説明

非接触回転型電力伝送装置

【課題】対向するコア間のコアギャップをガタつき等の変動の影響を受けずに安定して維持するコアギャップ保持構造を確保することにより小型化と低コスト化とを図ることができる非接触回転型電力伝送装置を提供する。
【解決手段】固定ベース20に固定され、コア50,70同士を対向させた状態で一方のコアを固定コア70として保持する軸受内輪80を備え、可動ベース10に、前記軸受内輪80に回転自由に軸支される軸受外輪30を備え、コア同士の対向面間に低摩擦係数で非磁性体の摺動シート60を介在させ、他方のコアを可動コア50として前記軸受内輪80に収納させた状態で該可動コア50と前記可動ベース10との対向面間に介在され、一端を前記可動コア50に回り止めして連結し、他端をコア同士の対向方向に付勢させる付勢力を持たせて前記可動ベース10に回り止めして連結したコア押さえ40を備えて非接触回転型電力伝送装置1を構成する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、電子機器の回転体を回転操作する際に用いられる非接触回転型電力伝送装置に関し、さらに詳しくは小型で高性能を有する非接触回転型電力伝送装置に関する。
【背景技術】
【0002】
従来、接触式の回転型電力伝送装置は回転する摺動面に対し、機械的に接触子を回転電気導板に接触させて電力を伝達するスリップリングを使用している(例えば特許文献1参照)。
【0003】
しかし、押圧した接点部分を摺動させて通電することから接点部分が磨耗してしまい寿命が限られていた。また、電流を多く流そうとすると、接点圧力を強くするために回転トルクが大きくなる。この際にゴミ等の異物の介入、電気導板の表面粗さ等の要因で通電が断続的になったり、通電波形が乱れたりする。このため、接触式の回転型電力伝送装置の寿命と電気容量を確保しようとすると、接触子に対する発熱対策が必要になり、装置が大型化してしまう。
【0004】
また、周波数を10MHz程度に高めて空心コイルを使い電磁共鳴で電力伝達する方法もある。ところが、この場合は電力伝達する際に電磁波が空中に放射され、周辺の機器に電磁ノイズを与えやすく、さらに制御回路が複雑になり、コスト高を誘引してしまう。逆に、周波数を低くし、コアを使用しない空心式電力伝送装置によりコイルのみで電力伝送する方法もある(例えば特許文献2参照)。
【0005】
この場合は、比較的コイル間の距離を離しても効率の落ちない電力伝送が可能になる。ところが、コアを使用しないためコイルサイズが大きくなること、外部への電磁ノイズ放射の問題、制御回路の複雑さ、コアなしコイルの製造コストの問題等があり、小型化、低コスト化が難しくなる。
【0006】
さらに、対向したフェライトコアを使用し、周波数を20〜100kHz近辺で電力伝送する電磁結合方式がある。この電磁結合方式はコア間の対向間隔(コアギャップ)が電力伝達効率に影響を与えやすく、このコアギャップの微細な変化が出力電圧の大きな変動要因となっていた。特に、回転して電力伝送する場合、その回転する動きのためコアギャップに変動が発生しやすい。例えば、コアギャップの変動に対し、コア面を傾斜させ、コアギャップの変動率を低くするようにしたギャップ付きの変圧器及び非接触電力伝送装置が提案されている(例えば特許文献3参照)。
【0007】
しかし、この場合は対向するコアが非対称となるため、これらのコアを製作する場合に金型面数が増えてコスト高となる。さらに、対向する傾斜コアの寸法が大きくなる問題がある。
【0008】
また、フェライトコアは焼結金属のため、焼結圧力、焼結温度、冷却速度等によって、その仕上がり寸法は切削等の機械加工に比較してバラつきが大きくなっていた。さらに、高精度が要求されるフェライトコア製品を回転体に取付ける際も、コアギャップを一定に保つことが難しくなっていた。このようなことからコアを軸受装置に挟む形で該コア同士を相対させる技術も知られている(例えば特許文献4参照)。
【0009】
ところが、軸受装置の摩耗によりガタが発生すると、電気特性に悪影響を及ぼし、また組立時に径方向や軸方向の調整が難しくなっていた。特に、コアギャップが軸受装置の軸受精度に影響され、軸受装置の精度、寿命で電気特性が大きく変化する問題を有していた。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2009−225578号公報
【特許文献2】特開2010−200594号公報
【特許文献3】特開2008−112913号公報
【特許文献4】特開2009−109005号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
小型の非接触回転型電力伝送装置を製作しようとする場合、コアは小型のコアを選定することになるが、結果としてコアの全体の磁路も小さくなりコアギャップの変動が電力伝送特性に影響を与えやすくなる。コアギャップとコア(コイルユニット)の結合係数の関係は、コアギャップが大きくなると結合係数が小さくなり、電力伝送効率も悪化してしまう。ちなみにコアサイズ外径D=14mm、厚さ4mmのコアではコアギャップを0.2mmにすると、伝送効率が50%に低下し、その分、駆動素子等の発熱が大きくなり、必要な電力を伝達できなくなる。
【0012】
必要な電力を効率よく伝送するためには、コアギャップを最小、均一に維持することが重要となる。コアギャップが最小になると、伝送効率も向上し、回路素子の発熱も少なくなる。また、均一なコアギャップが維持されると、二次側の電圧変動が少なくなり、二次側での余分な電圧安定回路も不要となり、コストの低い非接触回転型電力伝達装置が得られることになる。
【0013】
そこでこの発明は、対向するコア間のコアギャップをガタつき等の変動の影響を受けずに安定して維持するコアギャップ保持構造を確保することにより小型化と低コスト化とを図ることができる非接触回転型電力伝送装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
この発明は、円形のコイルを内蔵するコア同士を同心円上で非接触に対向させ、前記対向する一方のコアを固定ベースに保持し、他方のコアを可動ベースに保持し、これらのコア同士の対向面間を境に前記可動ベースを回転可能にして非接触に電力伝送を行う非接触回転型電力伝送装置であって、前記固定ベースに固定され、前記コア同士を対向させた状態で前記一方のコアを固定コアとして保持する軸受内輪を備え、前記可動ベースに、前記軸受内輪に回転自由に軸支される軸受外輪を備え、前記コア同士の対向面間に低摩擦係数で非磁性体のシートを介在させ、前記他方のコアを可動コアとして前記軸受内輪に収納させた状態で該可動コアと前記可動ベースとの対向面間に介在され、一端を前記可動コアに回り止めして連結し、他端をコア同士の対向方向に付勢させる付勢力を持たせて前記可動ベースに回り止めして連結した弾性連結手段を備えて構成したことを特徴とする。
【0015】
この発明によると、コアを保持している部材が長期使用により磨耗してガタつきが発生しても、そのガタつきを弾性連結手段が吸収し、コア周辺の部材の変動をコアギャップ部分に伝達させないコアギャップ変動遮断機能を有している。これにより、対向するコア間のコアギャップを一定に保つことができる。
【0016】
特に、小型化を図ると、その小型化に比例してコアギャップは磁気効率に大きな影響を及ぼすが、コアギャップを初期の設定間隔のまま維持する技術を確立しているため小型化に関する不安定な要素を解消することができる。このため、小型で最大の磁気効率と安定性とが得られる非接触回転型電力伝送装置を構成することができる。
【0017】
さらに、可動コアを固定コア側に常に付勢することによりコアギャップを一定に保つ弾性連結手段を有していることに加えて、対向するコア間に非磁性体のシートを介在させることにより、双方のコア対向面がシートを挟む形で両面より当接し、常にシート厚さのコアギャップを維持することが可能になる。
【0018】
特に、回転の振動、ガタなどが生じた際に焼結金属で構成されたフェライトコアは脆く欠けやすい性質を有することから不具合が生じやすいが、その際のコア保護対策としてコア対向面間に前記シートを介在させておけばコア対向面を保護することができる。また、コアはフェライトコアに限らず金属性のコアであっても適用することができる。また、シート材質としてはコアとの接触に適した摺動性の良い高分子フィルム(例えば高分子ポリエチレン)が好ましい。
【0019】
この発明の態様として、前記弾性連結手段を、一端を前記可動コアの係合部に係合させて回り止めし、他端を可動ベース方向に切り起してコア対向方向に付勢力を持たせ、その切り起し端部を前記可動ベースの係合部に係合させて回り止めした板バネで構成することができる。
【0020】
特に、非接触回転型電力伝送装置を小型化しようとした場合、小型化に伴い内部空間も小さくなり、新たな部材を組み込むための内部スペースが十分に取れなくなる。この場合は、コアに付勢力を与える際に付勢部材として最も小さくシンプルな形状が得られる板バネを用いるとよい。これにより、僅かの隙間に板バネを効率よく配置することができる。
【0021】
またこの発明の態様として、前記固定ベースから可動ベースに至る同心円上の中心部軸方向に軸孔を貫通して構成することができる。
この軸孔は、両側のベースを結ぶ中心部に貫通して設けられているため、この軸孔に回転駆動用のモータ軸などを挿通させれば、可動ベースを任意に回転駆動することができる。また、LED等を用いて軸孔の両端開口部分で投受光させれば、データ通信に利用することができる。
【発明の効果】
【0022】
この発明によれば、磁気効率が良い狭いコアギャップを安定して維持するコアギャップ保持部材を確保することにより小型化と低コスト化とを可能にした非接触回転型電力伝送装置を提供することができる。
【図面の簡単な説明】
【0023】
【図1】非接触回転型電力伝送装置の外観斜視図。
【図2】非接触回転型電力伝送装置の分解斜視図。
【図3】非接触回転型電力伝送装置の要部拡大縦断面図。
【図4】(a)はコア押さえと可動コアとの対応状態を示す拡大斜視図、(b)は可動コアにコア押さえを搭載した状態を示す要部拡大斜視図。
【図5】(a)は可動コアをコア押さえを介して可動ベースに回り止めして取付けるときの取付対応前の状態を示す要部斜視図、(b)はその取付け対応後の状態を示す要部拡大斜視図。
【図6】軸受内輪と固定コアとの位置決め保持構造を一部拡大して示す説明図。
【発明を実施するための形態】
【0024】
この発明の一実施例を以下図面に基づいて説明する。
【実施例】
【0025】
図1は非接触回転型電力伝送装置1の外観を表し、図2はその非接触回転型電力伝送装置1を分解して表し、図3はその非接触回転型電力伝送装置1の要部を断面して表している。この非接触回転型電力伝送装置1は、取付方向によって回転方向や電力伝送方向が異なることから図面で表わされる上部を可動側とし、下部を固定側として説明する。
【0026】
この非接触回転型電力伝送装置1は、上部の可動ベース10と下部の固定ベース20との上下間に、上方から軸受外輪30とコア押さえ40と可動コア50と摺動シート60と固定コア70と軸受内輪80とをこの順に配置して構成される。
【0027】
また、可動ベース10と固定ベース20はそれぞれ非磁性の樹脂円盤で作成し、上部の可動ベース10は円盤上面が電子機器の図示しない回転体に連結され、円盤下面が固定ベース20に軸支される。下部の固定ベース20は円盤上面が電力伝送するための構成部材の搭載面となり、円盤下面が図示しない基台に固定されて取り付けられる。これらのベース10,20は図面では一例として略同径の樹脂円盤を示したが取付対象物に応じた任意の形状に設けるものである。
【0028】
可動側としては図2の左側に図示される可動ベース10、軸受外輪30、コア押さえ40、可動コア50、摺動シート60が該当し、これらが回転自由となる。一方、固定側としては図2の右側に図示される固定コア70、軸受内輪80、固定ベース20が該当し、これらが回転規制される。
【0029】
まず、非接触回転型電力伝送装置1の固定側の構成部材について説明する。
固定ベース20は上述したように非磁性の樹脂円盤であり、さらにその円盤中心部に軸孔21を貫通して設け、この軸孔21を中心とする円盤上の周方向を3等分した各位置に軸受内輪締結用のビス孔22を貫通して設けている。さらに、軸孔21を中心とする円盤上の周方向を2等分した各位置に固定コア締結用のビス孔23を貫通して設けている。
【0030】
前記軸受内輪80はPOM(ポリアセタール)等の樹脂製の段付き筒状体であり、この筒状体の外周面上部81を大径にし、外周面下部82をそれより僅かに小径にした段付き外周面に形成している。この段付き外周面を軸支面として後述する軸受外輪30を軸支するようにしている。また、軸受内輪80の内周面上部83を大径にし、内周面下部84をそれより僅かに小径にした段付き内周面に形成している。この段付き内周面で囲まれる内部空間をコア収納部とし、このうち内周面下部84をコア保持面として後述する固定コア70を圧入固定させて取り付けるようにしている。また、内周面上部83を可動側部品を非接触に収納させる収納空間とし、ここに可動側部品としてのコア押さえ40、可動コア50、摺動シート60が収納される。
【0031】
さらに、軸受内輪80の底面には、その周方向を3等分した各位置に締結孔85を有している。これらの締結孔85に固定ベース20のビス孔22を対応させた状態で固定ベース20の下方からビス24を通して締結することにより、該固定ベース20上に軸受内輪80が一体化して連結される。この際、軸受内輪80は固定ベース20の軸孔21を中心とする同心円上に搭載される。また、軸受内輪80の外周面に段差形成されている内輪段差部86は後述する軸受外輪30の内周面に段差形成されている外輪段差部33に対応し、このとき互いの段差部分に形成される段差端面が軸方向に係止し合って軸受外輪30と軸受内輪80とが軸方向に外れないようにしている。
【0032】
上述の固定コア70は、焼結金属で形成される固定コアケース71にコイル72を収納して構成される。固定コアケース71は、起立した筒体の底面を閉鎖して設け、その底面中心部にコイル72の巻軸として設けられる小径筒体と、その外周囲にコイル72の収納空間を隔てて形成される大径筒体とを備えて構成される。さらに、大径筒体と小径筒体との間の凹部空間をコイル収納凹部73とし、このコイル収納凹部73にコイル72が水平方向に巻回された状態に収納保持される。
【0033】
したがって、ここに収納されるコイル72は外周囲が大径筒体で囲まれ、コア対向方向のみが開口された状態となり、コア対向方向以外の磁束の漏れを防止する伝送効率の良い形状となる。
【0034】
また、大径筒体の周壁には周方向に180度異なる2ヶ所の対向位置に割溝74を有している。これらの割溝74は配線引出用として軸方向に沿って周壁の一部分を切り欠いて形成している。また、固定コア70は小径筒体の中心部に、固定ベース20の軸孔21と同方向に略同径を有して貫通された固定コア中心孔75を有している。
【0035】
さらに、固定コア70の底面には、固定コア中心孔75を中心とする底面周方向を2等分した各位置に図示しない締結孔を有している。そして、これらの締結孔に固定ベース20のビス孔23を対応させた状態で固定ベース20の下方からビス25を通して締結することにより、該固定ベース20上に固定コア70が一体化して連結される。この際、固定コア70は固定ベース20の軸孔21を中心とする同心円上に搭載される。
【0036】
次に、非接触回転型電力伝送装置1の可動側の構成部材について説明する。
可動ベース10は上述したように非磁性の樹脂円盤であり、その円盤中心部に軸孔11を貫通して設け、この軸孔11を中心とする円盤上の周方向を3等分した各位置に軸受外輪締結用のビス孔12を貫通して設けている。さらに、軸孔11を中心とする円盤上の周方向を2等分した各位置にバネ係止孔13を貫通して設けている。
【0037】
前記軸受外輪30はPOM(ポリアセタール)等の樹脂材により成形された筒状体であり、この筒状体の内周面上部31を大径にし、内周面下部32をそれより僅かに小径にした段付き内周面に形成している。この段付き内周面を軸支対応面とし、このうち内周面上部31を軸受内輪80の外周面上部81に周面接触させている。また、内周面下部32を軸受内輪80の外周面下部82に周面接触させて該軸受外輪30を軸受内輪80によって回転自由に軸支させる構成としている。
【0038】
また、軸受外輪30の内周面に段差形成されている外輪段差部33は、上述した軸受内輪80の内輪段差部86に対応して係合し合う。これにより、軸受内輪80と軸受外輪30との接触安定性が増し、回転支持される軸受外輪30の軸支性能が一層安定する。
【0039】
この場合、軸受外輪30と軸受内輪80とは、図3に示すように軸支面の上下方向中間部に互いに係合し合う段差部33,86を有していることから、軸受外輪30は下方からの組み付けとなり、軸受内輪80は上方からの組み付けとなる。図2では軸受外輪30は可動ベース10に固定されて一体に回転する可動部材として扱われることから説明上、軸受外輪30を最上部の可動ベース10の直下に図示している。
【0040】
さらに、軸受外輪30の上面には、その周方向を3等分した各位置に締結孔34を有している。これらの締結孔34に可動ベース10のビス孔12を対応させた状態で可動ベース10の上方からビス14を通して締結することにより、該可動ベース10の下面に軸受外輪30が一体化して連結される。この際、軸受外輪30は可動ベース10の軸孔11を中心とする同心円上に連結される。
【0041】
そして、可動ベース10の下面と、固定コア70の上面と、軸受内輪80の内周面上部とで囲まれる内部空間に、コア押さえ40と、可動コア50と、摺動シート60とが積層状態に配設される。
【0042】
可動コア50は、上述した固定コア70と略同形状を有し、その固定コア70の上下を反転した逆向きの状態に配置される。この可動コア50も固定コア70と同じく焼結金属で形成される可動コアケース51と、この可動コアケース51に収納されるコイル52とから構成される。
【0043】
可動コアケース51は、起立した筒体の上面を閉鎖して設け、その上面中心部にコイル52の巻軸として垂設される小径筒体と、その周囲にコイル52の収納空間を隔てて形成される大径筒体とを備えて構成される。さらに、大径筒体と小径筒体との間の凹部空間をコイル収納凹部53とし、このコイル収納凹部53にコイル52が水平方向に巻回された状態に収納保持される。
【0044】
また、大径筒体の周壁には周方向に180度異なる2ヶ所の対向位置に割溝54を有している。これらの割溝54は配線引出用及びコア押さえ連結用として軸方向に沿って周壁の一部分を切り欠いて形成している。また、可動コア50は小径筒体の中心部に、可動ベース10の軸孔11と同方向に略同径を有して貫通された可動コア中心孔55を有している。そして、この可動コア50の上面に後述するコア押さえ40が搭載され、下面に摺動シート60が対設される。
【0045】
図4はコア押さえ40と可動コア50を連結する前と連結した後との状態を拡大して示している。
コア押さえ40は、図4(a)に示すように薄いステンレスプレートからプレス加工により所望の形状に打ち抜いて形成することができる。このコア押さえ40は円形プレート41と、この円形プレート41の上面に切り起こして突出される板バネ片42と、円形プレート41の下面周縁部の一部に垂設される可動コア連結片43とから構成される。
【0046】
円形プレート41は、可動コア50の上面に搭載可能な該可動コア50と略同じ円形を有し、該可動コア50の上面に搭載した際に可動コア50の外周よりはみ出ない大きさに設ける。
【0047】
板バネ片42は、プレス成形により細長い帯状に切り起して設けることができ、円形プレート41より切り起した基端部を片持ち支点として先端部を斜め上方に傾斜突出させ、この金属材の傾斜部分により上下方向に対する弾性力を持たせている。このような板バネ片42を円形プレート41の上面両側に平行させて設けている。また、板バネ片42による上下方向の付勢力が均一に得られるように平行する板バネ片42の一方と他方の傾斜する向きを異ならせている。
【0048】
さらに、各板バネ片42の先端部には、その先端部を傾斜方向から上向きに折曲した回り止め連結片44を設けている。該回り止め連結片44はコア押さえ40を組み込む時に、図5(a)に示すように、その上方の可動ベース10に開口されている両側のバネ係止孔13にそれぞれ挿通させて係合させている。したがって、板バネ片42は可動ベース10との間でパンタグラフのように上下動可能に対応する。また、コア押さえ40は図5(b)に示すように、可動ベース10の下面側より回り止め連結片44が係合して回り止めされ、該コア押さえ40は可動ベース10と係合した状態で共回りする。
【0049】
一方、可動コア連結片43は、図4(a)に示すように下方に対向する可動コア50の割溝54と対向する円形プレート41の下面位置に垂設されるものであって、割溝54の溝幅内に嵌合可能な平行する左右一対の垂片を可動コア50との連結片として設けたものである。したがって、コア押さえ40を可動コア50の上面に搭載する際は、図4(b)に示すように該コア押さえ40の下面に垂設されている可動コア連結片43を可動コア50の割溝54に上方から押し込んで嵌合させれば両者を連結して可動コア50の上面にコア押さえ40を搭載することができる。これにより、コア押さえ40を可動コア50の上面に簡単に回り止めして連結することができる。
【0050】
さらに、コア押さえ40は小スペースに配置されることから小型化が要求されるが、この小スペースに対応して小さく薄い円形プレート41を用い、しかも一部品で構成し、この一部品に板バネ片42と可動コア連結片43と回り止め連結片44との多機能の部品を効率よく持たせて構成している。
【0051】
摺動シート60は、可動コア50と略同円形状を有して上下に対向する可動コア50と固定コア70との対向面間に介在させるものであって、この摺動シート60を介在させることによりシート厚さのコアギャップG(図3参照)を維持し、またコア対向面を保護する目的で使用される。したがって、この摺動シート60は双方のコア50,70が両面で接触することから両コア50,70との接触に適した摺動性の良い低摩擦計数で薄い非磁性体の材質、例えば20ミクロン程度の薄膜の高分子フィルム(例えば高分子ポリエチレン)を用いる。そして、この摺動シート60を組み込んだ際は、上下に対向するコア50,70が摺動シート60を上下から挟む形で両面接触し、シート厚さのコアギャップGを維持することが可能になる。
【0052】
また、この摺動シート60は双方のコア50,70の外周よりはみ出さないように僅かに小径に設け、該摺動シート60の中心部には可動ベース10の軸孔11と略同径を有して貫通されたシート軸孔61を設けている。
【0053】
前記固定コア70は、圧入固定とビス止めとの併用に変えて軸受内輪80への圧入固定のみで保持させて固定することもできる。例えば、図6に示すように、軸受内輪80の内周面に固定コア70を固定可能な3点以上の小さな位置決め突起87を持たせておき、ここに固定コア70を圧入させることで位置決め突起87が潰れ、この結果、固定コア70を軸受内輪80の内周面に強固に固定する。
【0054】
この位置決め突起87は固定コア70毎の寸法誤差のバラつきを吸収し、軸受内輪80の中心に固定コア70を位置決め保持させることができる。この位置決め突起87は可動コア50側と接触しないように固定コア70と略同じ高さに形成して可動コア50の回転を妨げないようにしている。
【0055】
このように構成された非接触回転型電力伝送装置1を使用した場合、通電して固定コア70側のコイル72に電力を供給すると、該コイル72に発生した交流磁場が該コイル72と非接触に対向する可動コア50側のコイル52に受け取られ、電力が固定側より可動側に伝送される。このとき、可動コア50と固定コア70は相対的に反対方向に回転しようとする。このとき、固定コア70は固定ベース20に固定されているので可動コア50側が回転することになる。
【0056】
したがって、電力を供給している間、可動コア50と一体化している可動ベース10、軸受外輪30、コア押さえ40、可動コア50、摺動シート60が回転する。そして、この回転しているときの非接触での電力伝送は、コアギャップGが伝送効率に大きく影響を及ぼすことから最も重要であり、そのためにコアギャップGが変動しないようにコア押さえ40によって可動コア50を固定コア70側に均等な付勢圧で付勢している。これにより、コアギャップGを一定に保つことができる。
【0057】
このような構成によれば、可動コア50を固定コア70側に常に付勢する板バネ片42によりコアギャップGが変動しようとするのを板バネ片42の弾性対応によって未然に吸収する。したがって、板バネ片42によってコアギャップGは変動する余地がなくなり、常にシート厚さのコアギャップGを一定に保つことができる。これに加えて、対向するコア50,70間に非磁性体の摺動シート60を介在させることにより、双方のコア対向面が摺動シート60を挟む形で両面より接触する。
【0058】
この際、コア押さえ40の板バネ片42により可動コア50が摺動シート60に押し付けられる付勢力を受けて接触圧を確保しているため安定した接触圧による安定したコアギャップGを確保することができる。
【0059】
さらに、軸受外輪30や軸受内輪80等の構成部材が長期使用により磨耗してガタつきが発生しても、そのガタつきを板バネ片42が吸収し、コア周辺のガタつきによる変動をコアギャップGの部分に伝達させないコアギャップGの変動を遮断する機能が得られる。これにより、ガタつきの有無に関わらず対向するコア間のコアギャップGを常に一定に保つことが可能になる。
【0060】
特に、コア部分の小型化を図ると、その小型化に比例してコアギャップGは磁気効率に大きな影響を及ぼすが、コアギャップGを維持することができるため小型化に関する不安定な要素を解消することができる。この結果、小型で最大の磁気効率と安定性とを得ることができる。
【0061】
また、回転の振動、ガタなどが生じた際に、コアケース51,71を構成しているフェライトコアは脆く欠けやすい性質を有しているが、摺動シート60が各コア50,70に摺動可能に接触して保護しているので信頼性の高いコア保護対策が得られ、高品質の非接触回転型電力伝送装置1が得られる。
【0062】
さらに、非接触回転型電力伝送装置1を小型化しようとした場合、小型化に伴い内部空間も小さくなり、極めて小さな内部スペースに、回り止め用の連結部材と付勢部材とを内蔵する際には付勢形状が最も小さくシンプルとなる薄いプレートから一部を切り起こした板バネ片42を用いるのが適している。また、この板バネ片42にはさらに回り止め連結片44を兼ねさせて効率よく形成している。これにより、僅かの内部空間に付勢機能と回り止め機能とを備えたコア押さえ40を効率よく配置することができる。
【0063】
また、非接触回転型電力伝送装置1を組み立てる際、可動ベース10と固定ベース20との上下間に、両コア50,70の軸心を中心とする同心円上に軸受外輪30とコア押さえ40と可動コア50と摺動シート60と固定コア70と軸受内輪80との各構成部材を搭載して組み立てることができる。
【0064】
この場合は、コアを中心とする同心円上に構成部品を積み重ねるようにして簡単に組み立てることができる。特に、全ての構成部品の組立て方向が軸方向に揃うため、各構成部品が径方向に広がらず、小型化して組み付けることができる。
【0065】
さらに、組み立て後には、可動ベース側10から固定ベース20に至る同心円上の中心部軸方向に共通の貫通孔が得られるように軸孔11,55,61,75,21を形成して構成している。このため、共通の貫通孔に回転駆動用のモータ軸などを挿通させれば、可動ベースを任意に回転駆動することができる。また、光通信手段の一例としてLED等を用いて軸孔の両端開口部分で投受光させれば、制御信号を通信可能な構成とすることができる。
【0066】
上述のように、非接触回転型電力伝送装置を小型化しようとした場合、小型になるほど非接触で対向するコアギャップの影響を大きく受けやすく、このために品質が大きく左右されてしまう。このことから対向するコア間のコアギャップを維持することが重要視され、コアギャップの維持構造としてシンプルな形状のコア押さえを内蔵してコアギャップの変動を防止することにより小型化と低コスト化との実現を可能にし、小型化で高品質の製品を提供することができる。
【0067】
この発明の構成と、上述の一実施例の構成との対応において、
この発明のシートは、実施例の摺動シート60に対応し、
以下同様に、
弾性連結手段は、コア押さえ40に対応し、
板バネは、板バネ片に対応するも、この発明は請求項に示される技術思想に基づいて応用することができ、上述の一実施例の構成のみに限定されるものではない。
【符号の説明】
【0068】
1…非接触回転型電力伝送装置
10…可動ベース
20…固定ベース
30…軸受外輪
40…コア押さえ
42…板バネ片
50…可動コア
60…摺動シート
70…固定コア
80…軸受内輪
G…コアギャップ

【特許請求の範囲】
【請求項1】
円形のコイルを内蔵するコア同士を同心円上で非接触に対向させ、前記対向する一方のコアを固定ベースに保持し、他方のコアを可動ベースに保持し、これらのコア同士の対向面間を境に前記可動ベースを回転可能にして非接触に電力伝送を行う非接触回転型電力伝送装置であって、
前記固定ベースに固定され、前記コア同士を対向させた状態で前記一方のコアを固定コアとして保持する軸受内輪を備え、
前記可動ベースに、前記軸受内輪に回転自由に軸支される軸受外輪を備え、
前記コア同士の対向面間に低摩擦係数で非磁性体のシートを介在させ、
前記他方のコアを可動コアとして前記軸受内輪に収納させた状態で該可動コアと前記可動ベースとの対向面間に介在され、一端を前記可動コアに回り止めして連結し、他端をコア同士の対向方向に付勢させる付勢力を持たせて前記可動ベースに回り止めして連結した弾性連結手段を備えて構成した
非接触回転型電力伝送装置。
【請求項2】
前記弾性連結手段を、
一端を前記可動コアの係合部に係合させて回り止めし、他端を可動ベース方向に切り起してコア対向方向に付勢力を持たせ、その切り起し端部を前記可動ベースの係合部に係合させて回り止めした板バネで構成した
請求項1記載の非接触回転型電力伝送装置。
【請求項3】
前記固定ベースから可動ベースに至る同心円上の中心軸方向に軸孔を貫通して構成した
請求項1または2に記載の非接触回転型電力伝送装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−164734(P2012−164734A)
【公開日】平成24年8月30日(2012.8.30)
【国際特許分類】
【出願番号】特願2011−22467(P2011−22467)
【出願日】平成23年2月4日(2011.2.4)
【出願人】(000002945)オムロン株式会社 (3,542)