説明

ガスタービン装置

【課題】再生器での熱交換効率を向上させたガスタービン装置を提供する。
【解決手段】本発明のガスタービン装置は、空気圧縮機11により圧縮された空気とタービン13から排出される排気ガスとの間で熱交換を行う再生器15と、燃焼ガスをタービンに供給してタービンを回転させる燃焼器12と、同軸上に配置された外筒20、中間筒21、内筒22とを備える。外筒と中間筒との間には、空気圧縮機により圧縮された空気が流れる外側流路24が形成され、中間筒と内筒との間には、再生器で加熱された圧縮空気が流れる中間流路25が形成され、内筒内には、タービンから排出される排出ガスを再生器に送る内側流路26が形成される。空気圧縮機により圧縮された空気を外側流路から再生器まで導く接続通路27を設け、外筒を貫通して中間流路に延びる導入通路28を設け、該導入通路を通じて再生器で加熱された圧縮空気を中間流路に導入する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスタービン装置に係り、特にマイクロガスタービン発電装置などに使用されるガスタービン装置に関するものである。
【背景技術】
【0002】
従来から、空気を圧縮する空気圧縮機と、空気圧縮機により圧縮された圧縮空気を燃焼させる燃焼器と、燃焼器において発生した燃焼ガスを受けて回転するタービンと、タービンから排出された排気ガスの熱を利用して燃焼器に供給される圧縮空気を加熱する再生器とを備えたガスタービン装置が知られている。
【0003】
この種のガスタービン装置は、例えばマイクロガスタービン発電装置に応用されている。このマイクロガスタービン発電装置は、極小型のタービンに極小型の発電機を直結し、タービンに燃焼ガスを供給することで、例えば毎分10万回転程度の高速で運転を行うものである。このようなガスタービン発電装置によれば、極小型の設備でありながら、例えば50〜100kW程度の発電電力を供給することができるので、近年、地域分散型の電源の1つとして特に注目を集めている。
【0004】
特許文献1には、3重管を用いて、空気圧縮機と再生器とを連通する流路と、再生器と燃焼器とを連通する流路と、タービンと再生器とを連通する流路を形成したガスタービン装置が記載されている。図7は、特許文献1に記載の3重管構造を示す斜視図である。図7において、空気圧縮機により圧縮された空気は外側流路124および接続管127を通って再生器115に導入される。再生器115によって加熱された圧縮空気は、圧縮空気出口129および断面半円形の導入管128を通って中間流路125に導入される。そして、タービンから排出される排出ガスは内側流路126を通って再生器115に導入される。
【0005】
【特許文献1】特開2003−322030号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
図7に示すように、外側流路124を流れる圧縮空気は、一旦再生器115の前面115aにぶつかって方向を転換し、接続管127に流れ込む。しかしながら、導入管128は外側流路124を貫通して延びているため、圧縮空気の一部がこの導入管128に堰き止められて滞留し、外側流路124から接続管127に向かう滑らかな流れが形成されない。その結果、圧縮空気が高温の導入管128や再生器115の前面115aと接触する時間が長くなり、圧縮空気の温度が上昇してしまう。さらに、外側流路124を流れる圧縮空気が前面115aに衝突するときに、圧縮空気が高温の前面115aにより加熱されてしまう。
【0007】
このように圧縮空気の温度が上昇すると、次に導入される再生器115での熱交換の効率が低下する。すなわち、熱交換器である再生器115は、導入される圧縮空気の温度が低いほど、より多くの熱量が排気ガスから圧縮空気に移動する。したがって、再生器115に流入する前の圧縮空気の温度上昇は、熱交換の効率を低下させることとなり、結果として再生器115での排熱回収量が低下してしまう。
【0008】
本発明は、このような従来の問題点に鑑みてなされたもので、再生器での熱交換効率を向上させたガスタービン装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上述した目的を達成するために、本発明の一態様は、タービンと、前記タービンと一体に回転する空気圧縮機と、前記空気圧縮機により圧縮された空気と前記タービンから排出される排気ガスとの間で熱交換を行う再生器と、前記再生器で加熱された圧縮空気で燃料を燃焼させて燃焼ガスを発生させ、該燃焼ガスを前記タービンに供給して該タービンを回転させる燃焼器と、同軸上に配置された外筒、中間筒、内筒とを備え、前記外筒と前記中間筒との間には、前記空気圧縮機により圧縮された空気が流れる外側流路が形成され、前記中間筒と前記内筒との間には、前記再生器で加熱された圧縮空気が流れる中間流路が形成され、前記内筒内には、前記タービンから排出される排出ガスを前記再生器に送る内側流路が形成され、前記空気圧縮機により圧縮された空気を前記外側流路から前記再生器まで導く接続通路を設け、前記外筒を貫通して前記中間流路に延びる導入通路を設け、該導入通路を通じて前記再生器で加熱された圧縮空気を前記中間流路に導入し、前記外側流路内であって、前記導入通路よりも上流側に、前記空気圧縮機により圧縮された空気を前記接続通路に案内する環状の案内板を設けたことを特徴とするガスタービン装置である。
【0010】
本発明の好ましい態様は、前記案内板は前記導入通路を覆い、かつ前記外側流路を塞ぐように配置されることを特徴とする。
本発明の好ましい態様は、前記再生器から外部に排出される排気ガスの方向を、前記再生器に流入する排気ガスの流れ方向と略同一方向または略垂直方向にしたことを特徴とする。
本発明の好ましい態様は、前記外側流路と前記中間流路とを連通させる少なくとも1つの通孔を前記中間筒に形成し、前記少なくとも1つの通孔を塞ぐ少なくとも1つの閉止弁を設け、前記少なくとも1つの閉止弁を駆動する少なくとも1つの駆動機構を前記外筒の外側に設けたことを特徴とする。
本発明の好ましい態様は、前記ガスタービン装置の起動時または停止時に前記閉止弁を開くことを特徴とする。
【発明の効果】
【0011】
本発明によれば、案内板を外側流路内に配置したことにより、導入通路による圧縮空気の滞留が防止され、外側流路から接続通路に向かう圧縮空気の滑らかな流れを形成することができる。その結果、再生器に入る前の圧縮空気の温度上昇が抑えられ、再生器での熱交換効率を向上させることができる。
【発明を実施するための最良の形態】
【0012】
以下、本発明に係るガスタービン装置について図1乃至図6を参照して詳細に説明する。なお、以下に説明するガスタービン発電システムには、極小型のタービンを使用して発電を行うマイクロガスタービン発電装置も含まれる。
【0013】
図1は、本発明の第1の実施形態におけるガスタービン装置を用いたガスタービン発電システムの全体構成を模式的に示す系統図である。図1に示すように、ガスタービン発電システムは、圧縮空気と燃料ガスとの混合気を燃焼させることにより発電を行うガスタービン装置1と、ガスタービン装置1に天然ガスや液化石油ガス(LPG)などの燃料ガスを供給するガス圧縮装置2と、ガスタービン装置1から排出された排気ガスから排熱を回収する温水ボイラ3とを備えている。
【0014】
図2は、図1のガスタービン装置1を模式的に示す断面図である。図1及び図2に示すように、ガスタービン装置1は、空気吸入ポート10から吸入された空気を圧縮する空気圧縮機11と、空気圧縮機11により圧縮された圧縮空気と上記ガス圧縮装置2からの燃料ガスとの混合気を燃焼させる環状燃焼器12と、環状燃焼器12において発生した燃焼ガスを受けて高速で回転する複数の回転翼を有するタービン13と、タービン13の高速回転により発電を行う発電機14と、タービン13から排出された排気ガスの熱を利用して環状燃焼器12に供給される圧縮空気を加熱する再生器15とを備えている。本実施形態における再生器15は、プレートフィンにより圧縮空気流路(低温媒体流路)と排気ガス流路(高温媒体流路)とを形成した2基のプレートフィン形熱交換器19(図2では1基の熱交換器19のみを示す)を内部に有している。
【0015】
図2に示すように、空気圧縮機11、タービン13、及び発電機14(図1参照)は、ケーシング17の内部に回転軸16を介して同軸上に配置されており、回転軸16は図示しない軸受により回転自在に支持されている。ケーシング17の外周部には、空気圧縮機11から吐出された圧縮空気が流れる流路18が形成されており、この流路18とタービン13のガス吐出口13aとの間には、タービン13を囲むように環状燃焼器12が配置されている。回転軸16の一端部には発電機14が連結されており、タービン13、空気圧縮機11、及び発電機14は回転軸16を介して一体に回転するようになっている。
【0016】
ケーシング17は、再生器15にフランジ17a,19aを介して連結されている。この再生器15は、環状燃焼器12に供給される圧縮空気とタービン13から排出された排気ガスとの間で熱交換を行うものである。再生器15の前面15aの下部には、ケーシング17と接続される外筒20と、外筒20の内周側に位置する中間筒21と、中間筒21の内周側に位置する内筒22とが同軸上に配置されている。また、再生器15の背面15bの上部には、熱交換器19を通過した排気ガスを外部に排出する排気口23が形成されている。外筒20と中間筒21との間、中間筒21と内筒22との間、内筒22の内部には、それぞれ外側流路24、中間流路25、内側流路26が形成されており、3重管構造となっている。
【0017】
再生器15の外側には、その前面15aからやや離間して接続管(接続通路)27が配置されている。この接続管27の一方の端部は外筒20に溶接により固定され、接続管27と外側流路24とは連通している。接続管27の他方の端部は再生器15の圧縮空気入口に接続されている。
【0018】
図3は外筒20、中間筒21、内筒22から構成される3重管を軸方向から見た図であり、図4は本実施形態における3重管を示す斜視図である。図3に示すように、再生器15には2つの圧縮空気出口(加熱された圧縮空気の出口)29が設けられており、それぞれの圧縮空気出口29は断面半円形の導入管(導入通路)28に接続されている。図3及び図4に示すように、それぞれの導入管28は、外筒20を貫通して外側流路24を通過し、中間流路25に連通している。導入管28の端部は中間筒21に溶接により固定されている。内側流路26は再生器15の内部に連通している。図2に示すように、ケーシング17が3重管に連結されると、外側流路24はケーシング17の流路18と連通し、中間流路25は環状燃焼器12と連通し、内側流路26はタービン13のガス吐出口13aと連通するようになっている。
【0019】
図2乃至図4に示すように、外側流路24には環状のプラグプレート(案内板)32が配置されている。図3においては、網目模様によって表された部材がプラグプレート32である。このプラグプレート32は、外側流路24を貫通する2つの導入管28を覆うように配置され、導入管28よりも圧縮空気の流れ方向において上流側に位置している。さらに、プラグプレート32は導入管28の上流側の位置において、外側流路24の大部分を塞ぐように配置されている。なお、プラグプレート32は外側流路24の全部を塞ぐように配置されてもよい。このような配置により、空気圧縮機11から送られている圧縮空気は、高温の導入管28及び再生器15の前面15aとほとんど接触することなく、プラグプレート32に案内されて外筒20の上部に接続されている接続管27に流入する。
【0020】
上述の構成により、空気吸入ポート10(図1参照)から吸入された空気は、配管41を介して空気圧縮機11に供給され、空気圧縮機11により圧縮されて圧縮空気となる。空気圧縮機11により圧縮された空気は、流路18、外側流路24、及び接続管27を通って再生器15の熱交換器19に送られる。この圧縮空気は、再生器15の熱交換器19を通過する間に、熱交換器19の外表面を流れる排気ガスにより加熱される。再生器15において加熱された圧縮空気は、圧縮空気出口29、導入管28、及び中間流路25を通って環状燃焼器12に供給され、ここでガス圧縮装置2(図1参照)から供給される燃料ガスと混合される。これにより、環状燃焼器12の内部には圧縮空気と燃料ガスとの混合気が形成される。この混合気は環状燃焼器12の内部で燃焼され、この混合気の燃焼によって高温・高圧の燃焼ガスが発生する。
【0021】
環状燃焼器12における燃焼により発生した燃焼ガスを受けてタービン13が高速で回転し、このタービン13の高速回転に伴って、発電機14及び空気圧縮機11が高速で回転駆動される。発電機14において発生した交流電流は、図示しない直流変換部、昇圧部、インバータ装置などにより商用交流電流として使用できるように調整された後、外部に出力される。
【0022】
タービン13から排出された排気ガスは、内側流路26を通って再生器15の内部に送られる。この再生器15内を流れる排気ガスは、熱交換器19を流れる圧縮空気を加熱し、その後、排気口23から温水ボイラ3に供給される。
【0023】
図1に示すように、温水ボイラ3は、タービン13からの排気ガスと温水との間で熱交換を行う排熱回収熱交換器30を備えており、温水パイプ42の内部を流通する温水をタービン13からの排気ガスによって加熱して排熱を回収するようになっている。排熱回収熱交換器30において温水と熱交換を行った排気ガスは、温水ボイラ3の排気ポート31から外部に排気される。
【0024】
このように、再生器15とタービン13との間に、3重管構造により流路24,25,26を形成したので、複数の配管を設ける必要がなくなり、簡素な構造とすることができる。従って、部品点数を減らしてコストを低減することができる。また、配管に取付ける断熱材やフランジの数も少なくすることができるので、部品点数をより少なくしてコストを低減することができる。
【0025】
また、プラグプレート32を外側流路24内に配置したことにより、導入管28による圧縮空気の滞留が防止され、外側流路24から接続管27に向かう圧縮空気の滑らかな流れを形成することができる。その結果、再生器15に入る前の圧縮空気の温度上昇が抑えられ、再生器15での熱交換効率を向上させることができる。
【0026】
ここで、空気圧縮機11により圧縮された空気の圧力は約0.4MPaであるが、この圧縮空気は熱交換器19のフィンにより多少の圧力損失を受け、圧力が0.4MPaよりやや低くなる。また、タービン13からの排気ガスの圧力は大気圧に近くなり約0.105MPa程度となる。このように、空気圧縮機11により圧縮された空気が流れる外側流路24の圧力、再生器15により加熱された圧縮空気が流れる中間流路25の圧力、タービン13の排気ガスが流れる内側流路26の圧力を比べると、外側流路24の圧力が最も高く、次いで中間流路25の圧力が高く、内側流路26の圧力が最も低くなる。従って、最も外側の流路(すなわち、外側流路24)のシールさえ十分にしておけば、その内側の流路(すなわち、中間流路25または内側流路26)を流れる空気または排気ガスが外周側に漏れることが防止される。従って、装置全体のシール構造を簡素化することができる。
【0027】
また、空気圧縮機11により圧縮された空気の温度は約200℃であるが、この圧縮空気は再生器15において加熱されて温度が約600℃となる。また、タービン13からの排気ガスの温度は約650℃となる。このように、外側流路24を流れる空気の温度、中間流路25を流れる空気の温度、内側流路26を流れる排気ガスの温度を比べると、外側流路24を流れる空気の温度が最も低く、次いで中間流路25を流れる空気の温度が低く、内側流路26を流れる排気ガスの温度が最も高くなる。従って、本実施形態のように、外側流路24、中間流路25、内側流路26を3重管により形成することとすれば、より温度の高い空気又は排気ガスを表面積の小さい内周側流路を通過させて外側に放熱しにくい構造とすることができるので、放熱による熱損失を抑えることが可能となる。さらに、最も外側に位置する外筒20の温度は比較的低温であるため、外筒20の熱膨張は比較的小さい。従って、外筒20と、この外筒20に固定される部材(例えば、接続管27や再生器15)との間のシール性を良好に保つことができる。
【0028】
また、図2に示すように、再生器15内において、排気ガスは、再生器15に流入する排気ガスの流れ方向に対して略垂直方向に流れ、さらに、排気口23から排出される排気ガスの方向は、再生器15に流入する排気ガスの流れ方向と略同一方向となっている。このような構成により、排気ガスが流れる流路を単純にすることができるので、排気ガスの通気損失が小さくなり、タービン13の背圧を低減してガスタービン装置の出力効率を高めることができる。
【0029】
図5は、本発明の第2の実施形態におけるガスタービン装置を模式的に示す断面図である。本実施形態では、排気口123が再生器15の頂部に形成されており、排気ガスは再生器15に流入する排気ガスの流れ方向と略垂直の方向にこの排気口123から排出される。その他の構成は上述した第1の実施形態と同様である。本実施形態では、再生器15の内部を流れた排気ガスがそのままの方向で排出されるので、排気ガスの通気損失を更に小さくでき、ガスタービンの出力効率を更に高めることができる。また、排気口123を再生器15の頂部に設けることにより、後流側の温水ボイラ3において排熱回収熱交換器30を用いる場合に、排熱回収熱交換器30を再生器15に直列に接続することができ、接続における損失を減少することができる。
【0030】
図6は、本発明の第3の実施形態におけるガスタービン装置の一部を模式的に示す断面図である。なお、特に説明しない構成は、第1または第2の実施形態の構成と同様である。図6に示すように、中間筒21には周方向に等間隔に複数の通孔21aが形成されている。また、これらの通孔21aを塞ぐための複数の閉止弁33が設けられ、さらに、閉止弁33を駆動する駆動機構34が外筒20の外周面に設けられている。駆動機構34は、閉止弁33に連結される駆動軸35と、この駆動軸35を駆動するアクチュエータ(電磁石)36とを備えている。駆動機構34により閉止弁33を開くと、空気圧縮機11からの圧縮空気は外側流路24から通孔21aを通って中間流路25に流入し、再生器15をバイパスする。
【0031】
再生器15をバイパスさせることは、主に次の2点を目的としている。まず、第1に、再生器15は熱容量が大きいため、再生器15が低温であると、圧縮空気を十分に加熱するにはある程度の長い時間を必要とする。このため、再生器15が冷えた状態でガスタービン装置を起動させると、起動時間が長くなる。同様に、一旦、再生器15が高温となると、ガスタービン装置が停止動作に入った後でも、環状燃焼器12に供給される圧縮空気の温度がしばらく高温のままとなる。このため、圧縮空気を再生器15に流通させると停止時間が長くなる。したがって、起動時及び停止時に再生器15をバイパスさせることにより、ガスタービン装置の起動時間及び停止時間を短くすることができる。
【0032】
第2に、定常運転時に再生器15をバイパスさせることにより、再生器15での熱交換量が低下し、結果として、再生器15から排出される排気ガスの温度が高くなる。従って、図1に示す温水ボイラ(排熱回収装置)3での排熱回収量が増大し、温水あるいは蒸気の量を増加させることができる。このように、定常運転時に必要に応じて再生器15をバイパスさせることにより、出力される熱量と発電量の比率を変えることができる。この場合、閉止弁33の開度または開く閉止弁33の数を調整することにより、圧縮空気のバイパス量を調整することができる。
【0033】
本実施形態では、同軸上に配置された3つの筒20,21,22によって3つの流路24,25,26が形成されているので、中間筒21に通孔21aを形成するだけで外側流路24と中間流路25とを連通することができる。従って、通孔21aを閉じる閉止弁33および駆動機構34の構造が簡略化でき、閉止弁33および駆動機構34の配置も容易となる。
【0034】
これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【図面の簡単な説明】
【0035】
【図1】本発明の第1の実施形態におけるガスタービン装置を用いたガスタービン発電システムの全体構成を示す系統図である。
【図2】図1に示すガスタービン装置を模式的に示す断面図である。
【図3】外筒、中間筒、内筒から構成される3重管を軸方向から見た図である。
【図4】本実施形態における3重管を示す斜視図である。
【図5】本発明の第2の実施形態におけるガスタービン装置を模式的に示す断面図である。
【図6】本発明の第3の実施形態におけるガスタービン装置の一部を模式的に示す断面図である。
【図7】従来の3重管構造を示す斜視図である。
【符号の説明】
【0036】
1 ガスタービン装置
2 ガス圧縮装置
3 温水ボイラ(排熱回収装置)
10 空気吸入ポート
11 空気圧縮機
12 環状燃焼器
13 タービン
14 発電機
15 再生器
16 回転軸
17 ケーシング
18 流路
19 プレートフィン形熱交換器
20 外筒
21 中間筒
21a 通孔
22 内筒
23,123 排気口
24 外側流路
25 中間流路
26 内側流路
27 接続管(接続通路)
28 導入管(導入通路)
29 圧縮空気出口
30 排熱回収熱交換器
31 排気ポート
32 プラグプレート(案内板)
33 閉止弁
34 駆動機構
35 駆動軸
36 アクチュエータ
41 配管
42 温水パイプ

【特許請求の範囲】
【請求項1】
タービンと、
前記タービンと一体に回転する空気圧縮機と、
前記空気圧縮機により圧縮された空気と前記タービンから排出される排気ガスとの間で熱交換を行う再生器と、
前記再生器で加熱された圧縮空気で燃料を燃焼させて燃焼ガスを発生させ、該燃焼ガスを前記タービンに供給して該タービンを回転させる燃焼器と、
同軸上に配置された外筒、中間筒、内筒とを備え、
前記外筒と前記中間筒との間には、前記空気圧縮機により圧縮された空気が流れる外側流路が形成され、
前記中間筒と前記内筒との間には、前記再生器で加熱された圧縮空気が流れる中間流路が形成され、
前記内筒内には、前記タービンから排出される排出ガスを前記再生器に送る内側流路が形成され、
前記空気圧縮機により圧縮された空気を前記外側流路から前記再生器まで導く接続通路を設け、
前記外筒を貫通して前記中間流路に延びる導入通路を設け、該導入通路を通じて前記再生器で加熱された圧縮空気を前記中間流路に導入し、
前記外側流路内であって、前記導入通路よりも上流側に、前記空気圧縮機により圧縮された空気を前記接続通路に案内する環状の案内板を設けたことを特徴とするガスタービン装置。
【請求項2】
前記案内板は前記導入通路を覆い、かつ前記外側流路を塞ぐように配置されることを特徴とする請求項1に記載のガスタービン装置。
【請求項3】
前記再生器から外部に排出される排気ガスの方向を、前記再生器に流入する排気ガスの流れ方向と略同一方向または略垂直方向にしたことを特徴とする請求項1または2に記載のガスタービン装置。
【請求項4】
前記外側流路と前記中間流路とを連通させる少なくとも1つの通孔を前記中間筒に形成し、
前記少なくとも1つの通孔を塞ぐ少なくとも1つの閉止弁を設け、
前記少なくとも1つの閉止弁を駆動する少なくとも1つの駆動機構を前記外筒の外側に設けたことを特徴とする請求項1乃至3のいずれか一項に記載のガスタービン装置。
【請求項5】
前記ガスタービン装置の起動時または停止時に前記閉止弁を開くことを特徴とする請求項4に記載のガスタービン装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−95653(P2008−95653A)
【公開日】平成20年4月24日(2008.4.24)
【国際特許分類】
【出願番号】特願2006−281269(P2006−281269)
【出願日】平成18年10月16日(2006.10.16)
【出願人】(000000239)株式会社荏原製作所 (1,477)