説明

電力量計用模擬負荷装置

【課題】 1次側電源の電気方式に拘わらず、施工途上の配電設備における、1次側電源からの通電が完了した電力量計の結線の正誤が容易にかつ迅速に判定することができる電力量計用模擬負荷装置を提供することを目的とする。
【解決手段】 受変電設備で降圧され低圧(600V以下)となって分岐回路を形成する低圧配電設備の各種盤内に1次側配線が接続設置され1次側電源が通電された電力量計に対し、模擬負荷を与える電力量計用模擬負荷装置であって、電力量計の2次側に接続する接続部と、少なくとも1つの交流負荷と、所定の電力量を、1次側電源から所定の時間だけ電力量計に流したあと、交流負荷と電力量計とを接続する回路を開放する、所定の時間を設定できるタイマーを備えた制御部と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ビル施設等の配電施設に設けられる電力量計に対する負荷試験の模擬負荷として動作する電力量計用模擬負荷装置に関する。
【背景技術】
【0002】
ビル・工場など、電力会社から特高・高圧で受電する受変電設備で降圧され低圧幹線(600V以下)とされて供給された後分岐回路を形成する、低圧側の配電設備において、省エネルギー法に伴う電力使用量の把握義務や、テナント毎の光熱費自動課金などのため、分電盤、動力操作盤、インバータ盤、他設備2次側動力制御盤などに、近年多数の電力量計が設置されるようになってきた。
従来、その分電盤、動力操作盤等の新設工事や盤内改造工事などにおける電力量計の設置において、電力量計の誤結線等のトラブルが多く発生している。そうしたトラブルを回避するために、施工終了後客先引き渡し前に、単相回路の場合は電球やヘアドライヤー等の消費電力が既知の模擬負荷を電力量計に接続して、実際に分電盤、動力操作盤等の1次側交流電源からの供給電力を、仮設模擬負荷によって消費させて電力量計結線の引き渡し前検査とする場合がある。
【0003】
先行する技術として、実際に電力量計に電力を供給して、電力量計の負荷試験を行う技術が一部開発されている。
例えば、装置本体に電力量計に供給する電圧電流を発生させる電源発生回路と、電力量計の計量パルス回路から出力されたパルス信号のパルス間隔を計測する計測回路を備えた電力量計試験装置の技術がある(例えば、特許文献1参照)。
また、盤内の電力量計の配線接続を外さない状態で、検査装置本体から検査基準となる所定の電圧を印可して検査基準電流を流し、接続する電力量計の電圧端子及び電流端子から検出される電圧波形と電流波形とを、それぞれ検査装置本体で発生する基準波形とその位相差とを比較して、電力量計の配線接続に正誤を判定する技術がある(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】実開平5−025379号公報
【特許文献2】特開2010−256102号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の電球やヘアドライヤー等の消費電力が既知の模擬負荷については、単相100Vの場合は持ち運びが容易な模擬負荷があるが、単相200Vや三相の電源の場合は、模擬負荷は数十kg以上あるモートルやファン、ポンプ、サイリスタなどとなり、電力量計を内蔵する分電盤、動力操作盤などはビルや工場内に点在しているので、その持ち運び及び仮設結線に苦労する。
【0006】
また、電気設備工事において、上流側の受変電設備から結線・通電工事し、徐々に下流の配電設備を結線工事していく関係上、分電盤、動力操作盤が新設で設置されても、その負荷である空調機器などへの結線の工程がずっと後である可能性が高い。その場合、三相の電力量計の場合、空調機器等の三相負荷が設置されるまで、現場で実負荷試験が行えない。たとえ負荷設置が間に合っても、誤結線の影響が実負荷に及ぶとその機器の弁償など不具合が発生する。また、近年、空調機器等の三相負荷はインバータによる回転制御が施されていることが多く、実際に通電して電力消費させても負荷容量が一定でなく、特に工事中は空調の熱負荷などが殆ど無くて、定格運転にほど遠いモートル回転となる場合が多く、電力量計で測定された電力量が、実際に消費された電力量なのか否かの判断ができないという問題がある。
【0007】
一方、特許文献1等の従来技術は、本体に電力量計に供給する電圧電流を発生させる電源発生回路と、電力量計の計量パルス回路から出力されたパルス信号のパルス間隔を計測する計測回路を備えた電力量計試験装置では、電子式電力量計ではパルス出力を備えた計器が一部存在しその場合は試験できるものの、小規模ビルなどで使用され続けているアラゴの円板を持つ円板式電力量計ではパルス出力が出ず、試験自体が不可能である。また、機器などによってパルス信号の、実際の電力量との割付が異なったり、パルスの出力形式が異なったりする場合はその整合に苦労する。そして、電力量計メーカの出荷検査用であって、工場内の電源供給を装置本体に受け、仮設電源供給を電力量計に行うもので、建設現場における盤内設置状態の結線判定はできないものである。
【0008】
さらに、特許文献2等の従来技術では、検査装置本体から検査基準となる所定の電圧を印可して検査基準電流を流し、接続する電力量計の電圧端子及び電流端子から検出される電圧波形と電流波形とを、それぞれ検査装置本体で発生する基準波形とその位相差とを比較して、電力量計の配線接続に正誤を判定することから、電源は電力量計の1次側から供給を受けるとしても、その変電及び基準電流発生回路という複雑で大きな回路を内蔵しなければならず、装置が大規模且つ複雑な取扱いに注意が必要な装置となってしまう。また、波形や位相差によって配線接続の正誤を判定するとしても、例えば単相3線の場合の欠相電源等が供給された場合、どこが誤接続なのか不明となる虞もある。工事中の確認中の電源の不安定要素を排除できない。その他に、例えば相毎の力率によって誤結線を判定することも考えられるが、操作する作業員の経験や知識に負うところが大であるこのような判定方法は、現場に多数点在する電力量計を不慣れな多数の作業者によって判定する場合には採用できない。
【0009】
また、前述の低圧側の配電設備は、日本において、単相2線式100V、単相2線式200V、単相3線式200/100V、三相4線式173/100V、三相4線式415/240V、三相3線式200V、三相3線式400Vの7個の電気方式が存在するが、これら全てに適用可能な、建設現場における引き渡し前の電力量計負荷試験に関する装置は存在しなかった。
上記従来技術が有する問題に鑑み、本発明の目的は、1次側電源の電気方式に拘わらず、施工途上の配電設備における、1次側電源からの通電が完了した電力量計の結線の正誤が容易に且つ迅速に判定することができる電力量計用模擬負荷装置を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明を例示する電力量計用模擬負荷装置の一の態様は、受変電設備で降圧され低圧(600V以下)となって分岐回路を形成する低圧配電設備の各種盤内に1次側配線が接続設置され1次側電源が通電された電力量計に対し、模擬負荷を与える電力量計用模擬負荷装置であって、前記電力量計の2次側に接続する接続部と、少なくとも1つの交流負荷と、所定の電力量を、前記1次側電源から所定の時間だけ前記電力量計に流したあと、前記交流負荷と前記電力量計とを接続する回路を開放する、前記所定の時間を設定できるタイマーを備えた制御部と、を備える。
【0011】
また、単位ユニットを組み合わせて負荷容量を段階的に変化させることができる複数の前記交流負荷を備え、前記制御部は、前記1次側電源の電気方式に応じて、前記交流負荷を選択する選択部をさらに備えてもよい。
また、前記所定の時間は、前記1次側電源の電気方式および前記選択された交流負荷の負荷容量に応じて決定されてもよい。
また、前記交流負荷は、スター結線された平衡三相負荷であってもよい。
また、前記単位ユニットは、スター結線された平衡三相負荷の各相ごとに直列または並列に接続される少なくとも1つの抵抗器であってもよい。
【0012】
また、前記1次側電源は、三相3線式、三相4線式、単相3線式、単相2線式のいずれかの電気方式であってもよい。
また、前記接続部は、R相、S相、T相およびN相の接続端子と、前記1次側電源の電気方式が前記単相3線式の場合、前記R相と前記S相とを短絡させて前記N相へ流れる電流を増大させる短絡部と、をさらに備えてもよい。
また、前記接続部は、R相、S相、T相およびN相の接続端子と、前記1次側電源の電気方式が前記単相2線式の場合、前記R相、前記S相および前記T相を短絡させて前記N相へ流れる電流を増大させる短絡部と、をさらに備えてもよい。
【発明の効果】
【0013】
本発明によれば、1次側電源の電気方式に拘わらず、施工途上の配電設備における、1次側電源からの通電が完了した電力量計の結線の正誤が容易にかつ迅速に判定することができる電力量計用模擬負荷装置を提供できる。
【図面の簡単な説明】
【0014】
【図1】本発明の一の実施形態に係る電力量計用模擬負荷装置の構成を示す図
【図2】一の実施形態に係る交流負荷10の回路図の一例を示す図
【図3】交流負荷10によるスター結線直列およびスター結線並列の一例を示す図
【図4】スター結線直列およびスター結線並列の交流負荷により消費される電力量の算出を説明する図
【図5】電気方式に応じた交流負荷10の特性を示すテーブル
【図6】一の実施形態に係る制御回路13の回路図の一例を示す図
【図7】一の実施形態に係る電力量計用模擬負荷装置の外観の一例を示す図
【図8】一の実施形態に係る交流電源1が三相3線式400Vの場合の構成を示す図
【図9】一の実施形態に係る交流電源1が単相3線式200/100Vの場合の構成を示す図
【図10】一の実施形態に係る交流電源1が三相3線式200Vの場合の構成を示す図
【図11】一の実施形態に係る交流電源1が三相4線式415/240Vの場合の構成を示す図
【図12】一の実施形態に係る交流電源1が三相4線式173/100Vの場合の構成を示す図
【発明を実施するための形態】
【0015】
図1は、本発明の一の実施形態に係る電力量計用模擬負荷装置の構成を示す。本実施形態の電力量計用模擬負荷装置は、ビル・工場などの施工途上の低圧側の配電設備における、1次側電源からの通電が完了した電力量計2の2次側に接続される。一方、電力量計2の1次側には交流電源(1次側電源)1が接続される。この電力量計2の2次側に本電力量計用模擬負荷装置を接続する際には、電力量計2の2次側に、新設工事としての配線が進行して実負荷が接続されていても、既設盤改造の際に既に実負荷が接続されていても、言うまでもなく電力量計2の1次側の低圧遮断器等開閉器を開放した後、負荷側に接続されたケーブルと、電力量計2の2次側端子とそれぞれに復旧時に誤結線しないよう相手を表示した後、ケーブルと電力量計2の2次側端子とを一旦外す。その後、電力量計2の2次側に本電力量計用模擬負荷装置の接続端子に接続されたケーブルを接続した後、電力量計2の1次側の低圧遮断器等開閉器を通電させる。なお、図1は交流電源1が三相3線式の場合の接続を示すが、本実施形態の交流電源1は、単相2線式、単相3線式、三相3線式、三相4線式の何れの電気方式であっても良い。また、本実施形態の交流電源1は600V以下の低電圧である。
【0016】
図1に示す電力量計用模擬負荷装置は、交流電源1の電気方式に応じたR相、S相、T相およびN相それぞれに配電される交流電力を、電力量計2を介して受け付ける接続端子、交流負荷10、電源ユニット11、冷却用ファン12a、12bおよび制御回路13を備える。ここで、電源ユニット11は、主として制御回路の制御用弱電流を作るものであり、従としては、交流負荷に通電した際に電気エネルギーが熱エネルギーに最終変換された発熱を冷却する、冷却ファン12a、12bへの電力供給を受け持つ。このように、電源ユニット11は電力量計2の1次側への電源でないことは自明である。
【0017】
交流負荷10は、模擬負荷であり、図2に示すような回路構成を有する。図2に示す交流負荷10は、マグネット・スイッチMC1〜MC3、および抵抗器R1〜R9、Ra〜Rcを備える。
マグネット・スイッチMC1〜MC3は、後述する制御回路13の制御指示に従い、交流負荷10を図3に示すような2種類のスター結線をなす平衡三相負荷にする。
【0018】
抵抗器R1〜R9、Ra〜Rcは、図3に示すように、スター結線の各相に4つずつ配置される。なお、図3に示すR13等の抵抗器は、例えば、抵抗器R1とR3とを並列に接続して形成された合成抵抗器を示し、合成抵抗器を形成する抵抗器の組み合わせを抵抗器に付与された1〜9およびa〜cの組み合わせで示したものである。本実施形態では、図3(a)に示す各相に2個の合成抵抗器が直列配線された平衡三相負荷を「スター結線直列」、図3(b)に示す各相に2個の合成抵抗器が並列配線された平衡三相負荷を「スター結線並列」と称する。抵抗器R1〜R9、Ra〜Rcには、一般的に入手可能な抵抗器を適宜選択して用いることができる。例えば、本実施形態の場合、現在入手が容易で放熱にも優れた標準品としてメタルクラッド抵抗器を選択し、標準品で最大容量である、40Ω(500W)の物を使う。もちろん情勢が変化し他に容量の大きく放熱に優れた抵抗器があればそれを採用すればよい。これにより、本実施形態の交流負荷10は、抵抗器R1〜R9、Ra〜Rcで構成されることにより、一定容量の負荷を提供することが可能となる。
【0019】
ここで、本実施形態の交流負荷10がスター結線直列またはスター結線並列の平衡三相負荷である理由について、図4〜図5を参照しつつ簡単に説明する。
図4(a)は、3つの抵抗器Rをスター結線した平衡三相負荷の一例を示し、各相の相電圧E、送電流I、および各相間の線間電圧E、線間電流Iとした場合、三相3線式の交流電源1からの交流電力が消費される電力量Wは、次式(1)のようになる。なお、抵抗器Rの抵抗値を、抵抗器に付された符号Rで表す。
【数1】

【0020】
一方、図4(b)は、図3に示す抵抗器R13等のように、各相において抵抗器Rを並列配線した場合の三相3線式の交流電力が消費される電力量W’は、次式(2)のようになる。
【数2】

ここで、電力量W’は、図4(b)の平衡三相負荷を形成する抵抗器Rの総数をn個とし、各相にn/3個の抵抗器Rが並列に接続された場合の電力量である。また、R’は、各相においてn/3個の抵抗器Rが並列に接続され形成された合成抵抗器の抵抗値を示し、1/((1/R)・(n/3))=3R/nである。なお、本実施形態の交流負荷10は、n=12である。
【0021】
図5は、各電気方式の交流電源1に対して、図3(a)に示すスター結線直列および図3(b)に示すスター結線並列の交流負荷10が有する負荷容量(=消費電力量)を、式(1)、(2)を用いて算出し、一覧にしたテーブルである。なお、図5は、各相に1個の抵抗器R13等の合成抵抗器をスター結線した「スター結線」、および各相に2個の抵抗器R13等の合成抵抗器を直列に接続してデルタ結線した「デルタ結線直列」の三相負荷・単相負荷の負荷容量についても参考として示す。また、図5に示す値は、一例として、12個の抵抗器R1〜R9、Ra〜Rcが40Ωの抵抗値および500Wの定格消費電力の抵抗器とした場合に算出される値を示す。この場合、12個×500W=6000W以上の計算上の消費電力となる表項目は、定格以上の電力が流れて焼損の危険があるので負荷容量として過負荷である。
【0022】
ところで、通常容易に考えつく、模擬負荷を接続する模擬負荷試験では、電力量計2に実際に生活などで利用される電気器具などを接続して通電させて、電気器具の定格電力分消費させる時間分を電力量計2により計測する。つまり、単相の電力量計の場合、例えば、電気器具としての100Wの電球10個を模擬負荷として電力量計の2次側に接続し点灯させ、電力量計が1kWhを示すまで通電し、その時間を計測する。しかしながら、上記の場合、電力量計が1kWhを消費電力量として表示するまでには1時間かかる。そこで、本実施形態では、図5に示すテーブルにおいて、行毎に1つずつ区別された電気方式と結線方式の組合せである、過負荷でなく且つ最大の負荷容量となる交流負荷10を、電気方式に応じて採用し、電力量計2が1kWhの消費電力量を表示するまでに掛かる時間を短縮させて、模擬負荷試験の高速化を図る。これにより、図5のテーブルに示すように、本実施形態では、従来と比較して1/4〜1/3の時間である、14〜20分の測定時間で1kWhの電力量を電力量計2に測定させることができる。そして、行毎に1つずつ区別された電気方式と結線方式の組合せである、過負荷でなくかつ最大の負荷容量となる三相負荷は、電気方式に拘わらず、スター結線直列またはスター結線並列であり、これが、交流負荷10がスター結線直列またはスター結線並列の三相負荷となる理由である。
【0023】
なお、図5のテーブルは、シェーディングされた過負荷でなくかつ最大の負荷容量の場合に、交流負荷10に流れる負荷電流の値が電気方式ごとに示す。ただし、電気方式が三相3線式、三相4線式の場合の負荷電流は、負荷容量/線間電圧E/√3の関係に基づいて算出された値である。また、電気方式が単相3線式の負荷電流は、R相の線間電流Iの電流値を示すとともに、後述するように、単相3線式の場合にはR相とS相とが短絡されることから、R相とS相との線間電流Iを合わせた電流値を括弧内に示す。さらに、電気方式が単相2線式の負荷電流は、R相の線間電流Iの電流値を示すとともに、単相2線式の場合にはR相、S相およびT相が短絡されることから、R相、S相およびT相との線間電流Iを合わせた電流値を括弧内に示す。
【0024】
電源ユニット11は、R相、S相およびN相に配電される交流電力を、電気方式に応じて冷却用ファン12a、12bおよび制御回路13の直流電力に変換して供給する。電源ユニット11には、整流回路等の公知の交流直流変換回路を適宜選択して用いることができる。なお、本実施形態では、電源ユニット11が出力するP−N間の直流電圧は24Vとする。
冷却用ファン12a、12bは、交流負荷10の抵抗器等により発生する熱を電力量計用模擬負荷装置の外部に強制的に放熱し、電力量計用模擬負荷装置を冷却するためのファンである。
【0025】
制御回路13は、電力量計用模擬負荷装置の各部を統括的に制御する制御部である。図6は、本実施形態の制御回路13の構成を示す回路図である。本実施形態の制御回路13は、測定者であるユーザからの指示を受け付ける押し釦20a〜20e、21〜23およびタイマー25を備える。制御回路13は、押し釦20a〜20e、21〜23の動作に応じて、マグネット・スイッチMC1〜MC3、MC−A、MC−M、リレーMC23X、パイロットランプ24a〜24e、およびタイマー25を制御する。なお、スイッチMC23は、リレーMC23Xの動作に応じて動作するスイッチである。
【0026】
押し釦20a〜20eは、交流電源1の電気方式に応じて、交流負荷10の三相負荷を選択する選択釦である。押し釦20aまたは20cがユーザにより操作された場合、つまり交流電源1が三相3線式400Vまたは三相4線式415/240Vの場合、制御回路13は、マグネット・スイッチMC1をON状態にし、交流負荷10を図3(a)に示すスター結線直列の平衡三相負荷とする。一方、押し釦20b、20dまたは20eがユーザにより操作された場合、つまり交流電源1が三相3線式200V、三相4線式173/100Vまたは単相3線式200/100Vの場合、制御回路13は、リレーMC23Xを動作させてスイッチMC23の接点を閉じて、マグネット・スイッチMC2、MC3をON状態にし、交流負荷10を図3(b)に示すスター結線並列の平衡三相負荷とする。なお、押し釦20eがユーザにより操作された場合、制御回路13は、交流電源1の電気方式が単相3線式であることから、図1に示すR相とS相とを短絡させるマグネット・スイッチMC−A(短絡部)をON状態にする。
【0027】
なお、図5に示すように、交流負荷10を構成する各々の合成抵抗器は、本電力量計用模擬負荷装置に一旦設置してしまえば固定値となるので、交流電源1の電気方式に応じて、交流負荷10の三相負荷、および電力量計2が1kWhなどの単位電力量を消費電力として計測するべき時間(測定時間)が予め決まることとなる。そこで、本実施形態の制御回路13は、不図示のメモリを備え、そのメモリに交流電源1のそれぞれの電気方式に応じた交流負荷10の三相負荷の合計消費電力量、および単位電力量の測定時間のデータを記憶しているものとする。したがって、押し釦20a〜20eのユーザによる動作に基づいて、制御回路13は、メモリ(不図示)より対応する測定時間のデータを読み込み、タイマー25に設定する。
【0028】
押し釦21は、測定開始釦であり、ユーザにより操作された場合、制御回路13は、タイマー25に設定された測定時間のカウントダウンを開始させるとともに、押し釦23およびマグネット・スイッチMC−MをON状態にする。その結果、電力量計2は、交流電源1からの交流電力が交流負荷10により消費される電力量の測定を開始する。一方、タイマー25により測定時間が経過した場合、制御回路13は、押し釦23およびマグネット・スイッチMC−MをOFF状態にし、電力量計2による測定を終了させる。
押し釦22は、電力量計2の測定中に、電力量計2の誤結線等による異常が生じた場合、電力量測定を中断するリセット釦である。ユーザにより押し釦22が操作された場合、制御回路13は、押し釦23およびマグネット・スイッチMC−MをOFF状態にし、電力量計2による測定を強制的に終了させる。
【0029】
図7は、本実施形態の電力量計用模擬負荷装置の外観の一例を示す。なお、交流負荷10、電源ユニット11、冷却用ファン12a、12b、制御回路13の一部は、図7に示す電力量計用模擬負荷装置の内部に配置される。
【0030】
一方、電力量計用模擬負荷装置の正面には、制御回路13の一部であるパイロットランプ24a〜24eのそれぞれが内蔵された「三相3線400V」、「三相3線200V」、「三相4線415/240V」、「三相4線173/100V」、「単相3線200/100V」を選択する押し釦20a〜20eが配置される。また、押し釦21の測定開始釦、押し釦22のリセット釦、およびタイマー25の設定時間等を表示する液晶モニタ等の表示部30がそれぞれ配置される。一方、電力量計用模擬負荷装置の側面や上面には、冷却用ファン12a、12bにより、交流負荷10等が発する熱を外部に放出するためのスリット等の穴40が多数設けられることが好ましい。さらに、電力量計用模擬負荷装置を持ち運び易くするために、底面に車輪50、および上面に取手60等が配置されることが好ましい。
【0031】
次に、図8〜図12を参照しつつ、交流電源1の電気方式に応じた、電力量計用模擬負荷装置を用いた電力量計2の結線状態の判定処理について説明する。なお、以下では、交流電源1が、1)三相3線式400Vの場合と、2)単相3線式200/100Vの場合とにおける電力量計用模擬負荷装置を用いた動作について説明する。図10〜図12に示す交流電源1が、三相3線式200V、三相4線式415/240V、三相4線式173/100Vの場合の電力量計用模擬負荷装置を用いた動作は、三相3線式400Vの場合と同じであり詳細な説明は省略する。
1)交流電源1が三相3線式400Vの場合
【0032】
制御回路13は、交流電源1が三相3線式400Vであることから、ユーザによる押し釦20aの操作に基づいて、交流負荷10を図8に示すスター結線直列の平衡三相負荷に設定する。そして、制御回路13は、メモリ(不図示)から三相3線式400Vに対応する測定時間を読み込み、タイマー25に15分の測定時間を設定する。表示部30は、図7に示すように、タイマー25に設定された時間15分を表示する。
【0033】
制御回路13は、ユーザにより押し釦21の操作を受け付け、タイマー25に設定された測定時間のカウントダウンを開始させるとともに、押し釦23およびマグネット・スイッチMC−MをON状態にする。そして、制御回路13は、電力量計2に、交流電源1からの交流電力が交流負荷10により消費される電力量の測定を開始させる。タイマー25により測定時間が経過した場合、制御回路13は、押し釦23およびマグネット・スイッチMC−MをOFF状態として、電力量計2の2次側から本電力量計用模擬負荷装置への給電を停止し、これにより電力量計2への通電を停止して、開始時からの電力量計2の消費電力量測定を停止させる。
【0034】
その後、ユーザは、電力量計2が測定した電力量の消費実測値を電力量計2のメータ表示から開始時と終了時との差分を読み取り、図5のテーブルに示す電気方式が三相3線式400Vで交流負荷10がスター結線直列の場合の負荷容量の理論値(表中の4000W×15分/60分=1000Wを1kWhと読み替える)と比較し、実測値の理論値に対する誤差の割合を算出する。ここで、本実施形態の電力量計用模擬負荷装置を用いた模擬負荷試験の結果を解析したところ、上記誤差の割合の大きさと電力量計2の結線状態との間には、下記のような対応関係があることが分かった。
具体的には、例えば、通常のビル施設等の配電施設における電圧降下に伴う電圧変動は±3〜5%くらいである。したがって、算出された誤差の割合が±5%(所定値)以下の場合、電力量計2は正しく結線されている。
【0035】
一方、例えば、誤差の割合が±10%程度の場合、交流電源1の電圧の電圧変動が通常よりも大きい等が原因である可能性が高い。そこで、ユーザは交流電源1の電圧を確認し、交流電源1の電圧変動が収まった段階で、再度電力量計用模擬負荷装置を用いて電力量計2に電力量を測定させるのが好ましい。
【0036】
また、誤差の割合が±50%等と非常に大きい場合、電力量計2の外観から目視できない、発見しづらい誤結線と判定される。具体的な誤結線の原因として、例えば、電力量計2の変成器の貫通方向が三相3線のうち1相だけ逆に結線されたり、電圧要素の誤入力による電力量計2内部のヒューズが焼損したり等が考えられる。これらは、従来技術では検出することができなかった。すなわち、前者の1相だけ逆結線の場合、正結線された他の2相の電流値が1相の電流より大きいために、電力量計2は正回転し上記逆結線を検出することができなかった。また、後者のヒューズ焼損の場合、他の相のヒューズは健全なことから、電力量計2は正回転し上記ヒューズ焼損を検出することができなかった。しかしながら、本実施形態の電力量計用模擬負荷装置による模擬負荷試験では、これらの原因による電力量計2の誤結線が検出できるだけでなく、誤差の割合の大きさに基づいて、誤結線の原因を絞ることができ、より素早い対応が可能となる。
2)交流電源1が単相3線式200/100Vの場合
【0037】
制御回路13は、交流電源1が単相3線式200/100Vであることから、ユーザによる押し釦20eの操作に基づいて、交流負荷10を図9に示すスター結線並列の平衡三相負荷に設定すると同時に、マグネット・スイッチMC−AをON状態にして、R相とS相とを短絡する。そして、制御回路13は、メモリ(不図示)から単相3線式200/100Vに対応する測定時間を読み込み、タイマー25に設定する。
【0038】
制御回路13は、ユーザにより押し釦21の操作を受け付け、タイマー25に設定された測定時間のカウントダウンを開始させるとともに、押し釦23およびマグネット・スイッチMC−MをON状態にする。そして、制御回路13は、電力量計2に、交流電源1から供給される交流電力の交流負荷10により消費される電力量の測定を開始させる。タイマー25により測定時間が経過した場合、制御回路13は、押し釦25およびマグネット・スイッチMC−MをOFF状態として、電力量計2の2次側から本電力量計用模擬負荷装置への給電を停止し、これにより電力量計2への通電を停止して、開始時からの電力量計2の消費電力量測定を停止させる。
その後、ユーザは、上記三相3線式400Vの場合と同様に、電力量計2の結線の正誤を判定し、誤結線がある場合、誤差の割合の大きさに基づいてその原因を特定し対応する。
【0039】
このように、本実施形態では、交流電源1の電気方式に応じて、交流負荷10の三相負荷を過負荷でなくかつ最大の負荷容量の三相負荷を選択することにより、全ての電気方式で600V以下の低電圧の交流電力における電力量計の結線の正誤を容易かつ迅速に判定することができる。
また、電力量計用模擬負荷装置による模擬負荷試験が、少ない釦操作および電力量計2で測定された実測値と理論値との比較のみで実現されることから、経験や知識が少ないユーザでも、電力量計2の結線の正誤の判定および誤結線の原因の特定が確度高くできる。
さらに、交流負荷10を12個の抵抗器のみで構成されることにより、従来のモータ等の三相負荷と比較して軽量化および小型化を図ることができる。
《実施形態の補足事項》
【0040】
(1)上記実施形態では、交流負荷10は、スター結線直列およびスター結線並列のみとしたが、本発明はこれに限定されず、スター結線およびデルタ結線の三相負荷の回路の構成を有してもよい。
(2)上記実施形態では、電力量計用模擬負荷装置により電力量計2が測定した電力量と、予め求められた理論値との比較を、ユーザが行うことにより、電力量計2の結線の正誤を判定したが、本発明はこれに限定されない。例えば、制御回路13は、マイクロプロセッサ等を備えるとともに、メモリ(不図示)が結線判定プログラムを記憶することにより、マイクロプロセッサが、結線判定プログラムを実行して、不図示の回線あるいは不図示の入力装置を介して、電力量計2が測定した電力量を受け付け、理論値との比較から電力量計2の結線状態を判定してもよい。その場合、マイクロプロセッサは、その判定結果を、例えば、図7に示す表示部30に表示して、ユーザに判定結果を通知することが好ましい。
【0041】
(3)上記実施形態では、押し釦20a〜20eを押し釦としたが、本発明はこれに限定されず、ノッチスイッチ等のスイッチでもよい。
(4)上記実施形態では、交流電源1が単相2線式の場合について対応しないとしたが、本発明はこれに限定されず、単相2線式の交流電力に対しても適用可能である。ただし、単相2線式の場合、電力量計用模擬負荷装置のR相、S相およびT相を短絡させる必要があり、R相とS相と、およびS相とT相との接続端子間にユーザがジャンパ線をそれぞれ接続して短絡させるか、マグネット・スイッチMC−Aとともに、S相とT相とを短絡させるマグネット・スイッチを配置して短絡させるのが好ましい。
【0042】
以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲が、その精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図する。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずであり、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物によることも可能である。
【符号の説明】
【0043】
1…交流電源、2…電力量計、10…交流負荷、11…電源ユニット、12a、12b…冷却用ファン、13…制御回路

【特許請求の範囲】
【請求項1】
受変電設備で降圧され低圧(600V以下)となって分岐回路を形成する低圧配電設備の各種盤内に1次側配線が接続設置され1次側電源が通電された電力量計に対し、模擬負荷を与える電力量計用模擬負荷装置であって、
前記電力量計の2次側に接続する接続部と、
少なくとも1つの交流負荷と、
所定の電力量を、前記1次側電源から所定の時間だけ前記電力量計に流したあと、前記交流負荷と前記電力量計とを接続する回路を開放する、前記所定の時間を設定できるタイマーを備えた制御部と、
を備えることを特徴とする電力量計用模擬負荷装置。
【請求項2】
請求項1に記載の電力量計用模擬負荷装置において、
単位ユニットを組み合わせて負荷容量を段階的に変化させることができる複数の前記交流負荷を備え、
前記制御部は、
前記1次側電源の電気方式に応じて、前記交流負荷を選択する選択部をさらに備える
ことを特徴とする電力量計用模擬負荷装置。
【請求項3】
請求項2に記載の電力量計用模擬負荷装置において、
前記所定の時間は、前記1次側電源の電気方式および前記選択された交流負荷の負荷容量に応じて決定されることを特徴とする電力量計用模擬負荷装置。
【請求項4】
請求項1乃至請求項3のいずれか1項に記載の電力量計用模擬負荷装置において、
前記交流負荷は、スター結線された平衡三相負荷であることを特徴とする電力量計用模擬負荷装置。
【請求項5】
請求項2または請求項3に記載の電力量計用模擬負荷装置において、
前記単位ユニットは、スター結線された平衡三相負荷の各相ごとに直列または並列に接続される少なくとも1つの抵抗器であることを特徴とする電力量計用模擬負荷装置。
【請求項6】
請求項1乃至請求項5のいずれか1項に記載の電力量計用模擬負荷装置において、
前記1次側電源は、三相3線式、三相4線式、単相3線式、単相2線式のいずれかの電気方式であることを特徴とする電力量計用模擬負荷装置。
【請求項7】
請求項6に記載の電力量計用模擬負荷装置において、
前記接続部は、
R相、S相、T相およびN相の接続端子と、
前記1次側電源の電気方式が前記単相3線式の場合、前記R相と前記S相とを短絡させて前記N相へ流れる電流を増大させる短絡部と、をさらに備える
ことを特徴とする電力量計用模擬負荷装置。
【請求項8】
請求項6に記載の電力量計用模擬負荷装置において、
前記接続部は、
R相、S相、T相およびN相の接続端子と、
前記1次側電源の電気方式が前記単相2線式の場合、前記R相、前記S相および前記T相を短絡させて前記N相へ流れる電流を増大させる短絡部と、をさらに備える
ことを特徴とする電力量計用模擬負荷装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−36855(P2013−36855A)
【公開日】平成25年2月21日(2013.2.21)
【国際特許分類】
【出願番号】特願2011−173099(P2011−173099)
【出願日】平成23年8月8日(2011.8.8)
【出願人】(000001834)三機工業株式会社 (316)
【出願人】(591059733)株式会社勝亦電機製作所 (2)