説明

非接触給電システム及び給電方法

【課題】非接触給電システムにおいて、受電体の共振周波数制御を必要とせずに、より長距離の給電を行えるようにする。
【解決手段】送電器101が、第一の周波数で磁界を発生させ、受電器102が、第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させる。また、受電体108の共振周波数は第一の周波数とは異なり、当該受電体108は、少なくとも受電器102が増幅させた第一の周波数の磁界による電磁誘導にて受電する。送電器101および受電器102によって形成される磁界から、受電体108が電磁誘導にて受電することにより、受電体の共振周波数制御を必要とせず、かつ、受電体108は、送電器101と受電器102との間においてより長距離の給電を行うことができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非接触給電システム及び給電方法に関する。
【背景技術】
【0002】
電磁誘導方式は、送電側と受電側コイルの間に発生する誘導磁束を利用して電力を送る方法である。1831年のファラデーの法則発見に端を発し、1836年にはトランスが発明されている。近年では、電動歯ブラシやシェーバーの充電器に採用されるなど、防水性を高める効果も活用され、各種製品に適用されている。この技術は非接触充電技術とも呼ばれ、伝送距離は数ミリメートル(mm)以下、動作周波数は数百キロヘルツ(kHz)以下の場合が多い。また、電磁誘導方式における送電電力量は設計による。
この電磁誘導方式では、伝送距離が短く磁界の漏れの周囲への影響が小さいことが特徴である。
【0003】
磁界共鳴方式は、2006年に、マサチューセッツ工科大学(MIT)が提案し、特許文献1に開示されている。この方式では、送電側及び受電側にそれぞれ2つのコイルを配置し、各インダクタンス(L)を大きくとることで、共鳴現象を発生させ、上記電磁誘導方式より長距離で、且つ、高効率な電力送電を実現している。
【0004】
非特許文献1によれば、共振周波数10メガヘルツ(MHz)を用い、コイル間距離2メートル(m)に対し、コイル間伝送効率45%を達成している。送電システム全体の伝送効率は、送電装置(主に増幅器)の効率37.5%と受電装置(主に整流器)の効率90%を含めた全体の積となるため、約15%となる。つまり、送電電力400ワット(W)を投入し、2メートル先の60ワットの電灯を点灯させている。このように、一般的な電磁誘導方式より、長距離まで比較的高効率で給電できるのが、磁界共鳴方式の特長である。但し、その給電距離は、送受電コイル間で磁束が届く範囲であり、その範囲は一般的に共振波長の1/20(20分の1)程度となる。上記実験に置いて、周波数10メガヘルツに対する1波長は60メートルであり、その1/20は3メートル程度となる。この伝送距離は、送受電コイルの直径ともほぼ一致することから、言い換えれば、磁界共鳴方式の実効的な伝送距離は、送受電コイルの直径程度となる。
【0005】
この磁気共鳴方式など無線給電技術への市場の期待は、電気が届かなかった場所や届けにくかった場所へ、無線で容易に電力を伝送できる点にある。その利用シーンの一つが配管内である。都市の地下やビル内等で、配水管、配電管、光ファイバーケーブル配管等、様々な配管が張り巡らされており、水量、水の汚染具合、電力量、ケーブル温度等々、様々なセンシングのニーズがある。このためには、配管内にセンサを配置する必要があり、そこへの電力供給を配管外から簡便に行う手段が求められている。
【0006】
上記利用シーンに関し、電磁誘導方式で配管内へ給電する技術が、例えば特許文献2及び3に開示されている。この中で、電磁誘導方式を用いた無線送電器の近傍に磁気シールド(合成ゴムシート、フェライト等)を配置して配管壁の影響を低減し、配管内の受電器(コイル)に電力伝送する技術が開示されている。
また、特許文献4では、磁界共鳴方式において、複数の受電器が存在する場合の技術が開示されている。この特許文献では、磁界共鳴方式の主送電装置に対し、2つ以上の受電装置があり、別途電力回収用の補助受電装置を有する構成が開示されている。ここでは、主として2つ以上の受電装置への磁界共鳴型給電を目的としており、共鳴周波数を一致させることが受電の条件となる。
【先行技術文献】
【非特許文献】
【0007】
【非特許文献1】André Kurs、他5名、"Wireless Power Transfer via Strongly Coupled Magnetic Resonances"、Science、2007年7月6日、Vol. 317、no. 5834、p. 83-86
【特許文献】
【0008】
【特許文献1】特表2009−501510号公報
【特許文献2】特開2010−246348号公報
【特許文献3】特開2009−022126号公報
【特許文献4】特願2009−87596号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
磁界共鳴方式では、共鳴現象を利用しているため、送電器側及び受電器側の共振周波数を一致させることが必須である。共振条件から外れた場合、電力伝送効率が大幅に低下する。そのため、例えば、受電器が複数ある場合は、各受電器の受電状態や送電器との相対距離による共振条件の変化を補正する機構が必要である。また、共振条件は、送受電器の周辺の環境温度によっても変化する。このように、磁界共鳴方式で電力を伝送する場合、温度などの環境や受電器数等に留意して、共振周波数の高度な制御を行う必要がある。しかしながら、例えば受電器が配管内など閉空間内にある場合など、共振周波数の制御を適切に行うことが困難なおそれがある。
一方、電磁誘導方式では、共振周波数の高度な制御は不要であるものの、送電距離が短い。従って、送電器と受電器とが離れている場合には電磁誘導方式は適さない。
【0010】
本発明は、上述の課題を解決することのできる非接触給電システム及び給電方法を提供することを目的としている。
【課題を解決するための手段】
【0011】
この発明は上述した課題を解決するためになされたもので、本発明の一態様による非接触給電システムは、第一の周波数で磁界を発生させることで送電する送電器と、前記第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させる共鳴器と、共振周波数が前記第一の周波数とは異なり、少なくとも前記共鳴器が増幅させた前記第一の周波数の磁界による電磁誘導にて受電可能な受電体と、を具備することを特徴とする。
【0012】
また、本発明の一態様による給電方法は、非接触給電システムの給電方法であって、送電器が、第一の周波数で磁界を発生させることで送電する送電ステップと、共鳴器が、前記第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させる共鳴ステップと、共振周波数が前記第一の周波数とは異なる受電体が、少なくとも前記共鳴器が増幅させた前記第一の周波数の磁界による電磁誘導にて受電する受電ステップと、を具備することを特徴とする。
【発明の効果】
【0013】
本発明によれば、受電体の共振周波数制御を必要とせずに、より長距離の給電を行うことができる。
【図面の簡単な説明】
【0014】
【図1】本発明の第1の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【図2】磁界共鳴方式による空間内での磁界形成の3次元シミュレーション結果の一例を示すグラフである。
【図3】本発明の第2の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【図4】本発明の第3の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【図5】本発明の第4の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【図6】本発明の第5の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【図7】本発明の第6の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【図8】本発明の第7の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【図9】本発明の第8の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【図10】本発明の第9の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。
【発明を実施するための形態】
【0015】
<第1の実施形態>
次に、本発明の実施の形態について図面を参照して説明する。
図1は、本発明の第1の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている管状の構造物の側面側(当該構造物の上側)から見た図にて示す説明図である。同図において、非接触給電システム1は、送電器101と、受電器102とを具備する。送電器101は、電源装置103と、送電用1次コイル104と、送電用2次コイル105とを具備する。受電器102は、受電用2次コイル106と、受電用1次コイル107とを具備する。
送電器101と受電器102とは、それぞれ、管状の構造物112の外周に、外壁を巻く形状で配置されている。また、管状の構造物112の内部に受電体108が配置されている。
【0016】
送電器101は、所定の周波数(第一の周波数)で磁界(電磁場)を発生させることで電力を供給(送電)する装置である。受電器102は、送電器101が発生させた第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させ、また、この共鳴によって受電する装置である。受電器102は、第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させる点で、本発明における共鳴器の一例である。
【0017】
送電器101において、送電用1次コイル104は、その端毎に電源装置103に接続され、電源装置103から第一の周波数の交流電力の供給を受けて、第一の周波数の磁界を発生させる。
送電用2次コイル105は、多重に巻かれた閉ループをなすコイルであり、送電用1次コイル104が発生させる磁界を増幅させる。なお、送電用1次コイル104と送電用2次コイル105との間には、電気的な接続関係は無い。
【0018】
送電器101から受電器102への電力伝送に際し、送電器101と受電器102の間の空間に磁界が形成される。図1には生成される磁力線110を概念的に記載している。なお、送電器101は交流の(すなわち極が入れ替わる)磁界を発生させるが、給電の向きに従って、送電器101側から受電器102側への矢印にて磁力線110を示している。以下の図においても同様である。
送電用1次コイルと、送電用2次コイルと、受電用1次コイルと、受電用2次コイルとは、いずれも第一の周波数を共振周波数としており、送電器101と受電器102とは、磁界共鳴方式により両者間に強い磁界を形成する。
【0019】
また、受電用1次コイル107は、送電器101が第一の周波数で発生させた磁界に共鳴して電圧を発生させる。このように受電用1次コイル107が電圧を発生させることにより、受電器102は受電する。
受電器102が受電した電力(すなわち、受電用1次コイル107が収集した電力)は、受電用1次コイル107の端毎に電源装置に接続された導線で構成される帰還経路111を経て電源装置103に戻され、送電器101が第一の周波数で磁界を発生させるのに用いられる。
受電用2次コイル106は、多重に巻かれた閉ループをなすコイルであり、送電器101が発生させた磁界を増幅することにより、受電用1次コイル107が発生させる電圧を大きくする。なお、受電用2次コイル106と受電用1次コイル107との間には、電気的な接続関係は無い。
【0020】
一方、送電器101と受電器102とで形成する磁界の中に受電体108を置くことにより、受電体108は、受電体108自らの具備する受電コイル109を使って電力を受電できる。この受電体108は、共振周波数が第一の周波数とは異なり、少なくとも共鳴器102が増幅させた第一の周波数の磁界による電磁誘導にて受電可能である。すなわち、送電器101が発生させた磁界の変化(特に、第一の周波数での振動)や、受電器102が増幅した磁界の変化の電磁誘導により、受電コイル109が電圧を発生させることで、受電体108は受電する。
【0021】
図2は、磁界共鳴方式による空間内での磁界形成の3次元シミュレーション結果の一例を示すグラフである。同図では、共振周波数を5メガヘルツ(=1波長60メートル)とし、送電器(図1の送電器101に相当する)及び受電器(図1の受電器102に相当する)の各コイル径を3メートル、コイル間の間隔を3.3メートルとした場合の、送電器と受電器との間の空間内の磁界強度分布を示している。
同図に示すように、磁界共鳴方式の場合、送電器及び受電器近傍での磁界強度が強くなる。これは共鳴現象を利用しているためであり、送電コイルから3.3メートル離れた受電コイル間での空間の伝送効率は90%と見積もられた。
前述のように、磁界共鳴方式の伝送距離は、一般的に共振波長の1/20程度となる。従って、図2では、コイル径を3メートルと大きくすることで、高効率なコイル間伝送を3.3メートルまで拡大できたと言える。
【0022】
この実験構成において、送電器と受電器との距離を3.3メートルより近づけると、コイル間の伝送効率は90%より大きくなる。また、これら送電器と受電器との間に受電体(図1の受電体108に相当する)を配置した場合、その位置において、受電体の具備する受電コイル(図1の受電コイル109に相当する)を通過する磁力線に応じて、受電量が決まる。つまり、受電体の受電量は、受電コイルの仕様による。
【0023】
非接触給電システム1の用途の一例として、下水管内に設置された水質検査センサへの給電が考えられる。より具体的には、水質検査センサとしての受電体108を用いて、下水管としての管状の構造物112内における水質汚濁の程度を測定し、下水処理工程の最適化を図ることが考えられる。その際、非接触給電システム1を用いて、水質検査センサ(受電体108)の駆動電力を配管(管状の構造物112)外から容易に(下水管に電線を通すための穴を空ける等の必要無く)給電することができる。すなわち、各センサは、配管内に形成されている磁界から、センサ(受電体108)自身が具備する受電コイル109を使って受電することができる。
【0024】
その際、各センサが受電する電力量は、各センサ自らが具備する受電コイル109の仕様により決定される。従って、各センサ(受電体108)は、整流回路を具備してセンサ自らの仕様に合う電圧を受電することが可能である。また、各センサの具備する受電コイル109は複数であっても良く、各受電コイル109で得られた電力を合成して受電電力とすることができる。このセンサは、磁界が形成された配管内のどこでも、いつでも、常に受電し得る。従って、センサが可動である(配管内を移動する)場合も容易に受電することが出来る。
但し、非接触給電システム1の用途は、この下水管内における水質検査センサへの給電に限らず、様々な場面における非接触給電に非接触給電システム1を用いることが出来る。
【0025】
以上のように、送電器101が第一の周波数で磁界を発生させ、受電器102が、第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させる。そして、受電体108は、受電器102が増幅させた第一の周波数の磁界による電磁誘導にて受電する。
従って、受電体108の共振周波数が第一の周波数である必要は無いので、受電体108の共振周波数を制御する必要が無く、また、受電体108の具備する受電コイル109の径を小さくすることが出来る。受電体108の共振周波数を制御する必要が無い点において、受電体108の設計上及び運用上の制約を受けない。例えば、温度変動激しい環境や、水中等、あるいは配管内など外部からの制御が比較的困難な場所にも、比較的容易に受電体108を配置することが出来る。
【0026】
そして、送電器101と受電器102とで、管状の構造物112の内部に磁界を形成し、受電器108は、この磁界のどこでも受電することができる。従って、受電体108は、送電器101との距離が長い場合にも受電することが出来る。
【0027】
また、受電器102が受電した電気エネルギーは、帰還ループ111を介して、電源装置103に戻される。これにより、管状の構造物112内部に磁界を形成するのに要するエネルギーが少なくて済む。
【0028】
なお、次に説明する第2の実施形態の場合と同様、非接触給電システム1が、受電体108を複数具備するようにしてもよい。この場合、各受電体の共振周波数は同一であってもよいし、互いに異なっていてもよい。受電体108は、電磁誘導にて受電するので、送電器101の発生させる磁界の周波数(第1の周波数)に共振する必要が無いからである。また、複数の受電体108を近くに配置することによる共振周波数のずれにも注意を払う必要が無く、複数の受電体108を容易に近づけることが出来る。
【0029】
また、上記のように、1つの受電体108が、複数の受電コイル109を具備するようにしてもよい。この場合、各受電コイル109の共振周波数は同一であってもよいし、互いに異なっていてもよい。
【0030】
なお、非接触給電システム1の設置される環境は、上述した管状の構造物に限らず、本発明の作用を実現し得る様々な環境に設置可能である。例えば、受電体108が配置される空間は、壁で覆われていなくてもよい。また、非接触給電システム1を管状の構造物に設置する場合、当該管状の構造物の断面は円形である必要は無く、矩形等であっても良い。また、非接触給電システム1が具備する各コイルも、直線の導電体、曲線の導電体、または、直線と曲線からなる導電体で構成されているなど、様々な形状を有していても良い。
また、非接触給電システム1が具備する各コイルは、インダクタと容量で構成されていても良い。
【0031】
<第2の実施形態>
図3は、本発明の第2の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている管状の構造物の側面側から見た図にて示す説明図である。同図において、非接触給電システム2は、送電器101と、受電器102と、リピータ113a及び113bとを具備する。送電器101は、電源装置103と、送電用1次コイル104と、送電用2次コイル105とを具備する。受電器102は、受電用2次コイル106と、受電用1次コイル107とを具備する。
送電器101と、受電器102と、リピータ113a及び113bとは、それぞれ、管状の構造物112の外周に、外壁を巻く形状で配置されている。また、管状の構造物112の内部に受電体108が配置されている。
【0032】
同図において、図1の各部に対応して同様の機能を有する部分には同一の符号(101〜112)を付して説明を省略する。図3に示す非接触給電システム2は、送電器101と受電器102との間に2つのリピータ113a及び113bを具備する点、並びに、管状の構造物112の内側に2つの受電体108を具備する点で、図1に示す非接触給電システム1と異なる。
【0033】
リピータ113は、管状の構造物112の外周かつ、送電器101と受電器102との間に配置され、第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させる。具体的には、送電器101側に配置されたリピータ113aが、送電器101の発生させた磁界を増幅させる。そして、リピータ113aが増幅した磁界を、受電器102側に配置されたリピータ113bが増幅させる。また、受電器102は、リピータ113bが増幅した磁界を増幅させる。
このように、リピータ113a及び113bと受電器102とは、本発明における共鳴器の一例であり、非接触給電システム2は、複数の共鳴器を具備している。また、共鳴器であるリピータ113bは、他の共鳴器であるリピータ113aが増幅させた第一の周波数の磁界をさらに増幅させ、共鳴器である受電器102は、他の共鳴器であるリピータ113bが増幅させた第一の周波数の磁界をさらに増幅させている。
【0034】
ここで、前述のように、送電器101と受電器102との間の磁界は、共振波長(従って、送電器101が発生させる磁界の周波数)、及び、コイル径による。すなわち、発生させる磁界の周波数(すなわち、送電する電力の周波数)、及び、コイル径の設計により、送電器101と受電器102との間の磁界を強めることができ、その間に配置した受電体108が、受電体108自身の具備する受電コイル109により受電することが可能となる。
【0035】
さらに、非接触給電システム2では、送電器101と受電器102との間にリピータ113a及び113bを挿入することにより、これらリピータ113a及び113bの位置での電磁界強度を強め、送電器101から受電器102までの管状の構造物112内部の電界を強く保つことが出来る。
【0036】
ここで、例えば、送電器101、リピータ113a、113b及び受電器102の間隔は、すべて2メートルとする。また、各コイル径は、図2の条件と同じく、直径3メートルとする。また、送電用1次コイル104及び受電用1次コイル107は円形単層巻きとし、送電用2次コイル105及び受電用2次コイル106は円形スパイラル型で5.75巻きとする。また、リピータ113a及び113bのコイルも円形スパイラル型で5.75巻きとする。また、磁界共鳴方式における共振周波数は5メガヘルツとし、送電用1次コイル104と送電用2次コイル105との間隔、及び、受電用2次コイル106と受電用1次コイル107との間隔は、共鳴が最も強くなる距離で固定する。
【0037】
この場合、送電器101と送電器側のリピータ113aとの間隔は2メートルであり、図2で説明したシミュレーションにおけるコイル間の距離3.3メートルよりも短い。従って、送電器101とリピータ113aとの間の伝送効率は、図2に示される伝送効率90%よりも高いことが見込まれる。さらに、送電器101とリピータ113aとの中間位置における磁界強度も、高い値(例えば90%程度以上)を見込むことが出来る。
また、送電器側のリピータ113aと受電器側のリピータ113bとの距離も2メートル、受電器側のリピータ113bと受電器102との距離も2メートルであるので、それぞれ同様に90%以上の伝送効率を見込むことが出来る。従って、送電器101と受電器102との間の距離6メートルに渡り、伝送効率(90%×90%×90%=)73%程度以上を見込むことができ、この領域における管状の構造物112内部の磁界強度を強く保つことが出来る。
【0038】
また、受電器102が受電した電気エネルギーは、帰還ループ111を介して、電源装置103に戻される。これにより、非接触給電システム1(図1)の場合と同様、管状の構造物112内部に磁界を形成するのに要するエネルギーが少なくて済む。
【0039】
なお、非接触給電システム2の具備する受電体108の数は、図3に示す2つに限らず、1つであっても良いし、3つ以上であっても良い。また、非接触給電システム2が複数の受電体を具備する場合、非接触給電システム1(図1)で説明したように、各受電体の共振周波数は同一であってもよいし、互いに異なっていてもよい。また、1つの受電体108が複数の受電コイル109を具備する場合、各受電コイル109の共振周波数は同一であってもよいし、互いに異なっていてもよい。
【0040】
上記のように、本発明により、配管内の広い領域であっても送電器101、リピータ113a、113bおよび受電器102が行う配管内の磁界形成の機能と、受電体108が行う受電の機能とに、機能を分離することで、配管内の広範囲に給電可能なシステムを構築することができる。
例えば、センサ(受電体108)の具備する受電コイル109の径を5センチメートル(cm)とすると、シミュレーションにおいて20ミリワット(mW)以上の受電量が見込まれた。ここで、送電器101への印加電力は150ワットとした。
非接触給電システム2は、非接触給電システム1と同様、下水管内における水質検査をはじめ、様々な場面における非接触給電に用いることが出来る。
【0041】
以上のように、送電器101及び受電器102の間に、少なくとも1つ以上のリピータ113を配置することで、電界を形成する空間を拡大することが出来る。
【0042】
また、磁界を形成するために送電器101から送出されリピータ113を経て受電器102に受電されるエネルギーを、送電器101に帰還させることにより、当該磁界を形成するための電力エネルギーを抑制することが出来る。
【0043】
<第3の実施形態>
図4は、本発明の第3の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている管状の構造物の側面側から見た図にて示す説明図である。同図において、非接触給電システム3は、送電器101bと、受電器102と、リピータ113a及び113bとを具備する。
送電器101bは、電源装置103と、送電用1次コイル104と、送電用2次コイル105とを具備する。受電器102は、受電用2次コイル106と、受電用1次コイル107とを具備する。
送電器101と、受電器102と、リピータ113a及び113bとは、それぞれ、管状の構造物112の外周に、外壁を巻く形状で配置されている。また、管状の構造物112の内部に受電体108が配置されている。
【0044】
同図において、図3の各部に対応して同様の機能を有する部分には同一の符号(101〜112、113a、113b)を付して説明を省略する。なお、図を見易くするために、図4において受電コイル109の記載を省略しているが、図3の場合と同様、受電体108は受電コイル109を具備する。図4に示す非接触給電システム3は、送電用1次コイル104の左右それぞれに、送電用2次コイル103、リピータ113a、113bおよび受電器102が配置されている点で、図3に示す非接触給電システム2と異なる。
なお、非接触給電システム3が具備する受電体108の数は、非接触給電システム2(図3)の場合と同様、1つであっても良いし、2つ以上であっても良い。
【0045】
送電器101bにおいて、1つの送電用1次コイル104と1つの送電用2次コイル105とで、非接触給電システム2(図3)における送電器101に対応して同様の機能を有する。従って、送電用1次コイル104の軸方向両側(図4における左右)に、それぞれ送電用2次コイル105が配置されていることで、送電器101bは、左右両側に磁界を発生させることが出来る。
【0046】
このようにして、送電器101bが左右両側の受電器102に電力伝送することで、磁界を形成する領域を拡大することが出来る。そして、前述のように、送電する電力の周波数、及び、コイル径の設計により、送電器101と受電器102との間の空間の磁界を強める(振幅を大きくする)ことができ、その間に配置された受電体108が、受電体108自身の具備する受電コイルで受電することが可能となる。
【0047】
具体的には、電源装置103に接続された送電用1次コイル104から、左右に配置された送電用2次コイル105に電界(の振動)が伝搬され、左右両方向に対し、リピータ113aおよび113b、並びに、受電用2次コイル106を経て、受電用1次コイル107へ無線給電される。ここで、リピータ113aおよび113bを挿入することにより、これらリピータ113aおよび113bの位置での磁界強度を強め、送電器101から受電器102までの管状の構造物112内部の磁界を強く保つことが出来る。
【0048】
ここで、例えば非接触給電システム2(図3)の場合と同様、送電器101、リピータ113a、113b及び受電器102の間隔はすべて2メートルとする。また、各コイル径は、図2の条件と同じく、直径3メートルとする。また、送電用1次コイル104及び受電用1次コイル107は円形単層巻きとし、送電用2次コイル105及び受電用2次コイル106は円形スパイラル型で5.75巻きとする。また、リピータ113a及び113bのコイルも円形スパイラル型で5.75巻きとする。また、磁界共鳴方式における共振周波数は5メガヘルツとし、送電用1次コイル104と送電用2次コイル105との間隔、及び、受電用2次コイル106と受電用1次コイル107との間隔は、共鳴が最も強くなる距離で固定する。
【0049】
この場合、送電器101と送電器側のリピータ113aとの間隔は2メートルであり、非接触給電システム2の場合と同様、送電器101とリピータ113aとの間の伝送効率は、図2に示される伝送効率90%よりも高いことが見込まれる。さらに、送電器101とリピータ113aとの中間位置における磁界強度も、高い値(例えば90%程度以上)を見込むことが出来る。
また、リピータ113aとリピータ113bとの間、及び、リピータ113bと受電器102との間においても、非接触給電システム2の場合と同様、90%以上の伝送効率を見込むことが出来る。従って、送電器101とその左右の受電器102との間の各距離6メートル、計12メートルに渡り、図4の右側の受電器102と左側の受電器102とが受電する電力の合計として、送電器101が電界を発生させて出力する電力の73%程度以上を見込むことができ、この領域における管状の構造物112内部の磁界強度を強く保つことが出来る。
【0050】
また、受電器102が受電した電気エネルギーは、帰還ループ111を介して、電源装置103に戻される。これにより、非接触給電システム1や2の場合と同様、管状の構造物112内部に磁界を形成するのに要するエネルギーが少なくて済む。
非接触給電システム3は、非接触給電システム1や非接触給電システム2と同様、下水管内における水質検査をはじめ、様々な場面における非接触給電に用いることが出来る。
【0051】
<第4の実施形態>
図5は、本発明の第4の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。同図(a)は、本実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている管状の構造物の側面側から見た図にて示している。
同図(a)において、非接触給電システム4は、送電器101cと、受電器102と、リピータ113a及び113bとを具備する。
送電器101cは、電源装置103と、送電用1次コイル104と、送電用2次コイル105とを具備する。受電器102は、受電用2次コイル106と、受電用1次コイル107とを具備する。
送電器101と、受電器102と、リピータ113a及び113bとは、それぞれ、管状の構造物112の外周に、外壁を巻く形状で配置されている。また、管状の構造物112の内部に受電体108が配置されている。
【0052】
同図において、図4の各部に対応して同様の機能を有する部分には同一の符号(102〜112、113a、113b)を付して説明を省略する。なお、図4の場合と同様、受電体108は受電コイル109を具備する。図5に示す非接触給電システム4は、送電器101cが、送電用1次コイル104と送電用2次コイル103とを、それぞれ1つずつ具備する点で、図4に示す非接触給電システム3と異なる。
なお、非接触給電システム4が具備する受電体108の数は、非接触給電システム3(図4)の場合と同様、1つであっても良いし、2つ以上であっても良い。
【0053】
図5(b)は、非接触給電システム4の具備する送電用1次コイル104と送電用2次コイル105との位置関係を、これらのコイルの軸方向から見た断面図にて示している。同図に示されるように、円形単層型の送電用1次コイル104の直径が、円形スパイラル型の送電用2次コイル105の直径より大きく、送電用2次コイル105を取り巻くように、その幅のほぼ中央に送電用1次コイル104が配置されている。
この構成により、非接触給電システム3との比較において、送電用2次コイル105を1つ削減できる。
【0054】
<第5の実施形態>
図6は、本発明の第5の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている円環状の構造物における円環の軸方向(当該構造物の上側)から見た図にて示す説明図である。同図において、非接触給電システム5は、送電器101と、リピータ113とを具備する。送電器101は、電源装置103と、送電用1次コイル104と、送電用2次コイル105とを具備する。
送電器101と、リピータ113とは、それぞれ、円環状の構造物112bの外壁を巻く形状で配置されている。この円環状の構造物112bは、環状構造を有する管状の構造物の一例であり、当該円環状の構造物112bの内部に受電体108が配置されている。
【0055】
同図において、図3の各部に対応して同様の機能を有する部分には同一の符号(101、103〜105、108〜110)を付して説明を省略する。なお、図4の場合と同様、受電体108は受電コイル109を具備する。また、図6のリピータ113は、図3のリピータ113aや113bと同様の機能を有しており、説明を省略する。
図6に示す非接触給電システム5は、円管状の構造物112bに設置されている点、および、受電器102を具備せず、送電器101の発生させた磁界(磁力線)が、送電器101自らに帰着する点で、図4に示す非接触給電システム3と異なる。
なお、非接触給電システム5が具備する受電体108の数は、非接触給電システム3(図4)の場合と同様、1つであっても良いし、2つ以上であっても良い。
【0056】
ここで、送電器101が発生させる磁界の周波数、及び、コイル径の設計により、送電器101と受電器102との間の磁界を強めることができ、その間に配置した受電体108が、受電体108自身の具備する受電コイル109により受電することが可能となる。
【0057】
また、電源装置103に接続された送電用1次コイル104から、送電用2次コイル105に磁界にてエネルギーが伝達され、そこから時計回り及び反時計回りにリピータ113を介して無線給電される。すなわち、送電器101が磁界を発生させる際、時計回り(図6に向かって見て、送電器101から左向き)に発生する磁界と逆の極性の磁界が、反時計回り(図6に向かって見て、送電器101から右向き)に発生する。
【0058】
そして、送電器101が発生させた時計回りの磁界及び反時計回りの磁界が、それぞれ一周して送電器101に戻るようにリピータ113が配置されている。送電器101に戻った磁界は、電源装置103から供給される電力にて送電器101が発生させる磁界と共に、再び周回伝達される。
また、リピータ113を挿入することにより、各リピータ113の位置での磁界強度を強め、円環状の構造物112b内部での磁界を強く保つことが出来る。
【0059】
ここで、例えば、送電器101とリピータ113との間隔、及び、リピータ113相互間の間隔は、これらのコイルの中心部ですべて3.1メートルとする。また、各コイル径は、図2の条件と同じく、直径3メートルとする。また、送電用1次コイル104は円形単層巻きとし、送電用2次コイル105は円形スパイラル型で5.75巻きとする。また、リピータ113のコイルも円形スパイラル型で5.75巻きとする。また、磁界共鳴方式における共振周波数は5メガヘルツとし、送電用1次コイル104と送電用2次コイル105との間隔は、共鳴が最も強くなる距離で固定する。
【0060】
この場合、送電器101とリピータ113とのコイル中心部の間隔、及び、リピータ相互間のコイル中心部の間隔は3.1メートルであり、図2で説明したシミュレーションにおけるコイル間の距離3.3メートルとほぼ同等になる。従って、特に、送電器101やリピータ112の各コイルの近傍において、強い電界を形成することが出来る。ここで、各リピータ113の位置は、送電器101から時計回り及び反時計回りに伝搬される電磁エネルギーの合算値が、当該リピータ113の位置での時計回りに伝播する電磁エネルギーと、反時計回りに伝播する電磁エネルギーとの、絶対値の和に対する比率において0.5以上である場所に配置されている。これにより、時計回り及び反時計回りに伝達する電磁波がその位相差により、リピータ113や(周回時の)送電器101の位置において互いに打ち消し合うことにならないよう設計されている。
【0061】
また、送電器101から送出された磁界(電磁エネルギー)は、リピータ113を介して、送電器101に帰還する。これにより、円環状の構造物112b内部に磁界を形成するのに要するエネルギーが少なくて済む。
【0062】
非接触給電システム5の用途の一例として、円環状の構造物内の認証タグへの給電が考えられる。より具体的には、受電体108は、荷物に付された認証タグであり、問合せに応じて、あるいは定期的に、自らの位置情報や、荷物の識別情報(認証タグの識別情報)を無線送信する。また、円環状の構造物112bは、この荷物の置き場所として用いられる回転式の荷物棚である。この荷物棚内の認証タグに対して、非接触給電システム5を用いて容易に(認証タグに給電ケーブルを接続する等の必要無く)給電することができる。すなわち、各認証タグは、荷物棚の内部に形成されている磁界から、認証タグ(受電体108)自身が具備するコイルを使って受電することができる。
【0063】
その際、各認証タグが受電する電力量は、各認証タグ自らが具備する受電コイルの仕様により決定される。従って、各認証タグ(受電体108)は、整流回路を具備して認証タグ自らの仕様に合う電圧を受電することが可能である。また、各認証タグの具備する受電コイルは複数であっても良く、各受電コイルで得られた電力を合成して受電電力とすることができる。この認証タグは、磁界が形成された荷物棚内のどこでも、いつでも、常に受電し得る。従って、認証タグが荷物棚のどこにあっても、また、荷物棚が回転して認証タグが移動する場合も、認証タグは容易に受電することができる。
【0064】
上記のように、本発明により、円環状の構造物全体において、送電器101およびリピータ113が行う構造物内の磁界形成の機能と、受電体108が行う受電の機能とに、機能を分離することで、構造物内のどこでも給電可能なシステムを構築することができる。
例えば、認証タグ(受電体108)の具備する受電コイルの径を5センチメートルとすると、シミュレーションにおいて10ミリワット以上の受電量が見込まれた。ここで、送電器101への印加電力は100ワットとした。
但し、非接触給電システム5の用途は、この認証タグへの給電に限らず、様々な場面における非接触給電に非接触給電システム5を用いることが出来る。
【0065】
以上のように、磁界を形成するために送電器101から送出されるエネルギーを、複数のリピータ113を介して送電器101に帰還させることが出来る。これにより、磁界を形成するための電力エネルギーを抑制することが出来る。ここで、環状構造物の断面は、円形でも矩形でも良く、本発明の主旨にあう構造であればよい。
【0066】
また、送電器101から時計回り及び反時計回りに伝搬される電磁エネルギーの合算値の、個々のエネルギーの絶対値の和に対する比が0.5以上となる位置にリピータ113や送電器101を配置することにより、リピータ113や(周回時の)送電器101の位置において電磁エネルギーが互いに打ち消し合うことを防止できる。
【0067】
<第6の実施形態>
図7は、本発明の第6の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている部分的な円環状の構造物における円環の軸方向(当該構造物の上側)から見た図にて示す説明図である。同図において、非接触給電システム5は、送電器101と、リピータ113とを具備する。送電器101は、電源装置103と、送電用1次コイル104と、送電用2次コイル105とを具備する。
送電器101と、リピータ113とは、それぞれ、部分的な円環状の構造物112cの外壁を巻く形状で配置されている。この部分的な円環状の構造物112cは、環状構造を有する管状の構造物の一例であり、当該部分的な円環状の構造物112cの内部に受電体108が配置されている。
【0068】
同図において、図6の各部に対応して同様の機能を有する部分には同一の符号(101、103〜105、108〜110、113)を付して説明を省略する。なお、図6の場合と同様、受電体108は受電コイル109を具備する。
図7に示す非接触給電システム6は、部分的な円環状の構造物112cに設置されている点で、図6に示す非接触給電システム5と異なる。
なお、非接触給電システム6が具備する受電体108の数は、非接触給電システム5の場合と同様、1つであっても良いし、2つ以上であっても良い。
【0069】
同図に示されるように、構造物の円環が途絶していても、各構造物内に磁界を形成できれば、本発明の効果に支障はない。
また、非接触給電システム5(図6)の場合と同様、送電器101が発生させる磁界の周波数、及び、コイル径の設計により、送電器101と受電器102との間の磁界を強めることができ、その間に配置した受電体108が、受電体108自身の具備する受電コイル109により受電することが可能となる。
【0070】
また、非接触給電システム5の場合と同様、電源装置103に接続された送電用1次コイル104から、送電用2次コイル105に磁界にてエネルギーが伝達され、そこから時計回り及び反時計回りにリピータ113を介して無線給電される。そして、送電器101が発生させた時計回りの磁界及び反時計回りの磁界が、それぞれ一周して送電器101に戻るようにリピータ113が配置されている。送電器101に戻った磁界は、電源装置103から供給される電力にて送電器101が発生させる磁界と共に、再び周回伝達される。
また、リピータ113を挿入することにより、各リピータ113の位置での磁界強度を強め、円環状の構造物112b内部での磁界を強く保つことが出来る。
【0071】
ここで、例えば、送電器101とリピータ113との間隔、及び、リピータ113相互間の間隔は、これらのコイルの中心部ですべて30センチメートルとする。また、各コイル径は、直径30センチメートルとする。また、送電用1次コイル104は円形単層巻きとし、送電用2次コイル105は円形スパイラル型で5.75巻きとする。また、リピータ113のコイルも円形スパイラル型で5.75巻きとする。また、磁界共鳴方式における共振周波数は5メガヘルツとし、送電用1次コイル104と送電用2次コイル105との間隔は、共鳴が最も強くなる距離で固定する。
【0072】
また、図6で説明したのと同様に、各リピータ113の位置は、送電器101から時計回り及び反時計回りに伝搬される電磁エネルギーの合算値が、当該リピータ113の位置での時計回りに伝播する電磁エネルギーと、反時計回りに伝播する電磁エネルギーとの、絶対値の和に対する比率において0.5以上である場所に配置されている。これにより、時計回り及び反時計回りに伝達する電磁波がその位相差により、リピータ113や(周回時の)送電器101の位置において互いに打ち消し合うことにならないよう設計されている。
【0073】
また、送電器101から送出された磁界(電磁エネルギー)は、リピータ113を介して、送電器101に帰還する。これにより、円環状の構造物112b内部に磁界を形成するのに要するエネルギーが少なくて済む。
【0074】
非接触給電システム6の用途の一例として、部分的な円環状の構造物内のアクティブ認証タグへの給電が考えられる。より具体的には、受電体108は、アクティブ認証タグであり、部分的な円環状の構造物112cは、多数のアクティブ認証タグを一括充電する一括充電器である。この一括充電器に多数のアクティブ認証タグを入れ、磁界共鳴方式により形成される磁界から、アクティブ認証タグ(受電体108)自身が具備する受電コイルを用いて受電することができる。この時、
【0075】
その際、各アクティブ認証タグが受電する電力量は、各アクティブ認証タグ自らが具備する受電コイルの仕様により決定される。従って、各アクティブ認証タグ(受電体108)は、整流回路を具備してアクティブ認証タグ自らの仕様に合う電圧を受電することが可能である。また、各アクティブ認証タグの具備する受電コイルは複数であっても良く、各受電コイルで得られた電力を合成して受電電力とすることができる。
【0076】
上記のように、本発明により、部分的な円環状の充電器において、様々な仕様のアクティブ認証タグを一括充電することが可能となる。
例えば、認証タグ(受電体108)の具備する受電コイルの径を0.5センチメートルとすると、シミュレーションにおいて25ミリワット以上の受電量が見込まれた。ここで、送電器への印加電力は100ワットとした。
このように、管状の構造物の内部に形成される磁界により、管状の構造物の内部に配置した多数の受電体108を一括で充電することが出来る。例えば、多数の受電体108に対し、無人となる管理環境下で一括給電することが出来る。
【0077】
但し、非接触給電システム6の用途は、このアクティブ認証タグへの一括充電に限らず、様々な場面における非接触給電に非接触給電システム6を用いることが出来る。
【0078】
このように、環状の構造物が断片的である場合にも本発明を適用することができ、連続して環状をなしている場合と同様の効果を得ることが出来る。
【0079】
次に、図8〜図10を参照して、実施例4及び5で示した円環状の構造物内への無線給電に関し、さらに構造上の実施例を3つ開示する。
【0080】
<第7の実施形態>
図8は、本発明の第7の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。同図(a)は、本実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている円環状の構造物の側面側から見た図にて示している。
同図(a)において、非接触給電システム7は、送電器101cと、リピータ113とを具備する。送電器101cは、電源装置103と、送電用1次コイル104と、送電用2次コイル105とを具備する。
送電器101cと、リピータ113とは、それぞれ、円環状の構造物112bの外壁を巻く形状で配置されている。この円環状の構造物112bは、環状構造を有する管状の構造物の一例であり、当該円環状の構造物112bの内部に受電体108が配置されている。
【0081】
同図において、図6の各部に対応して同様の機能を有する部分には同一の符号(103〜105、108〜110、113)を付して説明を省略する。なお、図6の場合と同様、受電体108は受電コイル109を具備する。図8に示す非接触給電システム7は、送電用1次コイル104と送電用2次コイル105との位置関係において、図6に示す非接触給電システム5と異なる。
なお、非接触給電システム7が具備する受電体108の数は、非接触給電システム5(図6)の場合と同様、1つであっても良いし、2つ以上であっても良い。
【0082】
図8(b)は、非接触給電システム7の具備する送電用1次コイル104と送電用2次コイル105との位置関係を、これらのコイルの軸方向から見た断面図にて示している。同図に示されるように、円形単層型の送電用1次コイル104の直径が、円形スパイラル型の送電用2次コイル105の直径より大きく、送電用2次コイル105を取り巻くように、その幅のほぼ中央に送電用1次コイル104が配置されている。
【0083】
上記図8の構成を取ることにより、時計回り及び反時計回りの電磁エネルギーの伝搬に対し、送電器内部での1次コイル104から2次コイル105への電磁エネルギー伝達の対称性が保持され、且つ、周回した電気エネルギーに対し、当該1次コイルが障害にならない位置に配置することができる。これにより、周回する電磁エネルギーの伝達ロスを抑制することが出来る。
【0084】
<第8の実施形態>
図9は、本発明の第8の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を示す説明図である。同図(a)は、本実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている円環状の構造物の側面側から見た図にて示している。
同図(a)において、非接触給電システム8は、送電器101cと、リピータ113bとを具備する。送電器101cは、電源装置103と、送電用1次コイル104と、送電用2次コイル105とを具備する。リピータ113bは、1次コイル114と2次コイル115とを具備する。
送電器101cと、リピータ113bとは、それぞれ、円環状の構造物112bの外壁を巻く形状で配置されている。この円環状の構造物112bは、環状構造を有する管状の構造物の一例であり、当該円環状の構造物112bの内部に受電体108が配置されている。
【0085】
同図において、図8の各部に対応して同様の機能を有する部分には同一の符号(101c、103〜105、108〜110、112b)を付して説明を省略する。なお、図8の場合と同様、受電体108は受電コイル109を具備する。
なお、非接触給電システム8が具備する受電体108の数は、非接触給電システム7(図8)の場合と同様、1つであっても良いし、2つ以上であっても良い。
【0086】
図9(b)は、1次コイル114の概略構成を、当該1次コイルの軸方向からみた断面図にて示している。同図に示されるように、1次コイル114は、スイッチ116を具備する。このスイッチ116の閉(ON)状態において、1次コイル114は、電気を導通させる。一方、スイッチ116の開(OFF)状態において、1次コイル114は、電気を導通させない(すなわち、1次コイル114の両端間で絶縁状態となる)。
【0087】
スイッチ116が開状態にある場合、当該スイッチ116を具備する1次コイル114は電磁エネルギーの伝達に影響を与えない。この場合、当該1次コイルと対になっている2次コイル115単体で、非接触給電システム7におけるリピータ113と同様の働きをする。
【0088】
一方、スイッチ116が閉状態にある場合、当該スイッチ116を具備する1次コイル114の両端と電源装置103とを予め導線で接続して帰還経路111を形成しておくことで、当該1次コイル114を具備するリピータ113bを受電器102(例えば図1)と同様に機能させることができる。すなわち、1次コイル114が収集した電力を、帰還経路111を経由して電源装置103に戻し、送電器101cが第一の周波数で磁界を発生させるのに用いることが出来る。
【0089】
なお、図面を見易くするために、図9ではリピータ113bのうち1つのみと電源装置111とを接続して帰還経路111を形成している様子を示しているが、他のリピータ113b(例えば全てのリピータ113b)と、電源装置111とを接続して帰還経路111を形成しておいてもよい。これにより、閉状態とするスイッチ116を選択することで、受電器102として機能させるリピータ113bの位置を選択することができ、磁界の強弱の分布を調整することが出来る。また、受電器としてのリピータ113bが受電した電気を電源装置103に戻すことで、円環状の構造物112b内部に磁界を形成するのに要するエネルギーが少なくて済む。
【0090】
なお、本実施形態で説明したスイッチを具備するリピータの適用範囲は、図9に示す円環状の構造物に設置された非接触給電システムに限らず、様々な非接触給電システムに適用可能である。例えば、図3に示すリピータ113にスイッチ付きの1次コイルを設けて、リピータとしての機能と受電器としての機能とを選択可能としてもよい。これにより、磁界の強弱の分布を調整することができ、また、送電器から受電器(としてのリピータ)までの距離を適切に選択することで、より多くの電力を電源装置に戻すことができる。
【0091】
<第9の実施形態>
図10は、本発明の第9の実施形態における非接触給電システムの構成の概略、及び、各部の配置の概略を、当該非接触給電システムが設置されている円環状の構造物の側面側から見た図にて示す説明図である。同図において、非接触給電システム9は、送電器101dと、リピータ113bとを具備する。送電器101dは、電源装置103と、1次コイル114と、送電用2次コイル105とを具備する。リピータ113bは、1次コイル114と2次コイル115とを具備する。
送電器101dと、リピータ113bとは、それぞれ、円環状の構造物112bの外壁を巻く形状で配置されている。この円環状の構造物112bは、環状構造を有する管状の構造物の一例であり、当該円環状の構造物112bの内部に受電体108が配置されている。
【0092】
同図において、図9の各部に対応して同様の機能を有する部分には同一の符号(103、105、108〜110、112b、113b、114〜115)を付して説明を省略する。なお、図8の場合と同様、受電体108は受電コイル109を具備する。
なお、非接触給電システム9が具備する受電体108の数は、非接触給電システム8(図9)の場合と同様、1つであっても良いし、2つ以上であっても良い。
非接触給電システム9では、送電器101dが1次コイル114を具備する点において、非接触給電システム8と異なる。
【0093】
このように、送電器101dが1次コイル114を具備し、当該1次コイル114のスイッチ(図9で説明したスイッチ116)が開状態にある場合、リピータ113bについて説明したのと同様に、送電器101dは、非接触給電システム7におけるリピータ113と同様の働きをする。一方、送電器101dのスイッチが閉状態にある場合、送電器101dは、送電器101cと同様の働きをする。
【0094】
従って、複数の送電器101dのうち、スイッチを閉状態とするものを選択することで、磁界を発生させる位置を選択することができ、磁界の強弱の分布を調整することが出来る。あるいは、複数の送電器101dに磁界を発生させて、磁界を増強することができる。
なお、リピータ113bについては、図9で説明したように、予め電源装置103と接続しておき、リピータ113bの具備するスイッチの開閉により受電器またはリピータとして機能させることができる。
【0095】
なお、本実施形態で説明したスイッチを具備する送電器の適用範囲は、図10に示す円環状の構造物に設置された非接触給電システムに限らず、様々な非接触給電システムに適用可能である。例えば、図3に示すリピータ113にスイッチ付きの1次コイルを設けて、リピータとしての機能と送電器としての機能とを選択可能としてもよい。これにより、磁界の強弱の分布を調整することができ、あるいは、複数の送電器に磁界を発生させて磁界を増強することができる。
【0096】
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
【符号の説明】
【0097】
101、101b、101c、101d 送電器
102 受電器
103 電源装置
104 送電用1次コイル
105 送電用2次コイル
106 受電用1次コイル
107 受電用2次コイル
108 受電体
109 受電コイル
112 管状の構造物
112b 円環状の構造物
113、113b リピータ
114 1次コイル
115 二次コイル
116 スイッチ


【特許請求の範囲】
【請求項1】
第一の周波数で磁界を発生させることで送電する送電器と、
前記第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させる共鳴器と、
共振周波数が前記第一の周波数とは異なり、少なくとも前記共鳴器が増幅させた前記第一の周波数の磁界による電磁誘導にて受電可能な受電体と、
を具備することを特徴とする非接触給電システム。
【請求項2】
少なくとも1つの前記共鳴器は前記第一の周波数の磁界に共鳴することで受電する受電器であり、
前記受電器が受電した電力は、前記送電器が前記第一の周波数で磁界を発生させるのに用いられる
ことを特徴とする請求項1記載の非接触給電システム。
【請求項3】
複数の前記共鳴器を具備し、
前記共鳴器の少なくとも1つは、他の共鳴器が増幅させた前記第一の周波数の磁界をさらに増幅させる
ことを特徴とする請求項1または請求項2記載の非接触給電システム。
【請求項4】
前記送電器は、1次コイルと、2次コイルとを具備し、該1次コイルの直径が、該2次コイルの直径よりも大きく、且つ、該1次コイルが該2次コイルを取り巻く形状で配置され、
前記送電器の両側にそれぞれ前記共鳴器が設置されている
ことを特徴とする請求項1から請求項3のいずれか一項記載の非接触給電システム。
【請求項5】
前記送電器と増幅器とは、管状の構造物の外壁を巻く形状で配置され、
前記受電体は、前記管状の構造物の内部に配置される
ことを特徴とする請求項1から請求項4のいずれか一項記載の非接触給電システム。
【請求項6】
前記管状の構造物は環状構造を有し、
前記送電器及び前記共鳴器は、前記送電器の発生させた前記第一の周波数の磁界が、複数の前記共鳴器を経由して前記送電器に帰着する経路を構成する
ことを特徴とする請求項5記載の非接触給電システム。
【請求項7】
前記共鳴器は、前記送電器から時計回り及び反時計回りに伝搬される電磁エネルギーの合算値の、個々のエネルギーの絶対値の和に対する比が0.5以上となる位置に配置されていることを特徴とする、請求項6記載の非接触給電システム。
【請求項8】
少なくとも1つの前記共鳴器は、1次コイルと、2次コイルと、該1次コイルに接続されたスイッチとを具備し、該スイッチが接続されると前記送電器または前記送電器となることを特徴とする請求項1から請求項7のいずれか一項記載の非接触給電システム。
【請求項9】
複数の前記受電体を具備することを特徴とする請求項1から請求項8のいずれか一項に記載の非接触給電システム。
【請求項10】
非接触給電システムの給電方法であって、
送電器が、第一の周波数で磁界を発生させることで送電する送電ステップと、
共鳴器が、前記第一の周波数の磁界に共鳴して当該第一の周波数の磁界を増幅させる共鳴ステップと、
共振周波数が前記第一の周波数とは異なる受電体が、少なくとも前記共鳴器が増幅させた前記第一の周波数の磁界による電磁誘導にて受電する受電ステップと、
を具備することを特徴とする給電方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2013−110805(P2013−110805A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−252256(P2011−252256)
【出願日】平成23年11月18日(2011.11.18)
【出願人】(000004237)日本電気株式会社 (19,353)