説明

RNAウイルス由来植物発現システム

【課題】植物、植物の部分、又は植物細胞において目的配列を発現させる。
【解決手段】植物、植物の部分、又は植物細胞培養物において目的配列を発現させる方法であって:(a)転写プロモーターに機能可能に連結されているか又は連結可能なRNAレプリコンをコードする配列を有する異種DNAを細胞核に含有する植物、植物の部分、又は植物細胞培養物を準備すること、ここで、RNAレプリコンをコードする配列は、(i)植物RNAウイルスの配列に由来する、RNAレプリコンのレプリコン機能に関する配列、(ii)目的配列、を含有し、それにより、レプリコン機能に関する配列は、植物RNAウイルスの配列の選択された位置で、植物RNAウイルスの配列との機能保存的な相違を発揮し、その相違は、相違を発揮しないRNAレプリコンと比較してレプリコン形成頻度を上昇させる;及び(b)目的配列を発現させること、を含む前記方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、目的配列を発現させるためのRNAレプリコンをコードする異種DNAを有する植物、植物の部分、又は植物細胞培養物に関するものである。また、本発明は、目的配列を植物、植物の部分、又は植物細胞培養物において発現させる方法を提供する。本方法及びベクターは、RNAウイルス由来RNAレプリコンの形成頻度が上昇した植物細胞を提供する。異種DNA又はその部分は、植物の核染色体DNA若しくはエピソームDNAに安定に組込まれるか、又は一過性に送達されることができる。また、本発明は、(RNA)ウイルスベクター又は(RNA)ウイルスレプリコンを用いた植物のアグロバクテリウム介在形質転換法を提供する。
【背景技術】
【0002】
植物トランス遺伝子発現システムの中で、異種プロモーター制御下のトランス遺伝子発現がここ数年使用されている。そのような慣用の植物発現システムとは別に、ウイルスに基づいた発現システムは、植物における迅速なタンパク質産生に用いることができ(概説として:Porta及びLomonossoff、1996、Mol.Biotechnol.、5、209−221;Yusibovら、1999、Curr.Top.Microbiol.Immunol.、240、81−94を参照されたい)、機能ゲノミクス研究の強力な手段となっている(Dalmayら、2000、Plant Cell、12、369−379;Ratcliffら、2001、Plant J.、25、237−245;Escobarら、2003、Plant Cell、15、1507−1523)。当該分野における多数の出版物及び特許は、DNA及びRNAウイルスベクターに基づいたシステムについて記載している(Kumagaiら、1994、Proc.Natl.Acad.Sci.USA、90、427−430;Malloryら、2002、Nature Biotechnol.20、622−625;Morら、2003、Biotechnol.Bioeng.、81、430−437;US5316931号;US5589367号;US5866785号;US5491076号;US5977438号;US5981236号;WO02/088369号;WO02/097080号;WO98/54342号)。既存のウイルスベクターシステムは、最良の性能の点から見ると、通常、狭い宿主範囲に限定され、最も好ましい宿主におけるそのようなベクターの発現レベルでさえも、システムの生物学的上限を遙かに下回る。ウイルスに基づいたシステムの重要な課題は、ウイルスレプリコンを植物細胞へ送達する方法である。最も広範に利用される大量産生(例えば農場又は温室における多くの植物での同時産生)のための送達法は、RNAウイルスベクターの感染性コピーの使用である(Kumagaiら、1995、Proc.Natl.Acad.Sci.USA、92、1679−1683)。組換えウイルスRNAベクターは複製サイクルのあいだに異種挿入物を欠失する傾向が比較的高いため、この方法はDNA鋳型のin vitro転写を必要とし、その結果、非効率的で高価である。送達問題を解決するための他のアプローチは、ウイルスベクターの機能を補完することによって(例えばヘルパーウイルスを用いる−US5965794号)又は他の調節されたスイッチシステムを使用することによって(例えば部位特異的組換え−US6632980号)複製プロセスが誘発されると放出される、トランスジェニック植物の各細胞におけるウイルスRNAレプリコン前駆体の存在であろう。
【0003】
特許化技術を含めた当該分野における多くの出版物にもかかわらず、主に2つの主要な理由のために、十分な効率で作用し、商業的高収率産生を生ずるウイルスに基づいた大量産生システムは依然として存在しない。第1に、一過性の植物ウイルスに基づいた発現システムは、通常、環境因子への感受性のために大量培養に適さない特定の宿主に限定される。その上、このシステムは、通常、植物宿主の特定部分に限定され、大部分の植物バイオマスを産生プロセスから排除し、その結果、単位植物バイオマスあたりの組換え産物の相対収率を、トランスジェニック植物における慣用の転写プロモーターによって達成可能なレベルに匹敵するレベルまで最小化する。第2に、ウイルスレプリコン前駆体を各細胞に安定に組み込んだトランスジェニック植物宿主を作製することによってウイルスに基づいた産生システムをスケールアップする試みは、特に、その位置におけるレプリコンの性能の低さ、レプリコンから発現されるべき目的遺伝子の「漏出性」、及びそのベクターのための効率的スイッチシステムの不足のいずれかのために、解決策を提供していない。RNAレプリコン形成の誘因としてPTGSサイレンシングのサプレッサーを用いることによって、PVXに基づいたベクターである種の進歩は達成されたが(Malloryら、2002、Nature Biotechnol.、20、622−625)、ウイルスベクターの複製を誘発するスイッチ(PTGSサプレッサー)の効率的制御に提供される解決策がないので、このシステムは依然として実用的ではない。しかしながら、このシステムは、このタイプのシステムについてこれまでに知られた中で最高である、全可溶性タンパク質(TSP)の3%に達するGUS遺伝子の発現レベルを提供したが、依然として、強力なプロモーター制御下の慣用のトランス遺伝子発現システムに等しい。植物tripartite RNAウイルス、ブロムモザイクウイルス(BMV)、に基づいた他の誘導性システム(Moriら、2001、Plant J.、27、79−86)は、目的タンパク質の収率が非常に低かった(生の重量1gあたり3〜4μg)。これは標準的転写プロモーターによって提供される収率に匹敵する。
【0004】
植物発現システムでこれまでに達成された発現レベルの低さが、これらのシステムが細菌細胞、真菌細胞、又は昆虫細胞の発現システムのような他の発現システムにほとんど競合しない主な理由である。低発現レベルは、植物材料の巨大な背景において、タンパク質の単離及び精製のための非常に高い下流コストを生じさせる。したがって、単位植物バイオマスあたりの目的のタンパク質又は産物の収率が増加するにつれて、下流処理費用が急激に減少する。
【0005】
現在のところ、その収率及び効率が十分に高く、細菌細胞、真菌細胞、又は昆虫細胞の発現システムのような他の大規模発現システムと市場で競合するような大規模植物トランス遺伝子発現システムはない。そのような植物の発現は以下の基準をできる限り満たす必要があるであろう:
(i) 高収率、できる限り多くの植物組織及びその組織の多くの細胞における目的タンパク質の発現を含む;
(ii) 植物増殖に対するタンパク質発現の有害効果を妨げるため、目的のタンパク質又は産物の発現は、所望の時点で発現のスイッチを入れることができるように切換可能である必要がある;
(iii) 切換は、1つの植物の全ての組織又は細胞で同時に又はほとんど同時に発現のスイッチを入れることができ、それと同時に、植物の選択したグループ全ての植物、例えば植物の選択したロット全ての植物で同時に又はほとんど同時に発現のスイッチを入れることができる必要がある。典型的には、目的のタンパク質又は産物は、ある時点まで産物又はタンパク質を産生する各細胞に蓄積する。しかしながら、蓄積のあいだ、目的のタンパク質又は産物の収率又は品質が低下する傾向にある分解プロセスが高頻度で進む。したがって、発現スイッチを入れた後、目的の産物又はタンパク質を回収すべき最適な時点がある。この最適な時点は、1つの植物の全ての組織又は細胞、及び選択したロットの全ての植物において同時に到達し、全体的なプロセスを効率的且つ有益にする必要がある。
【0006】
したがって、本発明の目的は、高収率植物発現システムのためのトランスジェニック植物、植物の部分、又は植物細胞培養物を提供することである。本発明の他の目的は、目的配列を、植物、植物の部分、又は植物細胞培養物において一過性に発現させる方法を提供することである。本発明の他の目的は、1以上の目的配列を、植物、植物の部分、又は植物細胞培養物において効率的に発現させる方法を提供することであり、この方法は、大規模で効率的に用いることができる。更に、本発明の目的は、目的核酸配列の発現を、植物、植物の部分、又は植物細胞培養物において制御する方法を提供することであり、これは生態学的及び生物学的安全性を改善する。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】US5316931号
【特許文献2】US5589367号
【特許文献3】US5866785号
【特許文献4】US5491076号
【特許文献5】US5977438号
【特許文献6】US5981236号
【特許文献7】WO02/088369号
【特許文献8】WO02/097080号
【特許文献9】WO98/54342号
【特許文献10】US5965794号
【特許文献11】US6632980号
【非特許文献】
【0008】
【非特許文献1】Porta及びLomonossoff、1996、Mol.Biotechnol.、5、209−221
【非特許文献2】Yusibovら、1999、Curr.Top.Microbiol.Immunol.、240、81−94
【非特許文献3】Dalmayら、2000、Plant Cell、12、369−379
【非特許文献4】Ratcliffら、2001、Plant J.、25、237−245
【非特許文献5】Escobarら、2003、Plant Cell、15、1507−1523
【非特許文献6】Kumagaiら、1994、Proc.Natl.Acad.Sci.USA、90、427−430
【非特許文献7】Malloryら、2002、Nature Biotechnol.20、622−625
【非特許文献8】Morら、2003、Biotechnol.Bioeng.、81、430−437
【非特許文献9】Kumagaiら、1995、Proc.Natl.Acad.Sci.USA、92、1679−1683
【非特許文献10】Moriら、2001、Plant J.、27、79−86
【発明の概要】
【0009】
発明の概要
上記目的は、転写プロモーターに機能可能に連結されているか又は連結可能なRNAレプリコンをコードする配列を有する異種DNAを細胞核に含有する、形質転換された植物、植物の部分、又は植物細胞培養物によって達成され、RNAレプリコンをコードする配列は、
(i) 植物RNAウイルスの配列に由来する、RNAレプリコンのレプリコン機能に関する配列、及び
(ii) RNAレプリコンから発現されるべき目的配列、
を含有し、それにより、レプリコン機能に関する配列は、植物RNAウイルスの配列に対応し、植物RNAウイルスの配列の選択された位置で、植物RNAウイルスの配列との機能保存的な相違を発揮する。その相違は、相違を発揮しないRNAレプリコンと比較して、レプリコン形成頻度を上昇させることができる。植物、植物の部分、又は植物細胞培養物の細胞は、異種DNAで安定に形質転換されることが好ましい。
【0010】
更に、上記目的は、植物、植物の部分、又は植物細胞培養物において目的配列を発現させる方法によって達成され、この方法は:
(a) 上で定義したとおりの異種DNAを細胞核に含有する植物、植物の部分、又は植物細胞培養物を準備すること、及び
(b) 目的配列の発現を引き起こすこと、
を含む。
植物、植物の部分、又は植物細胞培養物の細胞は、異種DNAで安定に又は一過性に形質転換することができる。
【0011】
また、本発明は、上で定義したとおりの異種DNAで核染色体を安定に形質転換したトランスジェニック植物を作製する方法を提供し、この方法は、植物又は植物の部分を異種DNAを含有するベクターで形質転換し、核染色体に異種DNAを含有する植物の組織を選択し、そしてトランスジェニック植物を組織から再生することを含む。
【0012】
更に、本発明は、植物、植物の部分、又は植物細胞培養物において目的配列を一過性に発現させる方法を提供し、この方法は:植物、植物の部分、又は植物細胞培養物を、転写プロモーターに機能可能に連結されているか又は連結可能なRNAレプリコンをコードする配列を有する異種DNAで形質転換させることを含み、RNAレプリコンをコードする配列は、
(i) 植物RNAウイルスの配列に由来する、RNAレプリコンのレプリコン機能に関する配列
(ii) 目的配列、
を含有し、それにより、レプリコン機能に関する配列は、植物RNAウイルスの配列の選択された位置で、植物RNAウイルスの配列との機能保存的な相違を発揮する。その相違は、相違を発揮しないRNAレプリコンと比較して、レプリコン形成頻度を上昇させることができる。
【0013】
更に、本発明は、本発明の植物、植物の部分、又は植物細胞培養物を作製するため、又は本発明の方法を実施するための核酸分子を提供する。この核酸分子は、特許請求の範囲に定義したとおりであり、更に、本発明の植物、植物の部分、又は植物細胞培養物、及び方法を参照して以下に記載のように定義される。
【0014】
本発明者らは、RNAウイルスレプリコンをコードする異種DNAを植物又は植物の部分の核染色体に導入してRNAレプリコンにコードされた目的タンパク質を発現させたところ、RNAレプリコンが細胞質に出現する頻度は非常に低く、異種DNAを含有する細胞の小さな画分でのみ起こることを見出した。したがって、目的タンパク質の発現レベルも非常に低かった。この問題について考えられる多くの理由には、染色体の位置効果、不適当な転写調節因子、遺伝子サイレンシング、核から細胞質へのレプリコンの欠陥輸送、転写に対する目的配列の有害効果、RNAプロセシング又はレプリコン機能などが挙げられると考えられた。このように、驚くべきことに、レプリコンのA/T(U)に富んだ特定の配列部分が、細胞質におけるレプリコン形成頻度の低さに関与することを見出した。A/T(U)に富んだ配列部分の有害効果が抑制されると、細胞質におけるレプリコン形成頻度は強力に上昇し、目的タンパク質の収率が強力に増加した。
【0015】
本発明の効率は、植物発現システムの新たな局面が達成されるものである。本発明で達成可能な発現レベルは、下流処理(目的タンパク質の分離及び精製を含む)費用が低く、本発明の方法が他の大量発現システムに十分競合するものである。安定に形質転換された植物を用いる先行技術発現システムでは、ウイルスに基づいたベクターを用いる場合であっても、レプリコンは細胞の小さな画分で産生されるため、発現レベルが低い。植物中に伝播したレプリコンは、伝播は遅く、特に長距離に及ぶため、この問題を是正できない。したがって、発現は植物内で均一に進行せず、植物のある部分では目的タンパク質の分解がすでに起こり、他ではタンパク質発現が開始してもいないであろう。本発明は、植物全体に均一に発現を誘発させる。レプリコンを産生しない細胞の小さな画分は、隣接細胞からレプリコンによって迅速に侵入され得る。本発明は、大規模で用いることができる最初の高収率植物発現システムを提供する。本発明は、同一細胞において2以上のレプリコンの産生も可能にし、2つのレプリコンを同一細胞に有する可能性は依然として非常に高い。更に、本発明の発現システムの効率は、RNAウイルスの植物特異性を限定するものが軽減されるものである。
【0016】
上記のような改善された効率は、植物、植物の部分、又は植物細胞の一過性形質転換と同様に、安定な形質転換と組み合わせて達成することができる。
(場合により安定に)形質転換された植物、植物の部分、又は植物細胞培養物、及び核酸分子は、RNAレプリコンをコードする異種DNAを有する。RNAレプリコンをコードする配列は、
(i) 植物RNAウイルスの配列に由来する、RNAレプリコンのレプリコン機能に関する配列、及び
(ii) RNAレプリコンから発現されるべき目的配列、
を含有する。
【0017】
RNAレプリコンをコードする配列は、RNAレプリコンから発現されるべき目的配列(ii)を含有する。発現されるべき目的配列は、植物の機能を抑制するRNA干渉のためのRNAのような目的RNAの形成をもたらすことができる。しかしながら、目的配列は目的タンパク質をコードし、例えばRNAレプリコン又はRNAレプリコンのサブゲノムRNAから、目的タンパク質を翻訳するための調節配列を含有することが好ましい。目的配列は、目的タンパク質を特定細胞成分に標的化するか又は目的配列を分泌するための標的シグナルをコードする配列を含むことができる。目的タンパク質を標的シグナルから分離するためのアミノ酸配列をコードすることもできる。目的配列は、植物RNAウイルスのあらゆる配列に対して異種の配列である。即ち、本発明の方法は、植物又は植物の葉への野生型植物RNAウイルスの形質転換に限定される場合を含まない。したがって、目的タンパク質は、レプリコン機能に関する配列が由来する植物RNAウイルスによってコードされるタンパク質ではない。
【0018】
RNAレプリコンのレプリコン機能に関する配列(i)は、とりわけ前者は後者のDNAコピーであり得る点で、植物RNAウイルスの配列に相当する。レプリコン機能に関する配列は、RNAレプリコンに、細胞質で複製するための機能を提供する。レプリコン機能に関する配列は、典型的には、RNA依存性RNAポリメラーゼ(レプリカーゼ)のような、複製に関与する1以上のタンパク質をコードする。レプリコン機能に関する配列は、移行タンパク質又はコートタンパク質のように、植物でRNAウイルスの細胞間伝播又は全体伝播に関与する1以上のタンパク質のような、RNAレプリコンの機能を更にコードすることができる。植物RNAウイルスはレプリコン機能を容易に利用可能な供給源であるため、レプリコン機能に関する配列は、植物RNAウイルスの配列に由来することが好ましい。「由来する」とは、レプリコン機能に関する配列が本質的にRNAウイルスの対応する配列のDNAコピーであり、DNAコピーは細胞核に含有されるか又は導入されるべき異種DNAの一部を作り上げることを意味する。「由来する」とは、以下に記載するように、レプリコン機能に関する配列は、RNAウイルスの対応するRNA配列の正確なDNAコピーではないが、機能保存的な相違を発揮することを更に意味する。相違が機能保存的であるため、レプリコン機能に関する配列は、RNAウイルスで実施するのと同様のレプリコン機能を実施可能なタンパク質をコードすることが好ましい。しかしながら、そのような機能保存的な相違は、そのような機能保存的な相違がない場合と比較して、コードされたウイルスタンパク質の機能性の量的相違をもたらすことができる。1つの態様では、異種DNA及びレプリコン機能に関する配列は、コートタンパク質(特にトバモウイルスコートタンパク質)のような長距離移行に要するタンパク質をコードしない。他の態様では、異種DNAは移行タンパク質を欠失する。したがって、異種DNAのレプリコン機能に関する配列は、レプリコン機能に関する配列が由来するRNAウイルスの全ての機能をコードする必要はない。
【0019】
レプリコン機能に関する配列は、植物RNAウイルスの配列の選択された位置で、植物RNAウイルスの配列との機能保存的な相違を発揮し、その相違は、相違を発揮しないRNAレプリコンと比較してレプリコン形成頻度を上昇させる。その相違は、全体的プロセスのスイッチがいったん入れられると、植物細胞におけるレプリコン形成頻度上昇の原因となる(以下を参照されたい)。レプリコン形成頻度の上昇とその相違との因果関係は、相違を有するレプリコン機能に関する配列と、相違を有さないレプリコン機能に関する配列とのあいだのレプリコン形成頻度を比較することによって実験的に試験することができる。こうした実験的比較は、実施例に記載するように、例えば目的配列を発現するプロトプラストを計数することによって行なうことができる。緑色蛍光タンパク質(GFP)のように容易に検出可能なレポータータンパク質をコードする目的配列がこの目的に用いられることが好ましい。以下に更に記載するように、細胞間伝播可能ではないRNAレプリコンとの実験的比較を実施することも好ましい。
【0020】
機能保存的な相違は、植物RNAウイルスの配列の選択された位置でレプリコン機能に関する配列に導入される。選択された位置は、核で転写されたRNAレプリコンが細胞質に機能性レプリコンとして出現する確率の低さの原因である植物RNAウイルスのレプリコン機能に関する配列に位置する。そのような選択された位置は、高A/T(U)含量、即ち高A含量及び/又は高T含量(RNAレベルでは高U含量)を有するか、又は潜在スプライシング部位、即ち核スプライシング装置によってスプライシング部位として認識され得る配列部分を有することが好ましい。選択された位置は、以下に例示するように、RNAウイルスのRNAプロファイルを解析することによって、RNAレプリコンが基づくRNAウイルス中に同定することができる。更に、選択された位置は、本発明による(機能保存的)相違を発揮しないRNAレプリコンをコードする異種DNAで形質転換した後、植物細胞で形成されるRNAを解析することにって、実験的に同定することができる。この実験解析は、RT−PCRを、好ましくはRT−PCR産物の配列決定とともにすることによって行なうことができる。RT−PCR試験では、細胞質に到達するRNAレプリコンが増幅するのを妨げるため、例えばフレームシフト変異によって、レプリカーゼが機能しないことが好ましい;そのような増幅は、細胞質で、RNA転写物と野生型ウイルスとの汚染や、増幅したRNAレプリコンの過剰発現をもたらし得る。このようにして、RNAレプリコンを破壊するスプライシングイベントを示す望ましくないスプライシング産物が同定され得る。更に、望ましくないスプライシングの正確な部位は、機能保存的な相違を選択された位置に導入することによって同定され、したがって是正され得る。
【0021】
したがって、本発明は、目的配列を植物、植物の部分、又は植物細胞培養物において発現させる方法も提供する。ここで、(A) 植物、植物の部分、又は植物細胞培養物は、本明細書に定義するとおりの異種DNAを備えるが、機能保存的な相違を欠失し、(B) 異種DNAに由来するRNAをレプリコン機能に関する配列の望ましくないスプライシング産物について試験し(例えばRT−PCRによって)、(C) 望ましくないスプライシングイベントの位置として選択された位置を(例えばRT−PCR産物の配列において)同定し、(D) 本発明の機能保存的な相違(例えばイントロン)を、工程(C)で同定した選択された位置又はその近傍で、本発明の異種DNAを産生するための工程(A)の異種DNAに導入し、そして、本発明の植物、植物の部分、又は植物細胞培養物において、例えば本発明の異種DNAで安定に又は一過性に形質転換された植物から目的配列を発現させる。
【0022】
機能保存的な相違は、RNAレプリコン形成頻度に対する選択された位置の有害効果を抑制することによってRNAレプリコン形成頻度を上昇させる。機能保存的な相違は、RNAレプリコンをコードする配列のレプリコン機能に関する配列における高A/T含量の低下によって、RNAレプリコンにおける高A/U含量の低下を含むことができる。高A/U含量は、相違が機能保存的である場合は、少なくとも部分的な欠失又はG/C塩基による少なくとも部分的な置換(例えば遺伝コードの縮重を用いて)によって低下させることができる。更に、植物RNAウイルスに由来する配列のA/Uに富んだ領域に隣接した潜在スプライシング部位を除去することができる。そのような機能保存的な相違は、1ヶ所の又は好ましくは数箇所の選択された位置に導入することができる。
【0023】
好ましい機能保存的な相違は、1以上のイントロン、最も好ましくは核イントロンの挿入を含み、又は植物RNAウイルスの配列に由来する配列のA/Uに富んだ位置の近傍若しくはその中に核イントロンを形成可能な1以上の配列の挿入を含む。驚くべきことに、A/Uに富んだ位置に又はその近傍にイントロンを組み込むことは、RNAレプリコン形成頻度の上昇をもたらすことが見出された。いくつかのイントロンを導入することができ、導入される多数のイントロンについて本明細書に例を挙げる。1より多いイントロンの効果は累積する。更に、イントロンの挿入は、他の選択された位置で他の機能保存的な相違と組み合わせることができる。
【0024】
図8に、発現されるべき目的遺伝子内ではあるが、核イントロンを形成可能な配列の導入例を示す。図8の例では、イントロンは、リコンビナーゼで触媒される異種DNAの一部の反転により2つの半イントロンから形成される。この原理は、RNAレプリコンのレプリコン機能に関する配列にも適用できる。2つの異なるRNAレプリコンが同一細胞内で形成される態様では、2つの異なるレプリコン間の組換えが、異なるレプリコンに存在する2つの半イントロンからイントロン形成をもらすことができる。更に、RNAレプリコンは、いずれもレプリコンではない2つの前駆体間の組換えによって形成することができる。この場合も、イントロンは、異なる前駆体分子に由来する2つの半イントロンから組み立てることができる。
【0025】
本発明の植物、植物の部分、又は植物細胞培養物は、異種DNAで安定に形質転換されることができる。「安定に形質転換された」とは、それらが、核染色体が維持されるように異種DNAが細胞核に維持されるように、異種DNAを細胞核に含有することを意味する。異種DNAはエピソーム配列に含有されるか又はエピソーム配列であることができる。しかしながら、異種DNAは、子孫細胞又は子孫植物へ遺伝し得るように、核染色体に安定に組み込まれていることが好ましい。安定に形質転換された植物、植物の部分、又は植物細胞培養物の作製方法は、植物バイオテクノロジーの分野で公知である。そのような方法は、通常、選択物質及び選択可能マーカー遺伝子を用いて、安定な形質転換について形質転換体を選択する必要がある。
【0026】
高収率の目的タンパク質を得るには、植物、植物の部分、又は植物細胞培養物の全ての細胞が、核に異種DNAを含有することが好ましい。より好ましくは、細胞は、核染色体に安定に組み込まれた異種DNAを含有する。植物の場合、これは、植物がトランスジェニック植物であることを意味する。
【0027】
RNAレプリコンをコードする配列を有する異種DNAは、転写プロモーターに機能可能に連結されているか又は連結可能である。あるいは、RNAレプリコンをコードする配列は、転写プロモーターに機能可能に連結されているか又は連結可能である。異種DNA又は配列が転写プロモーターに機能可能に連結されている場合は、目的配列の発現を調節可能にするために、転写プロモーターは、誘導性、組織特異的又は発生的に調節されたプロモーターのような調節されたプロモーターであることが好ましい。より好ましくは、プロモーターは誘導性であるか発生的に調節されており、それぞれ、所望の時間に発現を誘導させるか、又は植物が定義した発生段階に到達したときに発現スイッチを入れる。例えば、プロモーターが種子特異的プロモーターである場合は、目的配列の発現スイッチを植物種子で入れることができる。本発明は、RNAレプリコンを有する特定組織(例えば種子組織)を提供することに非常に価値があり、その組織は、例えば葉組織よりも、レプリコンの細胞間伝播に好適でない。最も好ましいのは、植物組織の全て又は大部分で自由自在に発現スイッチを入れることができるため、化学的に調節されたプロモーターである。最も重要なことは、化学的に誘導性のプロモーターは、化学誘導物質は多数の植物に同時に適用可能であるため、大規模応用のために選択されるプロモーターであるということである。調節されたプロモーターの例は、当該分野に公知である。大規模応用は、選択した目的配列が多くの植物で同時に発現される応用である。そのような大規模応用は、温室で実施することができる。
【0028】
あるいは、RNAレプリコンをコードする配列は、転写プロモーターに機能可能に連結可能であり、RNAレプリコンをコードする配列をプロモーターに機能可能に連結することによって目的配列の発現スイッチを入れることができる。この態様を実施するいくつかの方法がある。1つのオプションは、異種DNA内で、プロモーターと異種DNAとのあいだの機能可能な連結を排除する配列ブロックによって、RNAレプリコンをコードする配列とプロモーターとを分離することである。配列ブロックは、組換え部位を認識するリコンビナーゼによって配列ブロックを切り出せるように組換え部位に隣接し得る。それにより、RNAレプリコンをコードする配列の転写のための機能可能な連結が確立し、発現スイッチを入れることができる。他のオプションは、転写に必要な配列部分(例えばプロモーター又はプロモーター部分)を反転方向で、組換え部位に隣接して有することである。好適なリコンビナーゼが配列部分を反転させて正しい方向に戻すことができれば、機能可能な連結は確立し得る。
【0029】
本発明の1つの態様では、RNAレプリコンをコードする配列は、RNAレプリコンをいっしょにコードする1以上のセグメントを有する。即ち、RNAレプリコンは1つの連続したDNAにはコードされていない。その代わり、RNAレプリコンは、2以上のセグメントによって不連続にコードされ、セグメントは、好ましくは互いに隣接して同一染色体上に存在し得る。したがって、RNAレプリコンの形成には、例えば組換えによるセグメントの再構成を必要とし得る。例として、レプリコン機能に関する配列の一部(例えばレプリカーゼをコードする配列の一部)は、異種DNA中に、そのような配列の他の部分に対して反転方向で存在し得る。反転部分は組換え部位に隣接し得る。したがって、レプリコン機能を提供できないため(例えば転写物は機能性レプリカーゼをコードしていないため)、異種DNAの転写物はレプリコンではないであろう。組換え部位を認識する部位特異的リコンビナーゼを提供することにより、レプリコン機能が連続してコードされるようにセグメントの1つを反転させて戻すことができる。この態様では、リコンビナーゼの提供が、レプリコン形成及び目的配列の発現のスイッチを入れるためのスイッチとして機能する(更に以下を参照されたい)。この態様は、安定に形質転換された植物、植物の部分、又は植物細胞培養物に関連して実施することが好ましい。
【0030】
あるいは、セグメントは異なる染色体上に存在することができる。その場合、RNAレプリコンの形成は、RNAレプリコンを組み立てるために2つのセグメントの転写及び2つの転写物のトランススプライシングを必要とするであろう。この態様は、PCT/EP03/02986号に詳細に記載されているように、子孫植物又は細胞でRNAレプリコンをいっしょにコードするセグメントを迅速に分離するために用いることができる。
【0031】
本発明の方法は、工程(a)及び(b)を含むことができる。工程(a)は、本発明の異種DNAで植物、植物の部分、又は植物細胞培養物を安定に又は一過性に形質転換することを含むことができる。上で議論したように、核染色体の安定な形質転換が好ましい。好ましくは、本発明の方法は、目的配列によってコードされた目的タンパク質の発現方法である。工程(b)は、目的配列の発現を引き起こすこと、例えば発現スイッチを入れることを含む。発現を引き起こす又は発現スイッチを入れるさまざまな方法が既に言及されている。例として、異種DNAに機能可能に連結された誘導性プロモーターを誘導すること;組換えによって異種DNAをプロモーターへの機能可能な連結下に置くこと;組換えによってレプリコンを形成するための配列の連続したコーディングを確立することなどが挙げられる。本発明の方法のスイッチを入れるためにリコンビナーゼを用いる場合、リコンビナーゼを植物、植物の部分、又は植物細胞培養物に一過性に提供することができ、それにより、工程(b)のスイッチとして作用するであろう。あるいは、リコンビナーゼは細胞に安定にコードされることができ、調節された、好ましくは誘導性のプロモーターの制御下、リコンビナーゼを発現する。したがって、プロモーターを誘導することによってリコンビナーゼの発現を誘導することにより、工程(b)で発現を引き起こすことができる。一過性形質転換の場合、工程(a)を実施することによって工程(b)を自動的に達成することができる。
【0032】
好ましくは、本発明の方法は、(a)による多数の植物を準備し、例えば、化学的に誘導性のプロモーターに対する化学誘導物質を全ての植物に例えば噴霧によって適用することによって、全ての植物で(b)による目的配列の発現を引き起こすことによって、1つの工程で、多数の植物を用いて平行して実施する。
【0033】
本発明の方法の重要な態様では、植物又は植物の部分(例えば葉)は、目的配列を一過性発現させるために、本発明の異種DNAで一過性に形質転換されている。「一過性形質転換」という用語は、異種DNAを植物染色体に安定に組み込むために形質転換細胞を選択することなく異種DNAを導入することを意味する。一過性形質転換は、通常、異種DNAによってコードされる遺伝子の一過性発現を提供する。一過性形質転換は、以下に挙げる形質転換法のいずれかで達成することができる。しかしながら、本発明の異種DNAを含有するT−DNAのアグロバクテリウム介在一過性形質転換によって実施することが好ましい。アグロバクテリウム介在一過性形質転換の好ましい方法は、アグロ浸潤である。アグロ浸潤(アグロ接種)が最も好ましい。アグロ浸潤によって植物全体(即ち、全ての葉を含めた、土壌の上の部分)が形質転換される場合、目的配列の最速且つ最高の発現レベルを得ることができる。これは、植物をアグロバクテリウム懸濁液中に上下にさっと浸し、真空にし、そしてすぐに真空から開放することによって、達成することができる。
【0034】
目的配列を一過性に発現させる方法の好ましい態様では、RNAレプリコンをコードする配列は、転写プロモーター、好ましくは構成的転写プロモーターに機能可能に連結されている。他の好ましい態様では、植物はタバコ属に属し、レプリコン機能に関する配列は、トバモウイルス、好ましくはタバコモザイクウイルスに由来する。特に好ましい態様では、茎及び全ての葉を含めたタバコ植物は、アグロ浸潤によって一過性に形質転換されている。後者の態様は、本発明の方法の大規模応用に用いることができる。大規模応用では、この方法は、多くの植物(少なくとも5、好ましくは少なくとも10、より好ましくは少なくとも100の植物)に同時に適用される。
【0035】
本発明は、原則として、感染性RNAウイルスが存在するあらゆる植物に適用することができる。好適な植物とRNAウイルスのペアは、以下に示すRNAウイルスのリストに由来することができる。本発明によるレプリコン形成効率が非常に高いため、植物ウイルスの植物種特異性は、本発明を実施する場合ほとんど目立たない。同様に、本発明は、いずれのRNAウイルスに基づいたRNAレプリコンにも用いることができる。RNAウイルスは、一般に、宿主植物の細胞核の外側で展開し、レプリコンが細胞核の内側で産生される場合、特にレプリコンが核染色体に安定にコードされる場合、そのようなウイルスに基づくレプリコンを非効率的にする選択された位置を有するであろう。本発明は、異なる植物RNAウイルスのあいだで改善レベルはさまざまであり得るが、全てのRNAウイルスに適用することができる。本発明が基づく最も好ましい植物RNAウイルスは、トバモウイルス、特にタバコモザイクウイルス、及びジャガイモウイルスXのようなポテクスウイルスである。タバコモザイクウイルスの場合、一般に、発現されるべき配列で置換されるのはコートタンパク質であろう。移行タンパク質は、除去又は発現されるべき配列で置換することができる。しかしながら、タバコザイクウイルスに由来するRNAレプリコンは、移行タンパク質をコードし、コートタンパク質は発現されるべき配列で置換される必要があることが好ましい。異種DNAは、コートタンパク質又は移行タンパク質のような、植物RNAウイルスの少なくとも1つのオープンリーディングフレームを欠失していることが非常に好ましい。
【0036】
本発明の主要な適用は、植物、植物の部分、又は植物細胞培養物における目的タンパク質の産生である。目的タンパク質は目的配列にコードされる。目的配列は植物RNAウイルスに対して異種であることが好ましい。いずれにしても、目的配列は、RNAウイルスの機能を有した配列でもコードした配列でもない。
【0037】
本発明の方法を植物で実施する場合、タバコ種のように(例えばベンサミアナタバコ、タバコ)ヒト又は動物の食物連鎖に入らない植物が好ましい。植物の部分とは、例えば植物の器官又は葉若しくは種子のような植物の特定の組織である。本明細書において、本発明の方法を、生長しているか又は親植物に付着している種子で行なう場合、種子を植物の部分とみなす。しかしながら、種子はまた、植物の特定の発達段階にあったとしても、植物とみなされる。最も好ましくは、本発明の植物は、種子として販売又は流通され、種子は植物に生長し、そして植物の所望の点で、目的配列の発現が誘導されるか又はスイッチを入れられる。
【0038】
タバコ又はサトウダイコンのような多くの植物種は、これまで、アグロバクテリウム介在形質転換によってウイルスベクター又はレプリコンで形質転換することが不可能であった。この不可能の理由は、2つの病原体、即ちアグロバクテリウムとウイルスベクターによる植物の2重の課題に応じた植物の防御機構の活性化であったと推測することができる。本発明者らは、高度に希釈されたアグロバクテリウム懸濁液をアグロバクテリウム介在形質転換に使用することにより、ウイルスベクターでより高い形質転換効率を達成することができることを見出した。したがって、本発明は、アグロバクテリウム介在ウイルスベクター形質転換の多くの植物種への広範な適用を達成する。この態様のための高度に希釈されたアグロバクテリウム懸濁液は、計算された600nmの光学密度が高くても0.04、好ましくは高くても0.01、より好ましくは高くても0.004、最も好ましくは高くても0.001に相当するアグロバクテリウムの細胞濃度を有し、計算された光学密度は、それぞれ、600nmのODが1.0のアグロバクテリウム懸濁液の少なくとも25倍希釈、好ましくは少なくとも100倍希釈、より好ましくは少なくとも250倍希釈、最も好ましくは少なくとも1000倍希釈によって規定される。本態様により最も好ましく形質転換される植物種はタバコである。
【0039】
アグロバクテリウム介在(RNA)ウイルスベクター形質転換の形質転換効率は、T−DNA中に本発明の異種DNAを用いることによって更に向上させることができる。したがって、本発明は、植物、植物の部分、又は植物細胞培養物において目的配列を発現させる方法を提供し、この方法は:植物、植物の部分、又は植物細胞培養物をアグロバクテリウム懸濁液で形質転換することを含み、アグロバクテリウムはT−DNAに、転写プロモーターに機能可能に連結されているか又は連結可能なレプリコン(好ましくはRNAレプリコン)をコードする配列を有する異種DNAを含有する。ここで、レプリコンをコードする配列は、
(i) 植物ウイルス(好ましくは植物RNAウイルス)の配列に由来する、レプリコンのレプリコン機能に関する配列、
(ii) 発現されるべき目的配列、
を含有し、アグロバクテリウム懸濁液は、計算された600nmの光学密度が高くても0.04、好ましくは高くても0.01、より好ましくは高くても0.004、最も好ましくは高くても0.001に相当するアグロバクテリウムの細胞濃度を有し、計算された光学密度は、それぞれ、600nmのODが1.0のアグロバクテリウム懸濁液の少なくとも25倍希釈、好ましくは少なくとも100倍希釈、より好ましくは少なくとも250倍
希釈、最も好ましくは少なくとも1000倍希釈によって規定される。
【0040】
本発明者らは、この方法が、アグロバクテリウム株の細胞が環境に広がる可能性を低下させるだけでなく、この方法の生物学的安全性を向上させることを見出した。この方法は、おそらく植物の病原体であるアグロバクテリウム株の感染による植物又は植物の葉への曝露及びストレスを低下させることによって、タンパク質発現効率も向上させる。驚くべきことに、本発明者らは、植物又は植物の部分を形質転換又は形質移入するために用いるアグロバクテリウム懸濁液の濃度の減少とともに、ある限度内で本方法の効率が上昇することを見出した。特に、これらアグロバクテリウム懸濁液の濃度の減少とともに、植物の細胞内で作製されたレプリコンの細胞間移行能が向上する。この予想外の現象の理由は、未だ同定されていない。この現象はアグロバクテリウム感染に対する植物の応答によるものであり、より低いアグロバクテリウム濃度ではこの応答は起こらない(又はより少ない範囲で起こる)と推測される。アグロバクテリウムを用いた先行技術形質転換法では、通常、600nmのODが0.5〜1.0の範囲の非常に高濃度のアグロバクテリウムが用いられている。
【0041】
植物又は植物の葉は、アグロバクテリウム株の細胞懸濁液に浸潤させることが好ましく、懸濁液は、600nmのOD(光学密度)が1.0のアグロバクテリウム株の細胞懸濁液を少なくとも25倍、好ましくは少なくとも100倍、より好ましくは少なくとも250倍、最も好ましくは少なくとも1000倍に希釈することによって得ることが可能なアグロバクテリウム細胞濃度を有する。したがって、そのような希釈は、それぞれ、計算された600nmのOD値が高くても0.04、好ましくは高くても0.01、より好ましくは高くても0.004、最も好ましくは高くても0.001のアグロバクテリウム懸濁液を生ずる。
【0042】
計算されたOD値が0.04以下のアグロバクテリウム懸濁液を用いるこの方法は、本発明に記載した他の態様と組み合わせることができる。浸潤又はアグロ浸潤は、アグロバクテリウム懸濁液を用いた形質転換法又はトランスフェクション法として定義することができ、アグロバクテリウムを植物組織(細胞間空間)へ押し付けるために圧力差が用いられる。
【図面の簡単な説明】
【0043】
【図1】図1は、RNAウイルスに基づいたレプリコン形成頻度の増加に基づいた本発明の一般原理を表す。
【図2A】図2は、ベクターpICH8543の転写領域のイントロン予測プロファイルを示す。ヌクレオチド番号を水平軸に示す。垂直軸は、対応する配列/配列領域がコード配列(コーディング)である確率、ドナー部位(ドナー)又はアクセプター部位(アクセプター)として作用する確率を示す。円で囲んだ部分は、機能保存的な相違が導入されるべき選択された位置に相当する。
【図2B】図2は、ベクターpICH8543の転写領域のイントロン予測プロファイルを示す。ヌクレオチド番号を水平軸に示す。垂直軸は、対応する配列/配列領域がコード配列(コーディング)である確率、ドナー部位(ドナー)又はアクセプター部位(アクセプター)として作用する確率を示す。円で囲んだ部分は、機能保存的な相違が導入されるべき選択された位置に相当する。
【図3】図3は、ベクターpICH15466の転写領域の最初の半分のイントロン予測プロファイルを示す。円で囲んだ領域は、本発明による機能保存的な相違で改変されている(図2A参照)。
【図4】図4は、pICH1590の転写領域の2番目の半分のイントロン予測プロファイルを示す。円で囲んだ領域は、本発明による機能保存的な相違で改変されている(図2B参照)。
【図5A】図5は、pICH15499の転写領域のイントロン予測プロファイルを示す。円で囲んだ領域は、挿入した6つの植物核イントロンに相当する。
【図5B】図5は、pICH15499の転写領域のイントロン予測プロファイルを示す。円で囲んだ領域は、挿入した6つの植物核イントロンに相当する。
【図6A】図6Aは、本発明による機能保存的な相違を有する、及び有さない、ベクターのT−DNA領域の略図である。
【図6B】図6Bは、本発明による機能保存的な相違を有する、及び有さない、ベクターのT−DNA領域の略図である。
【図7A】図7は、ベンサミアナタバコ及びタバコの葉におけるウイルス構築体のアグロ浸潤後のGFP発現を示す。各浸潤領域のベクター(pICH)同定番号を示す。図7Aはベンサミアナタバコ、アグロ浸潤後8日である。
【図7B】図7は、ベンサミアナタバコ及びタバコの葉におけるウイルス構築体のアグロ浸潤後のGFP発現を示す。各浸潤領域のベクター(pICH)同定番号を示す。図7Bはタバコ、アグロ浸潤後8日である。
【図7C】図7は、ベンサミアナタバコ及びタバコの葉におけるウイルス構築体のアグロ浸潤後のGFP発現を示す。各浸潤領域のベクター(pICH)同定番号を示す。図7Cはアグロ浸潤後5日に単離されたベンサミアナタバコのプロトプラストである。右の写真の多くの光のスポットは、非常に高いレプリコン形成頻度及びGFP発現を示す。
【図8】図8は、本発明にしたがいデザインされたRNAウイルスに基づいたレプリコン前駆体の略図であり、非誘導状態では目的遺伝子(GFP、Gと表示)のゼロ発現レベルを生ずる。P−転写プロモーター;T−転写終止領域;SM−選択可能マーカー遺伝子;Ac2−シロイヌナズナ アクチン2遺伝子のプロモーター;RdRP−ウイルスRNA依存性RNAポリメラーゼ;MP−ウイルス移行タンパク質;NTR−ウイルス3’非翻訳領域。
【図9】図9は、ダイレクト鎖(+鎖)を用いたシロイヌナズナ減数分裂特異的遺伝子AtDMC1(GenBank受託番号U76670)に対するイントロン予測プロファイルを示す。イントロンコード領域を円で囲んでいる。
【図10A】図10Aは、ジャガイモウイルスX(PVX)ゲノム(GenBank受託番号AF172259)のダイレクト鎖(+鎖)内の潜在的問題領域(丸で囲んでいる)の予測を示す。
【図10B】図10Bは、ジャガイモウイルスX(PVX)ゲノム(GenBank受託番号AF172259)のダイレクト鎖(+鎖)内の潜在的問題領域(丸で囲んでいる)の予測を示す。
【図11A】図11Aは、RNA1(GenBank受託番号K02703)のアルファルファモザイクウイルスゲノムのダイレクト鎖(+鎖)の潜在的問題領域(円で囲んでいる)の予測を示す。
【図11B】図11Bは、RNA2(GenBank受託番号K02702)のアルファルファモザイクウイルスゲノムのダイレクト鎖(+鎖)の潜在的問題領域(円で囲んでいる)の予測を示す。
【図11C】図11Cは、RNA3(GenBank受託番号L00163)のアルファルファモザイクウイルスゲノムのダイレクト鎖(+鎖)の潜在的問題領域(円で囲んでいる)の予測を示す。
【図12】図12は、構築体pICH12691及びpICH16888のT−DNA領域を表す。P−転写プロモーター;T−転写終始領域;SM−選択可能マーカー遺伝子;Ac2−シロイヌナズナ アクチン2遺伝子のプロモーター;RdRP−ウイルスRNA依存性RNAポリメラーゼ;MP−ウイルス移行タンパク質;NTR−ウイルス3’非翻訳領域。
【図13】図13は、pICH12691又はpICH16888のT−DNA領域を有する安定に形質転換された異なるベンサミアナタバコ株のUV光下の葉を示す。葉は、インテグラーゼを提供するベクター(pICH10881又はpICH14313)でアグロ浸潤させた。
【図14】図14は、pICH18711でアグロ浸潤後1週間のサトウダイコンの葉を日光(左)及びUV(右)照射で示す。右の写真の光のパッチは、GFP蛍光を示す。下に示した構築体中のイントロン(斑点のある四角)を番号付けしている。
【発明を実施するための形態】
【0044】
発明の詳細な説明
驚くべきことに、本発明者らは、レプリコン機能に関する配列内で、植物イントロンを植物ウイルスRNAベクターのある領域に組み込み、潜在イントロンを除去又は置換することにより、宿主植物の細胞質におけるRNAレプリコンの出現効率を劇的に増加させることができる(少なくとも×102倍)ことを見出した。そのような効率増加は、少なく
とも1つの容易に測定可能なパラメータ:例えば上昇したレプリコン形成頻度でベクターの複製を示す細胞の相対位置に反映された。こうしたRNAレプリコン形成の開始の最適化は、植物全体で目的配列の発現スイッチを同調して入れる能力をもたらし、非改変ベクターよりも短い時間で組換え目的タンパク質の収率の劇的な増加を生じた。
【0045】
組換えDNAのコード領域へのイントロンの組み込みによる核トランス遺伝子発現の増加に関する出版物にもかかわらず(Mascarenhasら、1990、Plant Mol.Biol.、15、913−920;Bourdonら、2001、EMBO Reports、2、394−398;Rose,AB.、2002、RNA、8、1444−1453;US5,955,330号)、ウイルスRNAレプリコンへのイントロンの組み込みは、ウイルスレプリコン形成頻度に、続いてレプリコンによって提供される目的配列の発現レベルに正の効果をもたらすであろうと示す先行技術にはヒントがない。この効果は、核mRNA転写及びウイルスRNA複製が異なる細胞内区画で生ずることを考慮すると驚くべきことである。ウイルスレプリコンのcDNAコピーが核にある場合であっても、ウイルスレプリコン前駆体の最初のコピーのみが核で産生され、次に核とは異なる条件下において細胞質で増幅される。先行技術では、野生型ウイルスcDNAをクローニングするあいだの大腸菌におけるウイルス遺伝子の「漏出性」発現による細胞毒性を妨げるためのイントロンの使用が記載されている(Johansen,I.E.、1996、Proc.Natl.Acad.Sci.USA、93、12400−12405;Yangら、1998、Arch.Virol.、143、2443−2451;Lopez−Moya&Garcia、2000、Virus Res.、68、99−107)。イントロンを含めることがウイルスcDNAクローンからのレプリコン形成頻度を上昇させることができるというヒントはない。野生型RNAウイルス及びそれらのcDNAコピーについて得た結果は、ウイルスの高い感染性及び安定性のような野生型ウイルスの他の特性を圧倒的に犠牲にしており、植物における異種目的配列の発現のためにデザインされたウイルス由来発現ベクターに匹敵し得るものではない。感染性は、本発明の課題ではない。特に、感染性は、目的配列を安定に形質転換された植物において発現させる方法における課題ではない。T−DNA中にDNAベクターを含有するアグロバクテリウムで植物を形質転換する場合は、ウイルスDNAベクター又はその転写物の感染性も課題ではない。
【0046】
本発明は、RNAウイルスに由来するレプリコン形成頻度を根本的に上昇させるための方法を提供し、レプリコンはDNA前駆体の転写に由来し、目的配列の発現のためにデザインされている。この方法は、発現されるべき異種配列のサイズ限定及びベクターの高度な不安定性のような、既存のウイルスベクターに基づいた発現システムの限定を克服する。更に、この方法はより良いバイオセイフティの特徴を提供し、トランス遺伝子発現に対する漏出検査制御のデザインを可能にする(非誘導状態でゼロ発現レベル)。そのようなデザインはRNAウイルスに由来するレプリコンのデザインのための戦略に組み込まれた部分であり得るためである。RNAウイルスに由来するレプリコン形成を高頻度に提供することにより、本明細書に記載のアプローチは、RNAレプリコンをコードする異種DNAを細胞核に含有する植物全体、植物の部分、又は植物細胞培養物において、目的配列の迅速な発現開始を可能にする。本発明を実施することによって、異種目的配列の発現のためにデザインされた植物RNAウイルス由来レプリコンの実際の性能を、レプリコン形成頻度の劇的増加を通して顕著に向上させることができる。
【0047】
さまざまな分類群に属するRNAウイルスが、本発明のRNAレプリコンの構築に好適である。本発明を適用し得るRNAウイルスのリストを以下に提示する。引用符付きの分類群名(イタリック体ではない)は、この分類群にはICTVで国際的に承認された名称がないことを示す。種名(属名)は標準体で示す。属又は科について正式命名のないウイルスが示されている:
RNAウイルス:
1本鎖RNAウイルス:科:ブロモウイルス科、属:アルファモウイルス属、基準種:アルファルファモザイクウイルス、属:イラルウイルス属、基準種:タバコ条斑ウイルス、属:ブロモウイルス属、基準種:ブロムモザイクウイルス、属:ククモウイルス属、基準種:キュウリモザイクウイルス;
科:クロステロウイルス科、属:クロステロウイルス属、基準種:ビート黄斑ウイルス、属:クリニウイルス属、基準種:レタス伝染性黄斑ウイルス、科:コモウイルス科、属:コモウイルス属、基準種:ササゲモザイクウイルス、属:ファバウイルス属、基準種:ソラマメ壊疽ウイルス1、属:ネポウイルス属、基準種:タバコ輪点ウイルス;
科:ポティウイルス科、属:ポティウイルス属、基準種:ジャガイモYウイルス、属:ライモウイルス属、基準種:ライグラスモザイクウイルス、属:バイモウイルス属、基準種:オオムギ縞萎縮ウイルス;
科:セキウイルス科、属:セキウイルス属、基準種:パースニップyellow fleckウイルス、属:ワイカウイルス属、基準種:イネtungro sphericalウイルス;科:トンブスウイルス科、属:カルモウイルス属、基準種:カーネーション斑紋ウイルス、属:ダイアントウイルス属、基準種:カーネーション輪点ウイルス、属:マクロモウイルス属、基準種:トウモロコシchlorotic mottleウイルス、属:ネクロウイルス属、基準種:タバコ壊死ウイルス、属:トンブスウイルス属、基準種:トマトbushy stuntウイルス、
属が未分類の1本鎖RNAウイルス、属:カピロウイルス科、基準種:リンゴstem groovingウイルス;
属:カーラウイルス属、基準種:カーネーション潜在ウイルス;属:エナモウイルス属、基準種:エンドウひだ葉モザイクウイルス、
属:フロウイルス属、基準種:土壌伝染性コムギモザイクウイルス、属:ホルデイウイルス属、基準種:オオムギ斑葉モザイクウイルス、属:イダエオウイルス属、基準種:ラズベリーbushy dwarfウイルス;
属:ルテオウイルス属、基準種:オオムギ黄萎ウイルス;属:マラフィウイルス属、基準種:トウモロコシrayado finoウイルス;属:ポテクスウイルス属、基準種:ジャガイモXウイルス;属:ソベモウイルス属、基準種:Southern bean モザイクウイルス、属:テヌイウイルス属、基準種:イネ縞葉枯ウイルス、
属:トバモウイルス属、基準種:タバコモザイクウイルス、
属:トブラウイルス属、基準種:タバコ茎壊疽ウイルス、
属:トリコウイルス属、基準種:リンゴchlorotic leaf spotウイルス;属:ティモウイルス属、基準種:カブ黄斑モザイクウイルス;属:アンブラウイルス属、基準種:ニンジンmottleウイルス;マイナス1本鎖RNAウイルス:目:モノネガウイルス目、科:ラブドウイルス科、属:サイトラブドウイルス属、基準種:レタス壊死性黄変病ウイルス、属:ヌクレオラブドウイルス属、基準種:ジャガイモ黄萎病ウイルス;
マイナス1本鎖RNAウイルス:科:ブニヤウイルス科、属:トスポウイルス属、基準種:トマト黄化壊疽ウイルス;
2本鎖RNAウイルス:科:パーティティウイルス科、属:アルファクリプトウイルス属、基準種:シロツメクサcrypticウイルス1、属:ベータクリプトウイルス属、基準種:シロツメクサcrypticウイルス2、科:レオウイルス科、属:フィジーウイルス属、基準種:フィジー病ウイルス、属:ファイトレオウイルス属、基準種:創傷 腫瘍ウイルス、属:オリザウイルス属、基準種:イネragged stuntウイルス;
未分類ウイルス:
ゲノム:1本鎖RNA、種:ニンニクウイルスA、B、C、D、種:grapevine fleckウイルス、種:トウモロコシwhite lineモザイクウイルス、種:オリーブ潜在ウイルス2、種:ourmia メロンウイルス、種:ペラルゴニウムzonate spotウイルス。
【0048】
本発明の一般原理を図1に示す。植物RNAウイルス(例外はウイロイドである−植物細胞核で増幅する小さな非コードRNA−概説としてDiener,T.O.、1999、Arch.Virol.Suppl.、15、203−220;Flores,R.、2001、CR Acad.Sci.III、324、943−952を参照されたい)は植物の核では決して生じないが、細胞質で生ずることが知られている。したがって、RNAウイルスの配列は、プレmRNA、rRNA及びtRNA前駆体を含めたプロセシングされたRNAの細胞質への輸送を含めたプロセシング工程の複雑なシリーズに関与し得るモチーフの存在により、核のRNAプロセシングイベントに抵抗するためには適合しないであろう。5’端キャッピング、スプライシング、3’端生成、ポリアデニル化、分解、塩基及び糖修飾、並びに(プラスチド及びミトコンドリアにおける)編集のようなプロセシングイベントが重点的に研究されている。しかしながら、そのようなイベントの多く
の要素は依然として不明なままである。核におけるプレmRNAに対する最も劇的な変化は、プレmRNAスプライシングのあいだに起こり、そのプロセスにより、介在RNA配列(イントロン)が初期転写物から除去され、同時にエクソンが連結される。スプライシングは、ウリジル酸に富んだ小さな核リボヌクレオタンパク質粒子を含む複雑な構造であるスプライソソームによって介在される。スプライソソームは、2つの連続工程でスプライシング反応を実施する:最初の1工程−上流エクソン/イントロン接合部の5’スプライス部位を切断し、ラリアット形成をもたらす。第2工程−イントロン/下流エクソン接合部の3’スプライス部位を切断した後、上流及び下流エクソンが連結される(概説として:Kramer,A.、1996、Annu.Rew.Biochem.、65、367−409;Simpson,GG.&Filipowicz,W.1996、Plant.Mol.Biol.、32、1−41を参照されたい)。イントロン配列に隣接する5’及び3’スプライス部位ジヌクレオチド(5’/GU;AG/3’)は、高等植物において高度に保存されており、1つのG置換は関与する部位のスプライシング活性を放棄するであろう。植物と動物とのあいだでスプライス部位が高度に保存されているにもかかわらず、植物において異種イントロンは、通常スプライシングされず、不正確なスプライシングもされないことは驚くべきことである(van Santen,VL.ら、1987、Gene、56、253−265;Wiebauer,K.、Herrero,J.J.、Filipowicz,W.1988、Mol.Cel.Biol.、8、2042−2051)。植物ウイルスRNAは、核のRNAプロセシング装置に抵抗するための進化圧下になかったことを考慮すると、これらのRNAは、核環境にいったん置かれると、スプライシングを含めたそのようなプロセシングの対象になる可能性が非常に高い。この状況は、核遺伝子にコードされるRNA転写物とは完全に異なっている。後者の転写物は核で起こるRNA修飾のシリーズにかかわらず機能性を保存するように進化的に適合されているためである。しかしながら、そのような修飾は、ウイルスRNAレプリコン形成のための劇的な結果を有することができる。異種遺伝子用発現ベクターを作製するための植物ウイルスの再操作は、ウイルス起源のRNA配列と相互作用し得る更なる配列を付加するため、RNAウイルスに基づいたレプリコンに不安定性を更に付加し、複製不可能な欠陥RNAを産生するであろう。本発明は、一過性の発現のため又は植物染色体DNAへの安定な組込みのために、発現ベクターをDNA前駆体として植物又は植物細胞に組み込むと機能性RNAレプリコンの形成頻度を顕著に上昇させる修飾を、発現ベクターに供することによってこうした問題に取り組む。ウイルス由来配列の修飾が、RNAウイルスに基づいたレプリコンの効率を増加させるための最も意義深い解決策であると考えられる。本発明では、RNAレプリコン形成の効率上昇に重要であるため、主に植物RNAウイルス由来配列の修飾(機能保存的な相違)に重点をおく。
【0049】
驚くべきことに、潜在的に問題のある領域が存在する証拠を見出す最初の試みは成功した。そして更に驚くべきことに、予想外にもけた違いの改善を見出すことによって実験的確証を得た。潜在イントロン及びRNAスプライシング部位の存在に関する、NetgeneIIサーバープログラム(http://www.cbs.dtu.dk/services/NetGene2/)を用いた発現ベクターpICH8543のRNAウイルスに由来する配列の解析(実施例1、図6A)は、核のRNAプロセシング装置によってスプライシングされるであろうイントロン様領域の存在を示した(図2の円で囲んだ領域を参照されたい)。多様な生物のためのエクソン/イントロン予測プログラム(http://genes.mit.edu/GENSCAN.html)又はスプライシングシグナル予測プログラム(http://125.itba.mi.cnr.it/〜webgene/wwwspliceview.html)のように、植物ウイルスRNA配列内で潜在的に問題のある領域(選択された位置)を同定するために使用できる他のプログラムが多数存在する。
【0050】
既存の全てのプログラムは理想的でなく、ミスを逃れられないことを考慮すると、潜在的に問題のある領域は、実験的に決定することもできる。これは、核環境で試験対象DNAベクターに由来する転写物を、RT−PCR(Frohman,MA.、1989、Methods Enzymol.、218、340−356)のような日常的技術で、又はさまざまな転写物の濃度の正確な定量に好適な、より上級版のリアルタイムPCR(Gibsonら、1996、Genome Res.、6、995−1001)と呼ばれる技術で解析し、好ましくはPCR増幅産物を配列決定することによって行なうことができる。本発明の機能保存的な相違は、例えばA/Uに富んだ領域(イントロン様)をG/Cに富んだ領域(エクソン様)で置換してサイレント変異を導入することによって、例えばイントロン様配列をエクソン様配列で置換することによって、RNAプロファイルを劇的に変化させる(図3、円で囲んだ領域を参照されたい)。植物イントロンはエクソンと異なり、通常A/T(U)に富んでいる(Lorkovic,ZJ.ら、2000、Trends Plant Sci.、5、160−167;Brown,JW.及びSimpson,CG.1998、Annu.Rev.Plant Physiol.Plant Mol.Biol.、49、77−95;Csank,C.ら、1990、Nucl.Acid Res.、18、5133−5141;Goodall&Filipowicz、1989、Cell、58、473−483)が、例外がある。例えば単子葉植物では、G/Cに富んだイントロンが発見された(Goodall&Filipowicz、1989、Cell、58、473−483;Goodall&Filipowicz、1991、EMBO J.、10、2635−2644)。本発明を実施するには、高A/T(U)含量の選択された位置は、少なくとも55%以上、好ましくは少なくとも65%以上、最も好ましくは80%以上のA/T(U)含量を有する少なくとも長さ20ヌクレオチドの配列ストレッチだけでなく、純粋にA/T(U)を含有する配列の列の6〜19ヌクレオチドのより短いストレッチ(「アイランド」)をも含む。本明細書において、高A/U含量の位置は、UよりもAに富んだ配列、Aに富んだ配列、AよりもUに富んだ配列、及びUに富んだ配列を含む。更に、転写された目的配列は、RT−PCR(Frohman,MA.、1989、Methods Enzymol.、218、340−356)によって、核酸配列に変化を引き起こす翻訳後修飾(例えばRNAスプライシング)について試験することができる。オリジナルRNA転写物から配列を欠失させるような翻訳後修飾を免れないRNA内の領域を検出するためにRT−PCRを用いることは、当業者にとってささいな仕事である。実施例2では、A/Uに富んだ領域の修飾が、GFP発現細胞数を少なくとも10倍に増加させることを立証する。これは、pICH15466(改変ベクター、図6A)及びpICH14833(対照ベクター、図6A)でアグロ浸潤させた領域を比較することによって図7に明確に示されている。移行タンパク質(MP)を除去することにより、初期感染部位から隣接細胞への細胞間移行は起こらないため、機能性RNAレプリコンを所持する初代培養細胞の正確な計数を可能にする。実施例3では、多くの潜在スプライス部位を含有する他のUに富んだイントロン様領域の修飾(図2B)、及び移行タンパク質(MP)のサブゲノムプロモーターの被覆(図4、円で囲んだ)を実施した。この修飾は、ウイルスベクターpICH1590からのレプリコン形成頻度の上昇に劇的効果を生ずる。プロトプラスト計数実験(実施例3)で確立されたように、試験したタバコ種−ベンサミアナタバコ及びタバコに関し、非改変ベクターpICH14833と比較した上昇はおよそ100倍であった(図7A、7Bの対応する浸潤領域を参照されたい)。一般に、本発明に記載のアプローチを用いることによって、RNAレプリコン形成頻度をおよそ300倍増加させることができる。即ち、機能性レプリコンを有する細胞の割合を約0.2%(対照ベクター)から50%(改変ベクター)以上に増加させる。これは限界ではなく、頻度が100%に達することも非常に現実的であると考えられる。
【0051】
そのように高効率のレプリコン形成は、同一植物細胞内で、2つの異なるRNAレプリコンから2以上の異なる遺伝子を発現させる道を開く。例えば植物RNAウイルスに基づいたベクターを用いることによって異なる遺伝子を共発現させる。「先着順」という原理はウイルスベクターに関して特に真実であるため、同一細胞で同時に、2以上のレプリコンの同調した放出を達成することはそのような共発現に重要である。異なるウイルスベクターは通常伝播領域が重複しないか又はそのような重複はわずかであるため、全体移行又は細胞間移行は役に立たない。単純な計算により、2つの目的配列の共発現を同一植物細胞で2つのレプリコンから達成するための本発明に記載の技術の重要性が立証される。機能性レプリコン形成頻度が全細胞のわずか0.2%である非最適化ウイルスベクターの場合、2つの異なるRNAレプリコンから2つの遺伝子を共発現する細胞の割合は、0.2×0.2=0.04%であるが、機能性RNAレプリコン形成頻度が上昇した構築体(全細胞の50%又は1/2)の場合、共発現する細胞の割合は、0.5×0.5=0.25又は25%であり、例えば約625倍高い。最高性能のベクターの場合(例えばpICH16191、図7C)、機能性レプリコンを有する細胞の割合は、約90%に達する(図7C、右上)。これは、2つの異なる目的配列を2つの独立したレプリコンから発現させるためにそのようなベクターを使用することにより、共発現が全細胞の約80%で起こり得ることを意味する。この技術は更に改善でき、100%共発現を達成できる可能性は非常に高いと思われる。
【0052】
RNAレプリコンから発現されるべき目的異種配列における機能保存的な相違は、特にレプリコン機能に関する配列における相違と組み合わせて、RNAレプリコン形成頻度を上昇させるためにも使用できることに注目することは価値がある。例えば、レプリコンの形成及び/又はプロセシングに必要な修飾を目的配列内に導入することができる。
【0053】
本発明の重要な態様では、レプリコン形成頻度は、核イントロンをレプリコン機能に関する配列に挿入することによって上昇する(実施例4)。ウイルスRNA依存性RNAポリメラーゼ(RdRP)のコード領域にイントロンを組み込むことにより(実施例4及び8)、本明細書に定義したような(図6A、6BのpICH15034、pICH15025、pICH15499)機能保存的な相違を有するベクターからのレプリコン形成頻度に顕著な(少なくとも50倍)上昇(図7A、7B)をもたらす。シロイヌナズナ由来の挿入された6イントロンを含有するベクターのRNAプロファイルを図5に示す。他の実施例では(実施例7)、イントロンのMP配列への挿入は、レプリコン形成頻度を少なくとも100倍に増加させる。
【0054】
本発明を実施するために多くの核イントロンを用いることができる。そのようなイントロンの例としては、限定されるものではないが、イネtpi Act1遺伝子及びsalT遺伝子(Rethmeierら、1997、Plant J.、12、895−899;Xuら、1994、Plant Physiol.、100、459−467;McElroyら、1990、Plant Cell、2、163−171)に由来のイントロン;トウモロコシ Adh1、GapA1、アクチン及びBz1遺伝子(Callisら、1987、Genes Dev.、1、1183−11200;Donathら、1995、Plant Mol.Biol.、28、667−676;Maasら、1991、Plant Mol.Biol.、16、199−207;Sinibaldi&Mettler、1992、WE.Cohn、K.Moldave編、Progress in Nucleic Acids Research and Molecular Biology、第42巻、Academic Press、ニューヨーク、pp229−257)に由来のイントロン;petunia rubisco遺伝子SSU301(Deanら、1989、Plant Cell、1、201−208)に由来のイントロン;シロイヌナズナA1 EF1α、UBQ10、UBQ3、PAT1遺伝子(Curieら、1993、Mol.Gen.Genet.228、428−436;Norrisら、1993、Plant Mol.Biol.、21、895−906;Rose及びLast、1997、Plant J.、11、455−464)に由来のイントロン;及び他の多くのものが挙げられる。合成イントロンを本発明に用いることもできる。最小の使用可能なイントロン又はそれらの部分は、通常内部イントロン配列に隣接するスプライスドナー及びアクセプター部位に限定することができる。好ましくは、イントロンのサイズは少なくとも50ヌクレオチド、より好ましくは100〜200ヌクレオチドであるべきであるが、実際にはイントロンのサイズに限定はない。しかしながら、構築体のサイズは操作に好適である必要がある。イントロンの由来、その構造、及びサイズは、ベクターの性質に応じて個別に選択することができる。選択したイントロン又は対応するイントロン部分の効率を試験するために、一過性発現実験を用いることができる。
【0055】
上記修飾は累積効果を有する。例えば、イントロン挿入をMPサブゲノムプロモーターの修飾と組み合わせる場合、レプリコン形成頻度の上昇はおよそ300倍であり得る(実施例5)。RNAレプリコン形成頻度を上昇させるためのイントロン挿入に好ましい領域は、本明細書において選択された位置と呼ばれる。そのような位置は、「イントロン様」構造を含有するかもしれない。これは、MPサブゲノムプロモーターのように問題のある領域へ実際に近接して、イントロンをMPへ挿入するによって確認される(実施例7)。レプリコン形成頻度の100倍上昇が観察された。「エクソン様」領域へのイントロンの挿入には、イントロン様領域への挿入のような目立った効果はない(実施例6)。
【0056】
上で議論した実験は、植物細胞へのアグロバクテリウム介在DNA前駆体送達に基づいた一過性発現システムを用いて行われた。しかしながら、本発明の最も有用な応用は、植物核染色体に安定に組み込まれたRNAレプリコンのDNA前駆体を有するトランスジェニック植物であろう。これは、ウイルスベクターが許容できる異種配列の最大サイズに対する限定のような、植物ウイルスベクターに基づいたシステムの多くの限界を克服させる。DNA前駆体はトランスジェニック植物の各細胞に存在するため、RNAレプリコンの全体移行又は細胞間移行(レプリコン伝播)に対する絶対的要求は無い。これは、本発明のRNAレプリコンの高率の形成及び細胞質への輸送によって補填することができる。しかしながら、RNAレプリコン形成は全ての細胞で常に起こるわけではないため、ベクターの細胞間移行能には更なる価値があり得る。
【0057】
異種DNAを有する植物細胞を作製するために異なる方法を用いることができる。アグロバクテリウムによって運ばれるTi−プラスミドベクター(US5,591,616号;US4,940,838号;US5,464,763号)によって、又は粒子若しくは微粒子銃(US05100792号;EP00444882B1号;EP00434616B1号)によって、ベクターは植物細胞に形質転換されることができる。マイクロインジェクション(WO09209696号;WO09400583A1号;EP175966B1号)、エレクトロポレーション(EP00564595B1号;EP00290395B1号;WO08706614A1号)、又はプロトプラストのPEG介在形質転換などのような他の植物形質転換法も用いることができる。ベクター送達法の選択は、形質転換される植物種に依存し得る。例えば、単子葉植物の形質転換には通常微粒子銃が好ましく、双子葉植物にはアグロバクテリウム介在形質転換が一般に良好な結果を与える。
【0058】
以下に記載する実施例では、ベクター(異種DNA)のタバコ細胞へのアグロバクテリウム介在送達を用いた。しかしながら、目的植物種の安定な又は一過性の形質転換に好適な標準技術のいずれかにしたがい、ベクターを植物に導入することができる。双子葉植物の形質転換技術は当該分野で周知であり、アグロバクテリウムに基づいた技術や、アグロバクテリウムを必要としない技術が含まれる。非アグロバクテリウム技術には、プロトプラスト又は細胞による外来遺伝物質の直接取り込みが含まれる。これらの技術には、PEG又はエレクトロポレーションを介在した取り込み、粒子銃を介在した送達、及びマイクロインジェクションが含まれる。こらら技術の例は、Paszkowskiら、EMBO J.3、2717−2722(1984);Potrykusら、Mol.Gen.Genet.199、169−177(1985);Reichら、Biotechnol
ogy 4:1001−1004(1986);及びKleinら、Nature 327、70−73(1987)に記載されている。いずれの場合でも、形質転換された細胞は、標準技術を用いて完全な植物に再生される。
【0059】
アグロバクテリウム介在形質転換は、形質転換効率の高さ及び多くのさまざまな植物種を用いる広範な有用性のために、双子葉植物の形質転換に好ましい技術である。アグロバクテリウムで日常的に形質転換され得る多くの作物種には、タバコ、トマト、ヒマワリ、綿、アブラナ、ジャガイモ、ダイズ、アルファルファ及びポプラが含まれる(EP 0 317 511号(綿)、EP 0 249 432号(トマト)、WO87/07299号(アブラナ)、米国特許第4,795,855号号(ポプラ))。
【0060】
アグロバクテリウム形質転換は、典型的には、目的外来DNAを有するバイナリーベクターを、共耐性プラスミド又は染色体上に宿主アグロバクテリウム株によって運ばれるvir遺伝子の相補体に依存し得る適切なアグロバクテリウム株に輸送することが含まれる(Uknesら、Plant Cell 5:159−169(1993)。組換えバイナリーベクターのアグロバクテリウムへの輸送は、組換えバイナリーベクターを標的アグロバクテリウム株へ移動させることができる、組換えバイナリーベクターを有する大腸菌、pRK2013のようなプラスミドを有するヘルパー大腸菌株、を用いる三親性交配法によって達成することができる。あるいは、形質転換によって組換えバイナリーベクターをアグロバクテリウムへ移動させることができる(Hofgen&Willmitzer、Nucl.Acids Res.16、9877(1988))。
【0061】
組換えアグロバクテリウムによる標的植物種の形質転換には、通常、当該分野に公知のプロトコールにしたがったアグロバクテリウムと植物からの外植片との共培養が含まれる。バイナリープラスミドT−DNAの境界間に存在する抗生物質耐性又は除草剤耐性マーカーを有する形質転換された組織は、選択可能培地で再生されることができる。これは、本発明の異種DNAを含有するT−DNAで核染色体を安定に形質転換したトランスジェニック植物の作製を可能にする。
【0062】
本発明の例では、安定なアグロ形質転換と平行して、目的遺伝子を一過性発現させるためにT−DNAのアグロバクテリウム介在送達法であるアグロ接種を用いた(Vaqueroら、1999、Proc.Natl.Acad.Sci.USA、96、11128−11133)。アグロ接種は、小規模から中規模の組換えタンパク質産生システムだけでなく、ベクター最適化システムの要素として、非常に有用なツールであり、さまざまな構築体の変異体を用いて迅速な結果を得ることができる。
【0063】
本発明は、組換えタンパク質の大量/工業的産生にも用いることができる。実験ではアグロバクテリウムの一晩培養物を用いた。アグロ浸潤のために、先行技術に記載のように一晩培養物を準備した(Marillonnetら、2004、Proc.Natl.Acad.Sci.USA.、101、6853−6857)。通常、一晩培養は波長600nmの光学密度(O.D.)が3〜3.5単位に達し、アグロ浸潤の前に3〜5回希釈され、一般に5〜9×109コロニー形成単位を生ずる(Turpenら、1993、J.Virol.Methods、42、227−240)。このような一晩培養物を102倍、好ましくは103倍、より好ましくは104倍に希釈すると、特に、本明細書に記載したような機能保存的な相違を有するレプリコン機能に関する配列と組み合わせて、非常に効率的に働くことを見出した。驚くべきことに、形質転換するアグロバクテリウムの希釈を上げるにつれて、浸潤させたタバコ葉中のベクターは更に性能が向上し、GFPのより良い収率を生じた。例えば、103倍希釈は、102倍希釈よりも良好な結果を与えた。102倍希釈は、10倍希釈よりも良好なGFP収率を提供する。この現象の可能な説明
は、高度に濃縮したアグロバクテリウム懸濁液の、ウイルスベクター機能、例えば細胞間移行に対する負の効果、おそらく高濃度の病原体細菌に対する植物の反応の結果である。この現象には、アグロ浸潤を介した組換えタンパク質産生に要するアグロバクテリウム量を、先行技術の方法と比較して少なくとも1けた減少させるため、大規模工業的タンパク質発現法にとって特別な価値がある。
【0064】
本発明の実施例9では、不活化ウイルスRNAに基づいたレプリコンのDNA前駆体が、染色体DNAに安定に組み込まれている。レプリコンは本発明にしたがい最適化されている。更に、レプリコンは、目的配列の発現を妨げる構造を含有する。機能性RNAレプリコンの発現及び形成は、部位特異的組換えにより、構築体の一部を反転させることによって誘発することができる。反転は、2つのイントロンの形成、及び機能性目的配列の組み立てをもたらすことができる。実施例9に記載のシステムは、ウイルスベクターの最適化だけでなく、染色体DNAに安定に組込まれた構築体の、構築体からの目的遺伝子の「漏出性」発現を含めた「漏出性」を避けるための解決策を示している。多くの応用では、特に細胞毒タンパク質に関して、又は技術的タンパク質又は医薬タンパク質を発現させるための植物発現システムを用いて高いバイオセイフティ基準を達成するため、非誘導状態でゼロレベルの発現を有することは重要である。
【0065】
異種DNA及び/又はリコンビナーゼの転写は、誘導性の又は他の調節された(例えば発生的に調節された)プロモーターの制御下に置くことができる。誘導性プロモーターは、誘導条件にしたがい2つのカテゴリーに分けることができる:非生物的因子(温度、光、化学物質)によって誘導されるもの、及び生物的因子、例えば病原体又は害虫の攻撃によって誘導できるもの。第1のカテゴリーの例は、熱誘導性(US05187287号)及び低温誘導性(US05847102号)プロモーター、銅誘導性システム(Mettら、1993、Proc.Natl.Acad.Sci.、90、4567−4571)、ステロイド誘導性システム(Aoyama&Chua、1997、Plant J.、11、605−612;McNellisら、1998、Plant J.、14、247−257;US06063985号)、エタノール誘導性システム(Caddickら、1997、Nature Biotech.、16、177−180;WO09321334号)、並びにテトラサイクリン誘導性システム(Weinmannら、1994、Plant J.、5、559−569)である。植物の化学的誘導性システムの分野における最近の発展の1つは、グルココルチコイド デキサメサゾンによってスイッチを入れることができ、テトラサイクリンによってスイッチを切ることができるキメラプロモーターである(Bohnerら、1999、Plant J.、19、87−95)。化学的誘導性システムの概説としては:Zuo&Chua(2000、Current Opin.Biotechnol.、11、146−151)及びPadidam,M(2003、Curr.Opin Plant Biol.、6、169−177)を参照されたい。誘導性プロモーターの他の例は、植物の病原性関連(PR)遺伝子の発現を制御するプロモーターである。これらのプロモーターは、病原体攻撃に対応した植物シグナル伝達経路の重要成分であるサリチル酸で、又はPR遺伝子発現を誘発可能な他の化学化合物(ベンゾ−1,2,3−チアジアゾール又はイソニコチン酸)で、植物を処理することによって誘導することができる(US05942662号)。
【0066】
本発明は、実施例1〜9に記載のTMVに基づいたベクターに限定されず、他の植物RNAウイルスに基づいたレプリコンに広げることができる。他の植物ウイルスRNA配列の解析(実施例10、図10、11)は、TMV、及び植物核遺伝子のプレmRNAの配列に関して記載したのと非常に類似した選択された位置を示している(図9)。これは、本発明に記載のアプローチを用いて、実際に、植物RNAウイルス由来レプリコンは、問題領域の除去/置換及び/又は核イントロンの挿入によって根本的に改善することができるという示唆を指示する強力な証拠である。
【0067】
本発明は、高等多細胞植物、その部分、又はその細胞培養物を用いて実施することが好ましい。本発明に使用する植物には、農学的及び園芸学的に重要な種に関連した植物種が含まれる。本発明に使用するための一般的な作物には、アルファルファ、オオムギ、インゲンマメ、カノーラ、ササゲ、綿、トウモロコシ、クローバー、ハス、レンズマメ、ルピナス、キビ、オートムギ、エンドウマメ、落花生、イネ、ライムギ、スイートクローバー、ヒマワリ、スイートピー、ダイズ、モロコシ、ライコムギ、クズイモ、ハッショウマメ、ソラマメ、コムギ、フジ、及び堅果植物が含まれる。本発明を実施するのに好ましい植物種には、限定されるものではないが、イネ科、キク科、ナス科、及びバラ科の代表的なものが挙げられる。
【0068】
本発明での使用に更に好ましい種は、以下の属に由来する植物である:シロイヌナズナ、コヌカグサ、ネギ、キンギョソウ、オランダミツバ、ナンキンマメ、アスパラガス、ロウトウ、カラスムギ、ホウライチク、アブラナ、ブロムグラス、ルリマガリバナ、ツバキ、アサ、トウガラシ、ヒヨコマメ、ケノポジ、キクニガナ、カンキツ、コーヒーノキ、ジュズダマ、キュウリ、カボチャ、ギョウギシバ、カモガヤ、チョウセンアサガオ、ウリミバエ、ジギタリス、ヤマノイモ、アブラヤシ、オオシバ、フェスキュ、イチゴ、フクロウソウ、ダイズ、ヒマワリ、キスゲ、パラゴムノキ、オオムギ、ヒヨス、サツマイモ、レタス、ヒラマメ、ユリ、アマ、ライグラス、ハス、トマト、マヨラナ、リンゴ、マンゴー、イモノキ、ウマゴヤシ、アフリカウンラン、タバコ、イガマメ、イネ、キビ、テンジクアオイ、チカラシバ、ツクバネアサガオ、エンドウ、インゲン、アワガエリ、イチゴツナギ、サクラ、キンポウゲ、ラディッシュ、スグリ、トウゴマ、キイチゴ、サトウキビ、サルメンバナ、ライムギ、セネシオ、セタリア、シロガラシ、ナス、ソルガム、イヌシバ、カカオ、ジャジクソウ、レイリョウコウ、コムギ、ソラマメ、ササゲ、ブドウ、トウモロコシ、及びOlyreae、Pharoideae並びにその他多くのもの。
【0069】
本発明に最も好ましい植物は、動物又はヒトの食物連鎖に入らないタバコ種のような植物、例えばベンサミアナタバコ及びタバコである。
本発明を用いて植物若しくは植物細胞で発現し得る目的タンパク質、その断片(機能性又は非機能性)、及びそれらの人工的誘導体には、限定されるものではないが、以下が含まれる:デンプン修飾酵素(デンプン合成酵素、デンプンリン酸化酵素、脱分岐酵素、デンプン分岐酵素、デンプン分岐酵素II、顆粒結合性デンプン合成酵素)、ショ糖リン酸合成酵素、ショ糖ホスホリラーゼ、ポリガラクツロナーゼ、ポリフルクタンスクラーゼ、ADPグルコース ピロホスフォリラーゼ、シクロデキストリン グリコシルトランスフェラーゼ、フルクトシル トランスフェラーゼ、グリコーゲン合成酵素、ペクチン エステラーゼ、アプロチニン、アビジン、細菌レバンスクラーゼ、大腸菌glgAタンパク質、MAPK4及び相同分子種、窒素同化/代謝酵素、グルタミン合成酵素、植物オスモチン、2Sアルブミン、タウマチン、部位特異的リコンビナーゼ/インテグラーゼ(FLP、Cre、Rリコンビナーゼ、Int、SSVIインテグラーゼR、インテグラーゼφC31、又はその活性断片又は変異体)、オイル修飾酵素(脂肪酸デサチュラーゼ、エロンガーゼなどのような)、イソペンテニル トランスフェラーゼ、Sca M5(ダイズ カルモジュリン)、甲虫型毒素又は殺虫活性断片、ユビキチン結合酵素(E2)融合タンパク質、脂質、アミノ酸、糖、核酸及び多糖類を代謝する酵素、スーパオキシド・ジスムターゼ、不活性なプロ酵素型プロテアーゼ、植物タンパク質毒素、繊維産生植物における形質変更繊維(traits altering fiber)、バチルス・チューリンゲンシス由来の甲虫活性毒素(Bt2毒素、殺虫性結晶タンパク質(ICP)、CryIC毒素、δエンドトキシン、ポリオペプチド毒素、プロトキシンなど)、昆虫特異的毒素AaIT、セルロース分解酵素、acidothermus celluloticus由来のE1セルラーゼ、リグニン修飾酵素、シナモイル アルコールデヒドロゲナーゼ、トレハロース−6−リン酸合成酵素、サイトカイニン代謝経路の酵素、HMG−CoA レダクターゼ、大腸菌無機ピロホスファターゼ、種子貯蔵タンパク質、エルウィニア ヘルビコラ リコピン合
成酵素、ACCオキシダーゼ、pTOM36にコードされるタンパク質、フィターゼ、ケトヒドロラーゼ(ketohydrolase)、アセトアセチルCoA レダクターゼ、PHB(ポリヒドロキシブタノエート)合成酵素、ポリヒドロキシアルカノエートの合成に関与する酵素、アシルキャリアータンパク質、ナピン、FA9、非高等植物フィトエン合成酵素、pTOM5にコードされるタンパク質、ETR(エチレン受容体)、色素体ピルビン酸 リン酸 ジキナーゼ、線虫誘導性膜貫通ポアタンパク質、植物細胞の光合成又はプラスチド機能を高める形質、スチルベン合成酵素、フェノールをヒドロキシル化可能な酵素、カテコール ジオキシゲナーゼ、カテコール 2,3−ジオキシゲナーゼ、クロロムコネート シクロイソメラーゼ、アントラニル酸合成酵素、アブラナAGL15タンパク質、フルクトース 1,6−ビホスファターゼ(FBPアーゼ)、AMV RNA3、PVYレプリカーゼ、PLRVレプリカーゼ、ポチウイルスコートタンパク質、CMVコートタンパク質、TMVコートタンパク質、ルテオウイルス レプリカーゼ、MDMVメッセンジャーRNA、変異ジェミニウイルス レプリカーゼ、カリホルニアウンベルラリア C12:0選択性アシル−ACPチオエステラーゼ、植物C10又はC12:0選択性アシル−ACPチオエステラーゼ、C14:0選択性アシル−ACPチオエステラーゼ(luxD)、植物合成酵素因子A、植物合成酵素因子B、D6−不飽和化酵素、脂肪酸の生合成及び修飾、例えば植物細胞における脂肪酸のペルオキシソームβ酸化において酵素活性を有するタンパク質、アシル−CoAオキシダーゼ、3−ケトアシル−CoA チオラーゼ、リパーゼ、トウモロコシ アセチル−CoA−カルボキシラーゼ、など;5−エノールピルビルシキミ酸−3−リン酸合成酵素(EPSP)、ホスフィノスリシン アセチルトランスフェラーゼ(BAR、PAT)、CP4タンパク質、ACCデアミナーゼ、翻訳後切断部位を有するタンパク質、スルホンアミド耐性を付与するDHPS遺伝子、細菌ニトリラーゼ、2,4−D モノオキシゲナーゼ、アセトラクテート合成酵素又はアセトヒドロキシ酸合成酵素(ALS、AHAS)、ポリガラクツロナーゼ、Taqポリメラーゼ、細菌ニトリラーゼ、制限酵素、メチラーゼ、DNA及びRNAリガーゼ、DNA及びRNAポリメラーゼ、逆転写酵素、ヌクレアーゼ(Dnase及びRNase)、ホスファターゼ、トランスフェラーゼなどを含めた細菌又はファージに由来する他の多くの酵素など。
【0070】
本発明は、工業的酵素(セルラーゼ、リパーゼ、プロテアーゼ、フィターゼなど)及び線維性タンパク質(コラーゲン、クモの糸タンパク質など)を含めた、商業的に価値があり、医薬的に重要なタンパク質の分子農業(molecular farming)及び精製のために用いることができる。ヒト又は動物の健常なタンパク質は、本発明で記載したアプローチを用いて発現させ、精製することができる。そのような目的タンパク質の例としては、とりわけ、免疫応答タンパク質(モノクローナル抗体、1本鎖抗体、T細胞受容体など)、病原体微生物に由来するものを含めた抗原、コロニー刺激因子、レラキシン、ソマトトロピン(HGH)及びプロインスリンを含めたポリペプチドホルモン、サイトカイン及びそれらの受容体、インターフェロン、成長因子及び凝固因子、酵素学的に活性なリソソーム酵素、線溶性ポリペプチド、血液凝固因子、トリプシン、トリプシノーゲン、a1−アンチトリプシン(AAT)、ヒト血清アルブミン、グルコセレブロシダーゼ、天然コレラ毒素B、トロンビン、ヒト胃リパーゼ、顆粒球−マクロファージコロニー刺激因子(GM−CMF)、セルピン、ラクトフェリン、リゾチーム、オレオシン、プロトロンビン、α−ガラクトシダーゼ、並びにフュージョンのような機能保存的タンパク質、上記タンパク質の変異体型及び合成誘導体が挙げられる。
【0071】
国際特許出願PCT/EP03/12530号及びヨーロッパ特許出願第04016012.9号の内容は、本明細書にその全体が援用される。
【実施例】
【0072】
以下の実施例は本発明を具体的に説明するために提示される。本発明の精神及び範囲を逸脱することなく、修飾及び改変がなされ得る。
実施例1
TMVに基づいたRNAベクターの構築
アブラナ科植物感染性トバモウイルス(cr−TMV;Dorokhovら、1994、FEBS Lett.350、5−8)及びカブ葉脈−clearingウイルス(TVCV;Larteyら、1994、Arch.Virol.138、287−298)のクローン化cDNAを、モスクワ大学、ロシアのAtabekov教授から得た。いくつかのクローニング工程で緑色蛍光タンパク質(GFP)遺伝子を含有するウイルスベクターを作製した。得られた構築体、pICH8543(図6A)は:シロイヌナズナ アクチン2プロモーター(ACT2、参考文献 Anら、1996、GenBank受託番号AB026654、bp57962〜58748)由来の787bp断片、TVCVの5’端(GenBank受託番号BRU03387、bp1〜5455)、cr−TMV(GenBank受託番号Z29370、bp5457〜5677、コートタンパク質CPの開始コドンを除去するため、チミン5606がシトシンに変異している)の断片、「taa tcg ata act cga g」配列、合成GFP(sGFP)遺伝子、cr−TMV 3’非翻訳領域(3’NTR;GenBank受託番号Z29370、bp6078〜6312)、及び最後にノパリン合成酵素(Nos)ターミネーターを順番に含有する。断片全体を、CarbR pBIN19由来バイナリーベクターであるpICBV10のT−DNAの左の境界(LB)と右の境界(RB)とのあいだにクローン化した。pICH8543で、アグロバクテリウム株GV3101を形質転換し、ベンサミアナタバコの葉に浸潤させた。3dpiで出現したGFP蛍光の焦点は、増殖してコンフルエントになった。驚くべきことに、GFPを発現する多くの独立した焦点によって検出されたように、浸潤領域の大部分の細胞が、ウイルス複製及び移行により、最終的にGFPを発現したとしても、細胞のある画分のみがウイルス複製を開始した。35Sプロモーターの制御下でGFP遺伝子を有するベンサミアナタバコ葉の浸潤は、浸潤領域のほとんど全ての細胞でGFP発現をもたらすため(図示していない)、限定要因は植物細胞へのDNA送達ではないことが明らかになった。
【0073】
この観察を確認するため、MPに変異を有するウイルスベクター構築体を作製した。pICH14833と呼ばれるこの構築体は、pICH8543に類似するが、MP遺伝子における389bp、MPに存在するEcoRI部位の上流、の欠失により異なっている。この欠失を含むNcoI−EcoRI断片の配列を、配列番号1として付録に示す。完全なウイルス構築体(ACT2プロモーターからNosターミネーターまで)を、pBIN19由来KanR バイナリーベクターであるpICBV49のT−DNAの左の境界
と右の境界とのあいだにクローン化した。MPにおける欠失のために、この構築体から産生されるレプリコンは細胞間を移行できないが、細胞内で自律複製可能である。MPを、例えば、カリフラワー モザイクウイルス 35Sプロモーターのような構成的プロモーターからトランスで提供すると、細胞間移行を回復させることができる。
【0074】
MP発現構築体を作製するために、TVCV MP遺伝子をクローン化TVCV cDNA(GenBank受託番号Z29370、bp4802〜5628)からPCRで増幅させ、35Sプロモーターの制御下のバイナリーベクターにサブクローニングした。pICH10745(示していない)と呼ばれる得られた構築体と、pICH14833で、アグロバクテリウム株GV3101を形質転換し、一晩培養物のさまざまな希釈物を、浸潤培地がアセトシリンゴンを欠失する以外はEnglishと同僚らによって記載されたようにして(1997、Plant J.、12、597−603)ベンサミアナタバコ葉に浸潤させた。pICH14833単独の浸潤は、浸潤領域内で少量のGFP発現細胞を出現させた。浸潤領域から調製したプロトプラストを計数することによって、合計500のプロトプラストのうち、わずか1〜3個のプロトプラスト(0.2〜0.6%)がGFPを発現したことを発見した。pICH14833とpICH10745との共浸潤は、各初期GFP発現細胞から増殖したGFP発現焦点の形成をもたらした。最終的に、細胞間移行により、浸潤領域の大部分の細胞がGFPを発現した(図7A)。
【0075】
トバモウイルスのようなRNAウイルスは細胞質で複製するが、決して核には入らない。したがって、それらは、核のプレmRNAプロセシング装置に曝されない環境に展開した。その結果、核において人工ウイルス構築体から作製されたRNAレプリコン転写物が、RNAプロセシング装置によって認識されず、適切にプロセシングされないことは驚くべきことではない。その上、ウイルスベクターに由来するRNAレプリコンは非常に大きく、TMVに基づくレプリコンの場合はおよそ7,000ヌクレオチドである。非常にわずかな植物遺伝子がそのように大きなサイズを有し、そのような遺伝子の大部分は、プレmRNAのプロセシングを容易にし、核から輸送され、プロセシングされた転写物の安定性を向上させるイントロンを含有する。したがって、本発明者らは、正確なプロセシング、及び正しくプロセシングされた転写物を核から細胞質へ輸送する効率を増加させるプレmRNAの修飾は、ウイルス複製を開始する細胞数の増加をもたらすであろうと仮定した。2つのアプローチを用いて、核へのDNA送達後、より効率的にウイルス複製を開始できる、RNAウイルスに基づいたベクターを作製することができることがわかった:(1) 1つのアプローチは、望ましくないプロセシングイベント(潜在スプライス部位を用いた選択的スプライシングイベント、又は未成熟終止イベントなど)を誘導するかもしれない配列特徴の除去である;(2) 第2のアプローチは、適切にプロセシングされる転写物の量を増加させ、核から細胞質へのRNAの輸送を改善し、及び/又は転写物の安定性を向上させるためのイントロンの付加である。
実施例2
イントロン様配列の除去は、細胞質におけるウイルスRNAレプリコン形成頻度を上昇させる
NetgeneIIサーバープログラム(http://www.cbs.dtu.dk/services/NetGene2/)を用いてpICH4351に由来するRNAレプリコンの配列を解析し、選択的スプライシングイベントを誘発するかもしれないいくつかのイントロン様配列特徴に気づいた。そのような特徴の1つは、RdRPの初めにある0.6kbのウリジンに富んだ領域(GenBank受託番号BRU03387のヌクレオチド827〜1462に相当する)である(図2A)。この領域は、pICH14833では、PCRで変異させた、54ヌクレオチド置換によってオリジナル配列とは異なる配列に置換した(配列番号2として付録に示した配列;図3を参照されたい)。52ヌクレオチドを置換し、Tに富んだ配列をよりGCに富んだ配列に置換した。RdRPタンパク質配列が変化しないように、全てのヌクレオチド置換をサイレントにした。変異断片は、それぞれ推定の潜在スプライスドナー及びアクセプター部位を除去するために導入した2つのヌクレオチド置換も含有する(位置829及び1459;GenBank受託番号BRU03387に対する座標)。これらの変異の効果を試験するために、得られたクローンpICH15466(図6A)を、pICH10745(トランスの移行タンパク質)とともに又は伴わずに、ベンサミアナタバコ葉にアグロ浸潤させた。浸潤後8日に、pICH15466で浸潤させた領域においてGFP発現細胞数に10倍の増加が観察された(pICH14833と比較して、図7)。これは、ウイルスアンプリコンからのイントロン様配列の除去は、望ましくない選択的スプライシングイベントを妨げ、ウイルス複製をより効率的に開始させることを示唆する。pICH15466とpICH10745との共浸潤は、非改変レプリコンと類似の速度で改変レプリコンの細胞間移行をもたらす。これは、RNA配列の改変はウイルスベクターの細胞間移行に影響しなかったことを示している。
実施例3
MPサブゲノムプロモーターにおけるイントロン様配列の除去
第2の潜在的に問題のある領域は、MPサブゲノムプロモーターに相当する(図2B)。この領域は非常にTに富んでおり、イントロン配列に非常に似ている。結果として、イントロン予測プログラムによって配列近傍に多くの潜在スプライスドナー及びアクセプター部位が予測される。残念なことに、サブゲノムプロモーター機能に影響を及ぼすことなくこの領域に修飾を容易に行うことができない。サブゲノムプロモーターに関し、全領域を完全に変異させ、MP発現の予測される喪失を補うためにトランスでMPを提供することにした。また、この構築体からMPは発現しないため、目的遺伝子の発現の駆動に必要なCPサブゲノムプロモーターを含有する3’配列以外は、MP配列の大部分を削除することにした。したがって、pICH14833(GenBank受託番号BRU03387のbp4584〜5455)中の383bp断片を297bpの変異させた断片(配列番号3)で置換した。得られた構築体pICH15900(図6A)を、pICH10745とともに又は伴わずに、ベンサミアナタバコ葉にアグロ浸潤させた。興味深いことに、pICH14833で浸潤させた葉領域と比較して、複製を開始する細胞数の莫大な増加を検出した。浸潤葉領域から調製したGFP発現プロトプラストを計数することによって、この修飾は、非改変pICH14833と比較して、ウイルス複製を開始する細胞数を80〜100倍増加させると概算している。pICH15900を、pICH10745(p35S−MP発現カセット)とともに共浸潤させたところ、細胞間移行によるGFP蛍光の増加を検出した。しかしながら、たとえ細胞間移行がなくとも、多くの細胞は既にGFPを発現していたので、この増加は非常に限られたものであった。pICH15900を含有するアグロバクテリウム懸濁液の1000倍希釈(600nmの計算されたODがおよそ0.004に相当する)を、pICH10745を含有する5倍希釈したアグロバクテリウム懸濁液(600nmの計算されたODがおよそ0.8に相当する)とともに共浸潤させたところ、GFP発現焦点を分離させた。蛍光焦点は、pICH14833を用いて得られた対照焦点と同様に明るく、同じサイズであった。これは、pICH15900の改変とMPのトランスでの送達とは、複製レベル、目的遺伝子の発現及び細胞間移行に関し、レプリコンの機能性を落とさないことを示している。同一構築体(pICH14933及びpICH15900、pICH10745とともにか又は伴わない)を、タバコ葉に共浸潤させた。pICH15900における改変は、ベンサミアナタバコと同様に、複製を開始する細胞数を増加させた(pICH14833と比較して)。
実施例4
イントロンの付加は、細胞質における機能性RNAレプリコンの形成頻度を上昇させる
ウイルスプロレプリコン配列へのイントロンの付加が、複製開始頻度を上昇させるかどうかについて試験した。それぞれ3つの異なるシロイヌナズナ イントロンをRdRPの2つの異なる領域に含有する、pICH15025及びpICH15034の2つの構築体を作製した(図6A)。イントロンをRdRPの中央に含有するように、pICH15025をデザインした。一方、pICH15034は、イントロンを、MPサブゲノムプロモーターの上流である、RdRPの3’端に含有する。イントロンをPCRでシロイヌナズナ ゲノムDNAから増幅させ、所定のイントロン/エクソン接合部位に重複するプライマーを用いてPCRでウイルス配列に組み込んだ。イントロン含有断片を、AvaI−HindIII断片(付録の配列番号4)として、pICH14833にサブクローニングしてpICH15025を作製し、又はPstI−NcoI断片(付録の配列番号5)としてサブクローニングしてpICH15034を作製した。
【0076】
2つの構築体を、ベンサミアナタバコ葉に別々にアグロ浸潤させ、pICH14833と比較した。2つの構築体は、ウイルス複製を開始する細胞数を顕著に増加させた(図7A)。この増加は、pICH14833と比較して、50倍の改善であると概算した。また、2つの構築体をMP発現クローンと共浸潤させ、細胞間移行がイントロンのないクローンと同一であることを発見した。また、2つの構築体をタバコで試験し、ベンサミアナタバコと同様の改善を観察した(図7B)。
【0077】
6イントロン全てを含有する第3のクローンpICH15499を作製した(図5、6B、7A、7B)。この構築体をベンサミアナタバコ及びタバコで試験した。この構築体は、3イントロンを有するそれぞれ個々の構築体よりも効率的であったが、改善は付加的ではなかった。
実施例5
イントロンの付加及びイントロン様配列の除去は、細胞質において機能性RNAレプリコンの形成頻度を上昇させる
1つの構築体でイントロン様の特徴を除去し、追加のイントロンを付加することにより、2つのタイプの改変がウイルス複製の開始の向上に寄与できることを示した。変異したMPサブゲノムプロモーター領域を含有するpICH15499の6イントロンをpICH15900へサブクローニングした。得られたクローンpICH15860(図6B)を、ベンサミアナタバコ葉に浸潤させ、およそ50%〜90%のGFPを発現する全てのプロトプラストの範囲内でいずれの親クローンよりも顕著によく働くことを見出した(図7)。最高性能の構築体は、イントロンをRdRP領域、及び改変MPサブゲノムプロモーター領域に含有する(pICH16191、図7C)。全く改変していないクローンと比較すると、これは、80〜300倍の増加を示した。また、この構築体をMP発現構築体(pICH10745)とともに共浸潤させ、改変が細胞間移行又は複製を傷つけないことを見出した。
実施例6
全てのイントロン付加が、細胞質において機能性RNAレプリコンの出現頻度を上昇させるわけではない。
【0078】
2つの異なるシロイヌナズナ イントロンをRdRPの初めに挿入し、クローンpICH15477を得た(付録にこの領域の配列を配列番号6として示す)。この領域の配列は、イントロンの付加前に既に非常に「エクソン様」にみえる(例えば潜在スプライス部位をもたずにGCに富んでいる)。この構築体でウイルス複製開始の改善はみられなかった。したがって、全てのイントロン付加がウイルスベクターの改善をもたらすわけではないであろう。イントロンの挿入又は変異のために選択された位置は重要なパラメータであるようである。例えば、MPサブゲノムプロモーターのように問題のある構造近傍の領域で作製される全てのイントロンの挿入又はヌクレオチド置換は、大きく改善されたが、既に「エクソン様」の配列へのイントロンの挿入は改善されなかった。
実施例7
MP配列へのイントロンの挿入はウイルスレプリコン形成頻度を上昇させる
初めに、制限酵素AvrIIによる消化、フィリング及び再連結によって、MPにフレームシフトを作製した。次に、2つのイントロンをMPに挿入した。得られたクローンpICH16422(図6B)をベンサミアナタバコ葉に浸潤させた。機能性ウイルスレプリコンを含有する細胞数に約100倍の増加が検出された。
実施例8
MP含有ベクターへのイントロンの挿入は、自律機能性クローンのウイルス複製の開始頻度を上昇させる
pICH15499からKpnI−EcoRlI断片をpICH8543へサブクローニングした。得られたクローン16700(図6B)は、RdRPに6イントロンを有する完全なウイルスベクターを含有した。このクローンをベンサミアナタバコ葉に浸潤させ、効率的に複製を開始させた。また、このクローンは、トランスでのMPの付加を要することなく細胞間移行可能であった。
実施例9
染色体に安定に組込まれた不活性レプリコンの活性化
また、イントロン含有ウイルスベクター構築体をトランスジェニック植物に安定に形質転換することが可能である。植物生長を阻害する有害なウイルス複製を避けるために、不活性クローン(プロレプリコン)を、アンチセンス方向で存在するベクターの一部を有することによって作製することができる(図8)。反転断片の先端での組換え部位及びイントロン配列の組込みは、適切なリコンビナーゼを用いることによって、この断片を正しい方向に「反転」させることができる。組換え部位はレプリコンからスプライシングによって完全に排除されるであろう。プロレプリコン中のイントロンは、組換え及び転写後、効率的な複製開始を可能にする。1つの特定の例では、組換え部位は目的遺伝子内でプロレプリコンの下流に位置する。このような立体配置は、組み換え前の遺伝子発現を妨げる。組換えが、RdRP内及びプロモーターの上流のような、プロレプリコンの他の領域に位置する他の立体配置が考えられる。組換え部位のイントロン配列は、組換えをレプリコンから完全に除去することを可能にする有益性を有するが、先に記載したように、ウイルス複製効率も上昇させる。
【0079】
反転部分は、図12に示すようにベクターの3’端、中央、又は5’端に位置することができる(図8に示すように)。2つの構築体pICH12691(1イントロンのみを組換え部位に含有する)及び追加の6イントロンをRdRPに含有するpICH16888を作製した。pICH12691の完全なT−DNA領域の配列を、配列番号7に示す。pICH16888はpH12691に類似するが、更に、pICH15025に記載の3つのイントロン(配列番号4)、及びpICH15034に記載の3つのイントロン(配列番号5)を含有し、それぞれこれらの構築体と同一位置に挿入されている。pICH12691及びpICH16888を、以下のように、カナマイシン選択を用いてベンサミアナタバコに安定に形質転換した。構築体pICH12691及びpICH16888をアグロバクテリウム・ツメファシエンス(GV3101)に別々に固定し、微細な改変を伴うが、Horsh及び同僚らによって記載されたようにして(1985、Science、227、1229−1231)、タバコ植物のアグロバクテリウム介在葉ディスク形質転換に別々に用いた。1mg/L α−ナフタレン酢酸(NAA)、0.5mg/L 6−ベンズアミノプリン(BAP)、200μM アセトシリンゴン(AS)、pH5.5〜5.6を添加したムラシゲ・スクーグ(MS)基本培地中のアグロバクテリウム懸濁液内で葉ディスクを30分間共培養した。次に、過剰な液体を除去するために葉ディスクを滅菌ワットマン(登録商標)ろ紙上におき、固体共培養培地(上記のように添加したMS上に調製した0.8%アガー)に移し、暗所において22〜23℃で48時間培養した。共培養後、葉ディスクを選択再生培地(1mg/L BAP、0.1mg/L NAA、1mg/L MES(pH5.7〜5.8)、300mg/Lセファタキシム、50mg/Lカナマイシンを添加したMS上に調製した0.8%アガー)においた。再生培地で3〜6週間の培養後、カナマイシン耐性植物細胞から再生した苗条を発根選択培地(300mg/Lセフォタキシム、200mg/L timentin(アグロバクテリウムの排除を容易にするため)、50mg/Lカナマイシン、pH5.7〜5.8を添加したMS上に調製した0.8%アガー)に移した。再生させた形質転換体を温室に移し、インテグラーゼ発現構築体(pICH10881:アクチン2プロモーター − φC31インテグラーゼ;又はpICH14313:トウモロコシ転位因子Spmプロモーター − φC31インテグラーゼ)を含有するアグロバクテリウム懸濁液を針のないシリンジで浸潤させることによって試験した。インテグラーゼ構築体で浸潤後、pICH12691の形質転換体よりもpICH16888形質転換体のほうがウイルス複製増殖巣を多く示した(図13)。更に、pICH16888の形質転換体は、浸潤あたり、より多くのウイルス開始増殖巣を示した。
実施例10
植物ウイルスRNA配列は、潜在的不安定領域を含有する
選択した植物RNAウイルスのRNAプロファイルを、十分に特徴付けられた植物遺伝子(AtDMC1)のものとともに、NetgeneIIサーバープログラム(http://www.cbs.dtu.dk/services/NetGene2/)を用いて解析した。図9に示すAtDMC1のRNAプロファイルは、cDNAとゲノムDNAの配列を比較することによって先に同定した14イントロン(丸で囲んでいる)の存在を明確に反映している。2つの植物ウイルスのRNAプロファイルは、それらを植物核環境におくとRNAの安定性に問題を引き起こし得る領域を有することは明らかである(図10、11を参照されたい)。ブロムモザイクウイルス、TMVの異なる株、そして他の多くのもののような植物RNAウイルスのいくつかの他の代表的なもののRNAプロファイルについて解析した(示していない)。それらの全ては、DNA前駆体として植物細胞に送達された場合、植物RNAウイルスに基づいたレプリコン形成の効率を落としかねない、潜在的に問題のある領域を有している。
実施例11
他の種で最適化ベクターが作用する
変異させた領域(pICH15466に記載)及び16イントロン(pICH15860の6イントロン、pICH16422の2イントロン、及び追加の8イントロンを含む)を含有する完全に最適化した構築体を作製した。要約すれば、この構築体は以下の位置に挿入されたイントロンを含有する(TVCV配列に対して示す、GenBank受託番号BRU03387):ヌクレオチド209、ヌクレオチド828、ヌクレオチド1169、ヌクレオチド1378、ヌクレオチド1622、ヌクレオチド1844、ヌクレオチド2228、ヌクレオチド2589、ヌクレオチド2944、ヌクレオチド3143、ヌクレオチド3381、ヌクレオチド3672、ヌクレオチド3850、ヌクレオチド4299、ヌクレオチド5287、ヌクレオチド5444。
【0080】
サトウダイコンでこの構築体の発現を試験した。以下に記載するように、完全な植物の浸潤を実施した。50μg/mlリファンピシン及び50μg/mlカナマイシン(バイナリーベクターについて選択)を含有する300mlのLBにpICH18711を有するアグロバクテリウを接種し、飽和するまで増殖させた。細菌を4800gで10分間沈殿させ、3Lの浸潤バッファー(10mM MES pH5.5、10mM MgSO4)に再懸濁し、飽和アグロバクテリウム培養物を10倍希釈した。浸潤溶液を含有するビーカーを、溶液にさっと浸した植物の地上部とともに乾燥器(直径30mm)の中においた。KNF Neuberger(フライブルグ、ドイツ)製のPM16763−860.3型ポンプを用いて2分間真空を施し、0.5〜0.9barに達した。植物を標準条件の温室に戻した。
【0081】
GFP発現はpICH18711で浸潤させた植物の葉において高かった(図14)。逆に、イントロンを含有しないpICH16700で浸潤させた対照植物では、わずか数個の小さなスポットのみが見られたであろう(図示していない)。
【0082】
付録
配列番号1(pICH14833のNcoI−EcoRI断片):
【0083】
【化1】

【0084】
配列番号2(pICH15466の部分):
【0085】
【化2】

【0086】
配列番号3(pICH15900の部分):
【0087】
【化3】

【0088】
配列番号4(pICH15025の部分):(下線を付したイタリック体で示した3イントロンを含有する)
【0089】
【化4】

【0090】
配列番号5(pICH15034の部分):(下線を付したイタリック体で示した3イントロンを含有する)
【0091】
【化5】

【0092】
配列番号6(pICH15477の断片、下線を付したイタリック体で示した1イントロンを含有する)
【0093】
【化6】

【0094】
配列番号7:pICH12691のT−DNA領域、ここで、配列セグメントは以下の機能を有している:
ヌクレオチド1〜25:左の境界(反対鎖)、
ヌクレオチド86〜1484:Nosプロモーター−NPTIIコード配列−Nosターミネーター(反対鎖上)、
ヌクレオチド1506〜1552:AttP 組換え部位(反対鎖)、
ヌクレオチド1553〜1599:イントロン5’部分(反対鎖)、
ヌクレオチド1600〜2022:TVCV RdRP 5’端(反対鎖)、
ヌクレオチド2023〜2809:シロイヌナズナ アクチン2プロモーター(反対鎖)、
ヌクレオチド2836〜2903:AttB組換え部位、
ヌクレオチド2904〜2959:イントロン3’部分、
ヌクレオチド2960〜7991:TVCV RdRP 3’部分−MP5’部分、
ヌクレオチド7992〜8168:cr−TMV MP 3’端、
ヌクレオチド8248〜8967:GFPコード配列、
ヌクレオチド8961〜9215:cr−TMV 3’非翻訳領域、
ヌクレオチド9234〜9497:Nosターミネーター、
ヌクレオチド9549〜9473:T−DNA右境界(反対鎖):
【0095】
【化7−1】

【0096】
【化7−2】

【0097】
【化7−3】

【0098】
本発明を、好ましい態様を参照して具体的に示して説明するが、添付の特許請求の範囲に包含される本発明の範囲を逸脱することなく、形式的に及び細部に種々の改変がなされ得ることが当業者には理解されるであろう。
[態様1]
転写プロモーターに機能可能に連結されているか又は連結可能なRNAレプリコンをコードする配列を有する異種DNAを細胞核に含有する、安定に形質転換された植物、植物の部分、又は植物細胞培養物であって、RNAレプリコンをコードする配列は、
(i) 植物RNAウイルスの配列に由来する、RNAレプリコンのレプリコン機能に関する配列、及び
(ii) RNAレプリコンから発現されるべき目的配列、
を含有し、それにより、レプリコン機能に関する配列は、植物RNAウイルスの配列の選択された位置で、植物RNAウイルスの配列との機能保存的な相違を発揮し、その相違は、相違を発揮しないRNAレプリコンと比較して、レプリコン形成頻度を上昇させる、前記植物、植物の部分、又は植物細胞培養物。
[態様2]
機能保存的な相違が、異種DNA転写物の高A/U含量によるRNAレプリコン形成への細胞核における有害効果の軽減を含む、請求項1に記載の植物、植物の部分、又は植物細胞培養物。
[態様3]
植物RNAウイルスの配列の選択された位置が、高A/U含量の位置である、請求項1又は2に記載の植物、植物の部分、又は植物細胞培養物。
[態様4]
機能保存的な相違が、RNAレプリコンのレプリコン機能に関する配列の高A/U含量の低下を含む、請求項1〜3のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様5]
高A/U含量が、少なくとも部分的な欠失又はG/C塩基による少なくとも部分的な置換によって低下する、請求項4に記載の植物、植物の部分、又は植物細胞培養物。
[態様6]
機能保存的な相違が、A/Uに富んだ領域に隣接した潜在スプライシング部位の除去を含む、請求項1〜5のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様7]
機能保存的な相違が、1以上の核イントロン又はレプリコン機能に関する配列のA/Uに富んだ位置の近傍若しくはその中で核イントロンを形成可能な1以上の配列の挿入を含む、請求項1〜6のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様8]
核イントロンを形成可能な配列が、部位特異的組換えにより核イントロンを形成可能である、請求項7に記載の植物、植物の部分、又は植物細胞培養物。
[態様9]
RNAレプリコンをコードする配列が、RNAレプリコンをいっしょにコードする1以上のセグメントを有し、それにより、RNAレプリコンの形成がセグメントの再構成を必要とする、請求項1〜8のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様10]
植物の全ての細胞核が異種DNAを含有する、請求項1〜9のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様11]
異種DNAが細胞核の染色体に含有される、請求項1〜10のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様12]
植物、植物の部分、又は植物細胞培養物の全ての細胞が、核染色体に異種DNAを含有する、請求項11に記載の植物、植物の部分、又は植物細胞培養物。
[態様13]
RNAレプリコンをコードする配列が、目的配列の高A/T(U)含量の位置に、目的配列で相違を発揮しないRNAレプリコンと比較してレプリコン形成頻度を上昇させる機能保存的な相違を更に含有する、請求項1〜12のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様14]
植物RNAウイルスがトバモウイルスであり、好ましくはタバコモザイクウイルスである、請求項1〜13のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様15]
機能保存的な相違が、機能サイレントである、請求項1〜14のいずれか1項に記載の植物、植物の部分、又は植物細胞培養物。
[態様16]
植物の部分が種子である、請求項1〜15のいずれか1項に記載の植物の部分。
[態様17]
植物、植物の部分、又は植物細胞培養物において目的配列を発現させる方法であって:(a) 転写プロモーターに機能可能に連結されているか又は連結可能なRNAレプリコンをコードする配列を有する異種DNAを細胞核に含有する植物、植物の部分、又は植物細胞培養物を準備すること、ここで、RNAレプリコンをコードする配列は、(i)植物RNAウイルスの配列に由来する、RNAレプリコンのレプリコン機能に関する配列、(ii)目的配列を含有し、それにより、レプリコン機能に関する配列は、植物RNAウイルスの配列の選択された位置で、植物RNAウイルスの配列との機能保存的な相違を発揮し、その相違は、相違を発揮しないRNAレプリコンと比較してレプリコン形成頻度を上昇させる;及び
(b) 目的配列を発現させること、
を含む前記方法。
[態様18]
異種DNAが核染色体に安定に組み込まれている、請求項17に記載の方法。
[態様19]
目的配列が目的タンパク質をコードし、工程(b)は目的タンパク質の発現を引き起こすこと含む、請求項17又は18に記載の方法。
[態様20]
目的タンパク質の発現が、植物、植物の部分、又は植物細胞において所望の産物の産生をもたらす、請求項19に記載の方法。
[態様21]
RNAレプリコンをコードする配列が、RNAレプリコンをいっしょにコードする2以上のセグメントを有し、工程(b)は、RNAレプリコン形成され得るようなセグメントの再構成を含む、請求項17〜20のいずれか1項に記載の方法。
[態様22]
セグメントの1つが組換え部位に隣接し、再構成が、リコンビナーゼによる部位特異的組換えを含む、請求項21に記載の方法。
[態様23]
工程(b)が、植物、植物の部分、又は植物細胞培養物に部位特異的リコンビナーゼを提供することを含む、請求項21又は22に記載の方法。
[態様24]
部位特異的リコンビナーゼが、リコンビナーゼをコードするベクターの一過性トランスフェクションによって提供される、請求項23に記載の方法。
[態様25]
部位特異的リコンビナーゼが、調節されたプロモーターの制御下において核染色体に安定にコードされ、工程(b)が、調節されたプロモーターの誘導を含む、請求項23に記載の方法。
[態様26]
リコンビナーゼが、CRE、フリッパーゼ、リゾルベース、FLP、SSV1にコードされるインテグラーゼ、Rリコンビナーゼ、φC31インテグラーゼ、Intiインテグラーゼ、φ80、P22、P2、186、及びP4 リコンビナーゼ、Tn3リゾルベース、Hinリコンビナーゼ、Cinリコンビナーゼ、大腸菌XerC及びXerDリコンビナーゼ、バチルス・チューリンゲンシス リコンビナーゼからなる群より選択される、請求項22〜25のいずれか1項に記載の方法。
[態様27]
リコンビナーゼが、植物細胞内でリコンビナーゼの非機能性断片から親和性相互作用によって形成される、請求項22〜26のいずれか1項に記載の方法。
[態様28]
リコンビナーゼが、植物細胞内でリコンビナーゼの非機能性断片からインテイン介在タンパク質トランススプライシングによって形成される、請求項22〜26のいずれか1項に記載の方法。
[態様29]
異種DNA又はRNAレプリコンをコードする配列が、調節された転写プロモーターに連結されている、請求項17〜28のいずれか1項に記載の方法。
[態様30]
調節されたプロモーターが、化学的に誘導性のプロモーターである、請求項29に記載の方法。
[態様31]
工程(a)における準備が、異種DNAを含有する核酸分子による植物、植物の部分、又は植物細胞の形質転換を含む、請求項17〜30のいずれか1項に記載の方法。
[態様32]
工程(a)における準備が、異種 DNAを含有する核酸分子による植物、植物の部分、又は植物細胞培養物の細胞の一過性形質転換を含む、請求項17〜31のいずれか1項に記載の方法。
[態様33]
工程(a)がアグロバクテリウム介在形質転換によって行われる、請求項17〜32のいずれか1項に記載の方法。
[態様34]
工程(a)が、異種DNAで安定に形質転換されたトランスジェニック植物の作製を含む、請求項17〜33のいずれか1項に記載の方法。
[態様35]
請求項1で定義したとおりの異種DNAで核染色体を安定に形質転換したトランスジェニック植物を作製する方法であって、植物、又は植物の部分を異種DNAを含有するベクターで形質転換し、核染色体に異種DNAを含有する植物の組織を選択し、そしてトランスジェニック植物を組織から再生することを含む、前記方法。
[態様36]
植物、植物の部分、又は植物細胞培養物において目的配列を一過性に発現させる方法であって:植物、植物の部分、又は植物細胞培養物を、転写プロモーターに機能可能に連結されているか又は連結可能なRNAレプリコンをコードする配列を有する異種DNAで形質転換させることを含み、RNAレプリコンをコードする配列は、
(i)植物RNAウイルスの配列に由来する、RNAレプリコンのレプリコン機能に関する配列、
(ii)目的配列、
を含有し、それにより、レプリコン機能に関する配列は、植物RNAウイルスの配列の選択された位置で、植物RNAウイルスの配列との機能保存的な相違を発揮し、その相違は、相違を発揮しないRNAレプリコンと比較して、レプリコン形成頻度を上昇させる、前記方法。
[態様37]
形質転換が、異種DNAを含有するT−DNAによるアグロバクテリウム介在一過性形質転換によって実施される、請求項36に記載の方法。
[態様38]
形質転換が、タバコ植物の茎及び/又は全ての葉のアグロ浸潤によって実施される、請求項36又は37に記載の方法。
[態様39]
機能保存的な相違が、異種DNA転写物の高A/U含量によるRNAレプリコン形成への細胞核における有害効果の軽減を含む、請求項17〜38のいずれか1項に記載の方法。
[態様40]
植物RNAウイルスの配列の選択された位置が高A/U含量の位置である、請求項17〜39のいずれか1項に記載の方法。
[態様41]
機能保存的な相違が、RNAレプリコンのレプリコン機能に関する配列における高A/U含量の低下を含む、請求項17〜40のいずれか1項に記載の方法。
[態様42]
高A/U含量が、少なくとも部分的な欠失又はG/C塩基による少なくとも部分的な置換によって低下する、請求項41に記載の方法。
[態様43]
機能保存的な相違が、A/Uに富んだ領域に隣接した潜在スプライシング部位の除去を含む、請求項17〜42のいずれか1項に記載の方法。
[態様44]
機能保存的な相違が、1以上の核イントロン又はレプリコン機能に関する配列のA/Uに富んだ位置の近傍若しくはその中で核イントロンを形成可能な1以上の配列の挿入を含む、請求項17〜43のいずれか1項に記載の方法。
[態様45]
核イントロンを形成可能な配列が、部位特異的組換えによって核イントロンを形成可能である、請求項44に記載の方法。
[態様46]
RNAレプリコンをコードする配列が、RNAレプリコンをいっしょにコードする1以上のセグメントを有し、それにより、RNAレプリコンの形成がセグメントの再構成を必要とする、請求項17〜45のいずれか1項に記載の方法。
[態様47]
全ての細胞核が異種DNAを含有する、請求項17〜46のいずれか1項に記載の方法。
[態様48]
RNAレプリコンをコードする配列が、目的配列の高A/T(U)含量の位置に、機能保存的な相違を更に含有する、請求項17〜47のいずれか1項に記載の方法。
[態様49]
選択された位置が、
(A)植物、植物の部分、又は植物細胞培養物を、機能保存的な相違を欠失している以外は請求項17で定義した通りの異種DNAで形質転換し、
(B)植物、植物の部分、又は植物細胞培養物における工程(A)の異種DNAに由来するRNAについてRT−PCRを実施してRT−PCR産物の配列を決定し、そして
(C)RT−PCR産物の配列において、望ましくないスプライシングイベントの位置として選択された位置を同定すること、
によって同定される、請求項17〜48のいずれか1項に記載の方法。
[態様50]
植物RNAウイルスがトバモウイルスであり、好ましくはタバコモザイクウイルである
、請求項17〜49のいずれか1項に記載の方法。
[態様51]
機能保存的な相違が機能サイレントである、請求項17〜50のいずれか1項に記載の方法。
[態様52]
植物、植物の部分、又は植物細胞培養物が2以上の異なる異種DNAを含有する方法であって、2つの異なる目的タンパク質が共発現する2つの異なるRNAレプリコンの形成を含む、請求項17〜51のいずれか1項に記載の方法。
[態様53]
RNAレプリコンが、RNAレプリコンが由来するRNAウイルスの天然宿主植物以外の植物、植物の部分、又は植物細胞培養物においてレプリコン形成頻度の上昇を発揮可能である、請求項17〜52のいずれか1項に記載の方法。
[態様54]
植物、植物の部分、又は植物細胞培養物に、それぞれ目的配列を有する2つの異なる異種DNAが提供され、それにより、2つの異なる目的配列が発現する、請求項17〜53のいずれか1項に記載の方法。
[態様55]
植物、植物の部分、又は植物細胞培養物の形質転換が、植物、植物の部分、又は植物細胞培養物にアグロバクテリウム懸濁液を浸透させることによって行われ、懸濁液の濃度は、計算された600nmの光学密度が高くても0.04、好ましくは高くても0.01、より好ましくは高くても0.004、最も好ましくは高くても0.001に相当し、それにより、計算された光学密度は、それぞれ、600nmのODが1.0のアグロバクテリウム懸濁液の少なくとも25倍希釈、好ましくは少なくとも100倍希釈、より好ましくは少なくとも250倍希釈、最も好ましくは少なくとも1000倍希釈によって規定される、請求項17〜54のいずれか1項に記載の方法。
[態様56]
植物、植物の部分、又は植物細胞培養物において目的配列を発現させる方法であって:植物、植物の部分、又は植物細胞培養物を、転写プロモーターに機能可能に連結されているか又は連結可能なレプリコンをコードする配列を有する異種DNAをT−DNA中に含有するアグロバクテリウムの懸濁液で形質転換することを含み、レプリコンをコードする配列は、(i)植物ウイルスの配列に由来する、レプリコンのレプリコン機能に関する配列、(ii)目的配列、を含有し、それにより、アグロバクテリウム懸濁液は、計算された600nmの光学密度が高くても0.04、好ましくは高くても0.01、より好ましくは高くても0.004、最も好ましくは高くても0.001に相当するアグロバクテリウムの細胞濃度を有し、それにより、計算された光学密度は、600nmのODが1.0のアグロバクテリウム懸濁液のそれぞれ少なくとも25倍希釈、好ましくは少なくとも100倍希釈、より好ましくは少なくとも250倍希釈、最も好ましくは少なくとも1000倍希釈によって規定される、前記方法。
[態様57]
転写プロモーターに機能可能に連結されているか又は連結可能なRNAレプリコンをコードするDNA配列を含有する核酸分子であって、RNAレプリコンをコードする配列は、(i)植物RNAウイルスの配列に由来する、RNAレプリコンのレプリコン機能に関する配列、(ii)RNAレプリコンから発現されるべき目的配列、を含有し、それにより、レプリコン機能に関する配列は植物RNAウイルスの配列に相当し、植物RNAウイルスの配列の選択された位置で、植物RNAウイルスの配列との機能保存的な相違を発揮し、その相違は、核酸分子を植物細胞又は植物に導入した場合に相違を発揮しないRNAレプリコンと比較してレプリコン形成頻度を上昇させることが可能である、前記核酸分子。

【特許請求の範囲】
【請求項1】
植物、植物の部分、又は植物細胞培養物において目的配列を発現させる方法であって:植物、植物の部分、又は植物細胞培養物を、転写プロモーターに機能可能に連結されているか又は連結可能なレプリコンをコードする配列を有する異種DNAをT−DNA中に含有するアグロバクテリウムの懸濁液で形質転換することを含み、レプリコンをコードする配列は、
(i)植物ウイルスの配列に由来する、レプリコンのレプリコン機能に関する配列、
(ii)目的配列、
を含有し、それにより、アグロバクテリウム懸濁液は、計算された600nmの光学密度が高くても0.04、好ましくは高くても0.01、より好ましくは高くても0.004、最も好ましくは高くても0.001に相当するアグロバクテリウムの細胞濃度を有し、それにより、計算された光学密度は、600nmのODが1.0のアグロバクテリウム懸濁液のそれぞれ少なくとも25倍希釈、好ましくは少なくとも100倍希釈、より好ましくは少なくとも250倍希釈、最も好ましくは少なくとも1000倍希釈によって規定される、前記方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図11C】
image rotate

【図12】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2011−24591(P2011−24591A)
【公開日】平成23年2月10日(2011.2.10)
【国際特許分類】
【出願番号】特願2010−211319(P2010−211319)
【出願日】平成22年9月21日(2010.9.21)
【分割の表示】特願2006−538788(P2006−538788)の分割
【原出願日】平成16年11月10日(2004.11.10)
【出願人】(507254997)アイコン・ジェネティクス・ゲーエムベーハー (5)
【Fターム(参考)】