅器の出力側に印加される出力電圧を求めるステップ、トランスコンダクタンス増幅器の増幅係数を、電圧増幅器の出力側に印加される出力電圧が最小振幅を有するように選定された値に調整するステップ、評価回路のフィードバック分岐を閉じるステップを有することによって解決される。
【0009】
評価回路に関する課題は、トランスコンダクタンス増幅器のフィードバック分岐内に該フィードバック分岐を切り離すスイッチが設けられており、トランスコンダクタンス増幅器の入力側は交流電圧源と接続可能であり、電圧増幅器の出力側は電圧測定器と接続可能であることによって解決される。
【0010】
電気的な発振回路の共振周波数を検出するための評価回路を較正するための本発明による方法は、評価コイル、トランスコンダクタンス増幅器および補償回路を備えた評価回路に関する。評価コイルを電気的な発振回路と誘導結合させることができ、トランスコンダクタンス増幅器の出力側はフィードバック分岐を介してトランスコンダクタンス増幅器の入力側と接続されており、評価コイルはトランスコンダクタンス増幅器のフィードバック分岐内に配置されており、補償回路はトランスコンダクタンス増幅器および評価コイルに並列に配置されている。本方法は、評価回路のフィードバック分岐を遮断するステップと、交流電圧をトランスコンダクタンス増幅器の入力側に印加するステップと、電圧増幅器の出力側に印加された出力電圧を求めるステップと、電圧増幅器の出力側に印加された出力電圧が最小振幅を有するように選定された値にトランスコンダクタンス増幅器の増幅係数を調整するステップと、評価回路のフィードバック分岐を閉じるステップとを有する。有利にはこの方法により、評価回路の起動前の補償回路の煩雑な較正を省略することができる。別の利点は、温度および寿命に起因する構成素子の値の変化に関する評価系の十分な安定性が保証される点にある。
【0011】
有利には、トランスコンダクタンス増幅器の増幅係数は制御ループによって、電圧増幅器の出力側に印加される出力電圧が所定の閾値を下回る値、殊に最小値を有するように調整される。有利には、増幅係数の調整を制御ループによって自動化することができる。さらには、制御ループの使用は提案される方法の高雑音余裕度を高める。
【0012】
本方法の別の実施形態においては、評価回路がさらに、トランスコンダクタンス増幅器のフィードバック分岐内で評価コイルに直列に配置されている電圧増幅器を有し、本方法は前述のステップの後に実施される別のステップ、すなわち、評価回路において時間的に一定の振幅を有する発振が生じるように選定された値に電圧増幅器の増幅係数を調整するステップを有する。有利にはこの方法ステップによって、開かれた発振器ループのループ増幅率はセンサ共振周波数において同一でなくてはならないというバルクハウゼン条件を評価回路が満たしていることが保証される。これによって、評価回路内ではセンサ共振周波数における安定した発振が生じることが保証されている。
【0013】
有利には、電圧増幅器の増幅係数が制御ループによって、評価回路内では時間的に一定の振幅を有する発振が生じるように調整される。制御ループの使用は増幅係数の調整を自動化でき、また妨害的な影響に対して鈍感になるという利点を有する。
【0014】
好適には、交流電圧の周波数は、電気的な発振回路のQ値によって除算された電気的な発振回路の共振周波数の少なくとも3倍は電気的な発振回路の共振周波数から偏差する。このことは、電気的な発振回路がトランスコンダクタンス増幅器の周波数応答に及ぼす影響を無視できるという利点を有する。
【0015】
電気的な発振回路の共振周波数を検出するための本発明による評価回路は評価コイル、トランスコンダクタンス増幅器、補償回路および電圧増幅器を有する。評価コイルは誘導的に電気的な発振回路に結合可能であり、トランスコンダクタンス増幅器の出力側はフィードバック分岐を介してトランスコンダクタンス増幅器の入力側と接続されており、評価コイルはトランスコンダクタンス増幅器のフィードバック分岐内に配置されており、補償回路はトランスコンダクタンス増幅器および評価コイルに並列に配置されており、電圧増幅器はトランスコンダクタンス増幅器のフィードバック分岐において評価コイルに直列に配置されており、トランスコンダクタンス増幅器のフィードバック分岐内にはフィードバック分岐を切り離すためのスイッチが設けられており、トランスコンダクタンス増幅器の入力側は交流電圧源と接続可能であり、電圧増幅器の出力側は電圧測定器と接続可能である。有利には、この評価回路は経年劣化に起因する影響および温度に依存する影響を補償するために較正される。
【0016】
評価回路の有利な実施形態においては、電圧測定器およびトランスコンダクタンス増幅器が制御装置と接続され、この制御装置はトランスコンダクタンス増幅器の増幅係数を、電圧測定器によって検出された出力電圧が所定の閾値を下回る振幅、殊に最小振幅を有するように調整するよう構成されている。その種の制御装置は、トランスコンダクタンス増幅器の増幅係数を自動的で妨害に対して鈍感になるように調整できるという利点を有する。
【0017】
好適には、補償回路はオーム巻線抵抗を備えたコイルの負ないし否定(negated)の周波数応答を有する。有利には、補償回路は評価コイルの周波数応答を補償し、トランスコンダクタンス増幅器の実効負荷インピーダンスが電気的な発振回路の共振周波数において0°の位相位置および最大値を有するようにする。
【0018】
評価回路の実施形態によれば、補償回路が、反転入力側と非反転入力側と補償回路の出力側と接続されている出力側とを備えた演算増幅器と、補償回路の入力側と演算増幅器の反転入力側との間に配置されている補償抵抗と、補償抵抗に並列に接続されている補償コンデンサと、補償回路の出力側と演算増幅器の反転入力側との間に配置されているネガティブフィードバック抵抗とを有する。
【0019】
評価回路の別の実施形態によれば、補償回路が、反転入力側と非反転入力側と補償回路の出力側と接続されている出力側とを備えた演算増幅器と、補償回路の入力側と演算増幅器の反転入力側との間に配置されている補償抵抗とを有し、補償回路の出力側と演算増幅器の反転入力側との間にはネガティブフィードバック抵抗およびネガティブフィードバックコイルが直列に配置されて設けられている。
【0020】
好適には、評価回路内にこの評価回路における発振の振幅を求める回路技術的な手段が設けられている。
【0021】
有利には、評価回路がこの評価回路内の発振の周波数を求めるためのディジタルカウンタも有する。
【0022】
以下では添付の図面を参照しながら本発明を詳細に説明する。
【図面の簡単な説明】
【0023】
【図1】電気的な発振回路の概略図である。
【図2】評価回路の概略図である。
【図3】補償回路のブロック回路図である。
【図4】較正プロセス中の評価回路の概略図である。
【発明を実施するための形態】
【0024】
図1は、発振回路100のブロック回路図の概略図を示す。発振回路100は圧力、力、湿度または温度のような物理的な測定量のための受動的なセンサとしての使用に適しており、以下ではLC発振回路またはセンサ発振回路とも称する。
【0025】
発振回路100はセンサインダクタンス110、センサキャパシタンス120およびセンサ抵抗130を有し、これらは発振回路100内で直列に配置されている。センサインダクタンス110はコイルでよい。センサキャパシタンス120はコンデンサでよい。センサ抵抗は、センサインダクタンス110を形成するコイルの電気的な抵抗でよく、抵抗は構成素子110,120,130を結ぶ線路である。センサインダクタンス110および/またはセンサキャパシタンス120は外部の物理的な測定量に依存して変化する。例えば、センサキャパシタンス120はコンデンサであり、その容量は外部圧力に依存して変化する。
【0026】
発振回路100は共振周波数f0を有し、この共振周波数f0はセンサインダクタンス110およびセンサキャパシタンス120の大きさに依存する。共振周波数f0は固有周波数とも称される。センサインダクタンス110および/またはセンサキャパシタンス120が外部の物理的な測定量に依存する場合、共振周波数f0も外部の物理的な測定量に依存する。
【0027】
図2は、発振回路100の共振周波数f0を求めることに適している評価回路200の概略的なブロック回路図を示す。評価回路200はトランスコンダクタンス増幅器210、評価コイル220、補償回路230および電圧増幅器240を有する。トランスコンダクタンス増幅器210は電圧制御式の電流源でよい。トランスコンダクタンス増幅器210の出力側はフィードバック分岐260を介してトランスコンダクタンス増幅器210の入力側と接続されている。評価コイル220および電圧増幅器240は並んで直列にフィードバック分岐260内に配置されている。補償回路230はトランスコンダクタンス増幅器210および評価コイル220に並列に接続されている。補償回路230の入力側は電圧増幅器240の出力側と接続されており、一方、補償回路230の出力側は加算点250と接続されており、この接続点250はフィードバック分岐260において評価コイル220と電圧増幅器240との間に位置する。
【0028】
評価コイル220を誘導的に、または変圧作用式にセンサ発振回路100のセンサインダクタンス110と結合させることができる。このために、センサインダクタンス110および評価コイル220は、センサインダクタンス110が評価コイル220によって形成される電磁界の近接場内に存在するように相互に近付けられる。評価回路200は発振器回路を形成し、この発振器回路は変圧作用式に結合されたセンサ発振回路100をトランスコンダクタンス増幅器210のフィードバック分岐260内の周波数検出共振素子として使用する。この回路は、センサ発振回路100によって検出された物理的な測定量を評価回路200における振動の周波数に直接的に変換できるという利点を有する。続いて測定量を求めるために、この周波数を既知の共振振動により簡単且つ精確に検出することができる。
【0029】
評価コイル220とセンサインダクタンス110の誘導結合によってフィードバック分岐260の実効インピーダンスが生じ、この実効インピーダンスの大きさはセンサインダクタンス110、センサキャパシタンス120およびセンサ抵抗130に依存する。しかしながら、評価コイル220とセンサインダクタンス110の誘導結合が弱いものに過ぎなければ、フィードバック分岐260の実効インピーダンスは評価コイル220の周波数応答によってのみ支配される。この場合には、トランスコンダクタンス増幅器210の入力電圧は全ての周波数についてトランスコンダクタンス増幅器210の出力電流よりもおよそ90°先行するので、評価回路200において発振は生じない。評価回路200においてセンサ発振回路100の固有周波数f0を有する発振を生じさせるためには、フィードバック分岐260の実効インピーダンスが共振周波数f0では0°の位相を有していなければならない。したがって評価回路200は補償回路230を有する。この補償回路230は評価コイル220の周波数応答を補償するので、トランスコンダクタンス増幅器210の実効負荷インピーダンスは発振回路100の共振周波数f0では0°の位相位置および最大絶対値を有する。トランスコンダクタンス増幅器210の実効負荷インピーダンスは質的にLC並列発振回路の周波数応答に対応する。補償回路230としては原則的に、コイルの逆周波数応答を有するあらゆる回路が適している。例えば、補償回路230を負のインピーダンス変換器として構成することができる。
【0030】
図3には、補償回路の考えられる1つの実施形態が概略的に示されている。図3の補償回路230は、反転入力側310および非反転入力側320を備えた演算増幅器300を有する。演算増幅器300の出力側は補償回路230の出力側370と接続されている。さらに演算増幅器300の出力側はネガティブフィードバック抵抗350を介して演算増幅器300の反転入力側310と接続されている。演算増幅器300の非反転有力側320はアース端子と接続されている。演算増幅器300の反転入力側310は補償抵抗330を介して補償回路230の入力側360と接続されている。補償抵抗330に並列に補償コンデンサ340が接続されている。
【0031】
図示していない択一的な実施形態においては、補償回路230が、反転入力側と、非反転入力側と、補償回路230の出力側と接続されている出力側とを備えた演算増幅器を有する。さらにこの実施形態においては、補償回路230の入力側と演算増幅器の反転入力側との間に配置されている補償抵抗が設けられている。さらに補償回路230の出力側と演算増幅器の反転入力側との間に直列に配置されているネガティブフィードバック抵抗およびネガティブフィードバックコイルが設けられている。
【0032】
補償回路230は評価コイル220の周波数応答を補償するタスクを有する。もっともそのためには補償回路230の精確な寸法設計が必要となる。図3に示されている補償回路230の実施形態においては、例えば、補償抵抗330、補償コンデンサ340およびネガティブフィードバック抵抗350の精確な寸法設計が必要であり、これらの構成素子は評価コイル220の電気的な特性値に依存して算定されなければならない。補償回路230の寸法設計が十分に精確でない場合には、評価回路200および発振回路100からなる結合系が付加的な直列共振周波数を有し、並列共振器の周波数が変化するか、それどころか完全に消失してしまう。補償回路230の精確な寸法設計は評価回路200において使用される構成素子の製造公差ならびに寿命依存性および温度依存性によって困難になる。しかしながら、トランスコンダクタンス増幅器210の増幅係数Gを変更することによっても補償回路230を較正できることが分かった。これを以下において説明する。
【0033】
センサ発振回路100が結合されている評価コイル220の周波数依存性インピーダンスの分析により、図3に示されている補償回路230の実施形態は、ネガティブフィードバック抵抗350と補償抵抗330の商がトランスコンダクタンス増幅器210の増幅係数Gと評価コイル220の巻線抵抗の積に等しい場合に最適に適合されていることが分かった。さらに、ネガティブフィードバック抵抗350と補償コンデンサ240のキャパシタンスの積は、トランスコンダクタンス増幅器210の増幅係数Gと評価コイル220のインダクタンスの積に等しくなければならない。補償回路230を正確に機能させるためには、後者の条件を満たしていることが殊に重要である。トランスコンダクタンス増幅器210の増幅係数Gは、評価コイル220のインダクタンスで除算された補償コンデンサ340のキャパシタンスが乗算されたネガティブフィードバック抵抗350の値に調整されなければならない。増幅係数Gの適切な値を発見するための方法を以下では図4に基づき説明する。
【0034】
評価コイル220の周波数応答を補償する以外にも、評価回路200によって形成される発振器は、評価回路200内で安定した発振を生じさせることができるようにするために、いわゆるバルクハウゼン条件を満たしていなければならない。バルクハウゼン条件は、開かれた発振器ループのループ増幅率が発振回路100の共振周波数f0において値1を有していなければならないというものである。ループ増幅率が過度に低い場合には減衰して次第に弱まる振動振幅しか生じないが、その一方でループ増幅率が過度に高い場合には上昇し続ける振動振幅が生じることになる。電圧増幅器240は可変の増幅係数Gを有し、バルクハウゼン条件が満たされているように評価回路200の発振器ループのループ増幅率を調整するために使用される。
【0035】
図4は、較正プロセス中の評価回路400の概略図を示す。図2の評価回路200とは異なり、図4においてはフィードバック分岐260が図示していないスイッチによって遮断されている。これによって図4においては、図2とは異なり、電圧増幅器240の出力側はトランスコンダクタンス増幅器210の入力側とは接続されていない。その代わり、電圧増幅器240の出力側は電圧測定器410と接続されており、この電圧測定器410は電圧増幅器240によって出力される出力電圧415を測定する。トランスコンダクタンス増幅器210の入力側は交流電圧源420と接続されており、この交流電圧源420により交流電圧425をトランスコンダクタンス増幅器210の入力側に印加することができる。交流電圧425の周波数はセンサ発振回路100の共振周波数f0とは可能な限り大きく異なるように選定される。交流電圧425の周波数が、発振回路100のQ値Qで除算された発振回路100の共振周波数f0の少なくとも3倍は発振回路100の共振周波数f0から偏差している場合に有利であることが分かった。例えば、交流電圧425の周波数を発振回路100の共振周波数f0の半分の大きさになるように選定することができる。これによって、評価コイル220と結合された発振回路100が評価回路200の開かれた発振器ループの伝達関数の周波数応答に及ぼす影響を無視できることが保証されている。
【0036】
後続のステップにおいてトランスコンダクタンス増幅器210の増幅係数Gは、電圧増幅器240の出力側において測定された交流電圧425が所定の閾値を下回る振幅または可能な限り僅かな振幅、理想的には消失する振幅を有するように調整される。殊に有利には、増幅係数Gの調整が制御ループを用いて行われる。制御ループは増幅係数Gを、例えば、測定された交流電圧425の振幅が最小値を取るか、この振幅が最小値を中心とした閾値領域内にあるように調整される。このことは、人間による介入操作は必要ないという利点を有する。
【0037】
トランスコンダクタンス増幅器210の増幅係数Gの調整が行われた後に、評価回路200の制御ループは再び閉じられる。このために、電圧測定器410は電圧増幅器240の出力側から切り離され、また交流電圧源420はトランスコンダクタンス増幅器210の入力側から切り離される。続いて、電圧増幅器240の出力側は図示していないスイッチによってトランスコンダクタンス増幅器210の入力側に再び接続される。
【0038】
トランスコンダクタンス増幅器210の増幅係数Gおよび補償回路230は、補償回路230が評価コイル220の周波数応答を補償するように較正されている。バルクハウゼン条件が満たされていることも保証するために、電圧増幅器240の増幅係数gの適合をさらに行うこともできる。このために、電圧増幅器240の増幅係数gは、評価回路200において時間的に一定の振幅を有する発振が生じるように調整される。このために、評価回路200は発振器の振幅を求めるための図示していない手段を有することができる。殊に有利には、電圧増幅器240の増幅係数gの調整が制御ループを用いて行われる。このことは、電圧増幅器240の増幅係数gを調整するためにも人間による介入操作は必要されないという利点を有する。
【0039】
評価回路200は、この評価回路200内の発振の周波数を求めるための図示していない手段も有することができる。発振の周波数を求めるための手段は例えばディジタルカウンタでよい。この場合、基準時間または基準周波数(例えば振動結晶)が必要となる。
【0040】
上述の評価回路200によって求められた発振回路100の共振周波数f0は例えば数kHz〜数10MHzの範囲にある。

【特許請求の範囲】
【請求項1】
電気的な発振回路(100)の共振周波数(f0)を検出する評価回路(200)を較正する方法であって、
前記評価回路(200)は評価コイル(220)と、トランスコンダクタンス増幅器(210)と、補償回路(230)とを有し、
前記評価コイル(220)は誘導的に前記電気的な発振回路(100)と結合可能であり、
前記トランスコンダクタンス増幅器(210)の出力側はフィードバック分岐(260)を介して前記トランスコンダクタンス増幅器(210)の入力側と接続されており、
前記評価コイル(220)は前記トランスコンダクタンス増幅器(210)の前記フィードバック分岐(260)内に配置されており、
前記補償回路(230)は前記トランスコンダクタンス増幅器(210)および前記評価コイル(220)に並列に配置されている、評価回路(200)を較正する方法において、
前記評価回路(200)の前記フィードバック分岐(260)を遮断するステップ、
前記トランスコンダクタンス増幅器(210)の入力側に交流電圧(425)を印加するステップ、
電圧増幅器(240)の出力側に印加される出力電圧(415)を求めるステップ、
前記トランスコンダクタンス増幅器(210)の増幅係数(G)を、前記電圧増幅器(240)の出力側に印加される出力電圧(415)が最小振幅を有するように選定された値に調整するステップ、
前記評価回路(200)の前記フィードバック分岐(260)を閉じるステップ、
を有することを特徴とする、評価回路(200)を較正する方法。
【請求項2】
前記トランスコンダクタンス増幅器(210)の前記増幅係数(G)を制御ループによって、前記電圧増幅器(240)の前記出力側に印加される前記出力電圧(415)が所定の閾値を下回る値、殊に最小値を有するように調整する、請求項1記載の方法。
【請求項3】
前記評価回路(200)はさらに、前記トランスコンダクタンス増幅器(210)の前記フィードバック分岐(260)において前記評価コイル(220)に直列に配置されている電圧増幅器(240)を有し、
請求項1または請求項2に記載のステップの実施後に実施されるさらなるステップ、すなわち、
前記評価回路(200)において時間的に一定の振幅を有する発振が生じるように選定された値に前記電圧増幅器(240)の増幅係数(g)を調整するステップ、
を有する、請求項1または2記載の方法。
【請求項4】
前記電圧増幅器(240)の増幅係数(g)を制御ループによって、前記評価回路(200)において時間的に一定の振幅を有する発振が生じるように調整する、請求項3記載の方法。
【請求項5】
前記交流電圧(425)の周波数を、前記電気的な発振回路(100)のQ値(Q)で除算された前記電気的な発振回路(100)の前記共振周波数(f0)の少なくとも3倍は前記電気的な発振回路(100)の前記共振周波数(f0)から偏差させる、請求項1から4までのいずれか1項記載の方法。
【請求項6】
電気的な発振回路(100)の共振周波数(f0)を検出する評価回路(200)であって、
前記評価回路(200)は評価コイル(220)と、トランスコンダクタンス増幅器(210)と、補償回路(230)と、電圧増幅器(240)とを有し、
前記評価コイル(220)は誘導的に前記電気的な発振回路(100)と結合可能であり、
前記トランスコンダクタンス増幅器(210)の出力側はフィードバック分岐(260)を介して前記トランスコンダクタンス増幅器(210)の入力側と接続されており、
前記評価コイル(220)は前記トランスコンダクタンス増幅器(210)の前記フィードバック分岐(260)内に配置されており、
前記補償回路(230)は前記トランスコンダクタンス増幅器(210)および前記評価コイル(220)に並列に配置されており、
前記電圧増幅器(240)は前記トランスコンダクタンス増幅器(210)の前記フィードバック分岐(260)において前記評価コイル(220)に直列に配置されている、評価回路(200)において、
前記トランスコンダクタンス増幅器(210)の前記フィードバック分岐(260)内に該フィードバック分岐(260)を切り離すスイッチが設けられており、
前記トランスコンダクタンス増幅器(210)の入力側は交流電圧源(420)と接続可能であり、
前記電圧増幅器(420)の出力側は電圧測定器(410)と接続可能であることを特徴とする、評価回路(200)。
【請求項7】
前記電圧測定器(410)および前記トランスコンダクタンス増幅器(210)は制御装置と接続可能であり、該制御装置は前記トランスコンダクタンス増幅器(210)の増幅係数(G)を、前記電圧測定器(410)によって検出された出力電圧(415)が所定の閾値を下回る振幅、殊に最小振幅を有するように調整するよう構成されている、請求項6記載の評価回路(200)。
【請求項8】
前記補償回路(230)はオーム巻線抵抗を備えたコイルの負の周波数応答を有する、請求項6または7記載の評価回路(200)。
【請求項9】
前記補償回路(230)は、反転入力側(310)と非反転入力側(320)と前記補償回路(230)の出力側(370)と接続されている出力側とを備えた演算増幅器(300)と、前記補償回路(230)の入力側(300)と前記演算増幅器(300)の前記反転入力側(310)との間に配置されている補償抵抗(330)と、該補償抵抗(330)に並列に接続されている補償コンデンサ(340)と、前記補償回路(230)の前記出力側(370)と前記演算増幅器(300)の前記反転入力側(310)との間に配置されているネガティブフィードバック抵抗(350)とを有する、請求項6から8までのいずれか1項記載の評価回路(200)。
【請求項10】
前記補償回路(230)は、反転入力側と非反転入力側と前記補償回路(230)の出力側と接続されている出力側とを備えた演算増幅器と、前記補償回路(230)の入力側と前記演算増幅器の反転入力側との間に配置されている補償抵抗とを有し、前記補償回路(230)の前記出力側と前記演算増幅器の前記反転入力側との間にはネガティブフィードバック抵抗およびネガティブフィードバックコイルが直列に配置されて設けられている、請求項6から8までのいずれか1項記載の評価回路(200)。
【請求項11】
評価回路(200)内の発振の振幅を求める回路技術的な手段が設けられている、請求項6から10までのいずれか1項記載の評価回路(200)。
【請求項12】
評価回路(200)内の発振の周波数を求めるディジタルカウンタが設けられている、請求項6から11までのいずれか1項記載の評価回路(200)。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−223962(P2010−223962A)
【公開日】平成22年10月7日(2010.10.7)
【国際特許分類】
【出願番号】特願2010−65780(P2010−65780)
【出願日】平成22年3月23日(2010.3.23)
【出願人】(390023711)ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング (2,908)
【氏名又は名称原語表記】ROBERT BOSCH GMBH
【住所又は居所原語表記】Stuttgart, Germany