説明

ガスハイドレートの製造方法

【課題】 高圧・低温で生成された微粉末状のガスハイドレート微分末を円滑に減圧する方法を提供する。
【解決手段】 生成条件である高圧下(4〜6MPa)に保持される生成装置で生成されたガスハイドレート微分末nを圧縮してガスハイドレート加圧体pとし、前記高圧雰囲気下にあるガスハイドレート加圧体pを複数段に減圧して常圧下にある成型機や貯蔵タンク等へガスハイドレート加圧体pを移送する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、所定の高圧下でガスハイドレートを生成し、そのガスハイドレートを押圧して加圧体とし、さらに、その加圧体を複数段の減圧操作により段階的に減圧し、この減圧された加圧体を貯蔵タンクに貯蔵又は、成型装置によってペレット状に成型する工程からなるガスハイドレートの製造方法を提供するものである。
【背景技術】
【0002】
ガスハイドレートは、水分子によるカゴの中にガスが取り囲まれた状態の固体状のガス水和物である。このガスハイドレートは、生成圧力と生成温度(例えば、4〜6MPa、2〜7℃)に保持された生成容器内で原料ガス(例えば、メタンガス、天然ガス)と原料水とを接触させて水和反応させることで生成される。この生成されたガスハイドレートは、水を多量に含むスラリー状である。
【0003】
このスラリー状のガスハイドレートは、貯蔵・輸送する際の経済的見地から、脱水工程により脱水された後に、略前記生成圧力と生成温度に保持された仕上げ装置で原料ガスと水和反応されて乾燥した微粉末状のガスハイドレートが得られる。
【0004】
このような工程により製造されたガスハイドレートは、生成圧力である高圧に保持されており、高圧下における保存であるので設備上問題があるので、常圧下で分解しない温度(例えば、−30〜−20℃)に冷却後、耐圧容器からなる脱圧工程で減圧され、常圧(0.1MPa)の成型装置や貯蔵タンクに移送される。
【0005】
この脱圧工程には、例えば、耐圧容器(中継容器)の上下にガスハイドレートの受入れバルブと払出しバルブ、さらに、上部にガス放出バルブが設けられた脱圧装置が用いられており、この耐圧容器に生成されたガスハイドレート微粉末を一旦収容し、ガス放出バルブを操作して高圧の原料ガス(例えば、5.0MPa)を放出して常圧に減圧するものである。
【0006】
しかしながら、前記ガスハイドレートの製造方法においては、微粉末の嵩密度の低いガスハイドレートを製造時の高圧で耐圧容器に収容するので、この耐圧型に造られている容器に充填されるガスハイドレートの量が少ないという問題がある。そこで、ガスハイドレートの製造量を増やすには耐圧容器を大型化しなくてはならないが、耐圧容器を大型化すると極端に設備費が増加することになる。また、別の問題として、微粉末がゲートバルブ等の稼動部分内に侵入し、バルブ操作ができなくなったり、シール性能が低下したりするという問題がある。また、ガスハイドレートの微粉末は加圧されると付着性が増加するので、配管に付着して閉塞させるという問題がある。
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、前記の問題を解決するためになされたものであって、その目的とするところは、ガスハイドレートの製造方法において、生成雰囲気の高圧に保持されているガスハイドレート微粉末を加圧体製造装置により押圧して嵩密度の高い圧密体とし、更に、この加圧体を、放圧装置を構成する中継タンクを介して、その中で高圧より常圧に円滑に放圧しながら常圧に保持されている貯蔵タンク等に移送する、ガスハイドレートの製造方法を提供するものである。
【課題を解決するための手段】
【0008】
前記目的を達成するための本発明に係るガスハイドレートの製造方法は、
1)所定の高圧に保持されている水中に、原料ガスを分散状態で供給して水和反応させてガスハイドレートスラリーsを生成し、このガスハイドレートスラリーsを脱水処理した後、再び原料ガスと反応させてガスハイドレート微粉末nを生成し、前記ガスハイドレート微粉末nを加圧してガスハイドレート加圧体pを製造し、この加圧体pをバッファタンクBに収容した後、前記バッファタンクB内に収容されたガスハイドレート加圧体pを、前記バッファタンクBと略同圧に保持された小分けタンクT1内に一旦収容し、次いでこの小分けタンクT1内のガスを副小分けタンクT2内に放出して前記小分けタンクT1内を減圧し、さらに前記小分けタンクT1内のガスを還流ガス路11,12に流した後、前記小分けタンクT1内の加圧体pを、この小分けタンクT1内より低圧に保持されている別の機器に送出する操作からなる一連の操作を繰返すことを特徴とする。
2)前記製造方法において、小分けタンクT1内または副小分けタンクT2内のガスを前記バッファタンクBへ、あるいは、ガスハイドレート生成工程と略同圧として還流させることを特徴とする。
3)小分けタンクT1と、副小分けタンクT2と、さらに還流ガス路11,12を介して減圧されたガスハイドレート加圧体pを常圧ないし所定の低圧・低温に保持されている貯蔵タンク内に収容、或いは、成型装置によって圧縮成型することを特徴とする。
【発明の効果】
【0009】
本発明に係るガスハイドレートの製造方法により、生成雰囲気の高圧(例えば、5.3MPa程度)に保持されているガスハイドレート微粉末を加圧体製造装置により圧縮されて加圧体とするので、嵩密度が高くなり放圧容器に充填されるガスハイドレートの重量が増加する。また、付着性を有する微粉末が圧縮された加圧体となるのでバルブのシール性と操作性が確保され、配管の閉塞がなくなる。
【0010】
また、高圧ガスを小分けタンクに充填し(ガス充填操作)、この小分けタンク内の圧力を略生成条件の高圧に保持されているバッファタンクと均圧に保持する(略生成圧力と均圧にする操作)。次に、バッファタンク内の加圧体を小分けタンク内に供給し(加圧体受入れ操作)、前記小分けタンクと並行に配設される副小分けタンク内に小分けタンク内の圧力を連通させて両タンク内の圧力を均等にする(小分けタンク均圧工程)。次に、小分けタンク内の原料ガスを還流ガス路に放出して常圧ないしそれに近い低圧にし(ガス放出操作)、小分けタンク内の加圧体を貯蔵タンクや成形機に払出す(加圧体払出し操作)ことからなる一連の放圧操作を単位とする放圧操作を繰返すことにより、ガスハイドレートが製造工程において加えられた高圧から常圧にまで脱圧される際に分解することを抑制している。
【発明を実施するための最良の形態】
【0011】
本発明の実施の形態を図面を参照して説明する。図1は、本発明に係るガスハイドレートの製造方法を適用した、ガスハイドレート生成装置の概略説明図である。
【0012】
図2は、本発明に係るガスハイドレートの製造方法を適用した、ガスハイドレート加圧体製造装置と、この加圧体の減圧装置の概略構成図である。
【0013】
図1に示す如く、ガスハイドレート生成装置は、耐圧タンク1a内に供給されて所定の高圧に保持されている水w中に、原料ガスgを供給して水和反応させてガスハイドレートスラリーsを生成する第1生成装置1と、このガスハイドレートスラリーを脱水処理する脱水装置2と、この脱水装置2で脱水された半乾燥状態のガスハイドレートhを再び原料ガスgと反応させてガスハイドレート微粉末nを生成する第2生成装置3からなる一連の装置で構成されている。
【0014】
そして、図2に示す如く、前記ガスハイドレート微粉末nに圧縮作用を与えてガスハイドレート加圧体p(圧密体)を製造する製造装置4と、この製造工程における高圧にあるガスハイドレート加圧体pを常圧ないし所定の低圧にまで減圧する放圧装置5とからなる一連の装置で構成されており、図示しない常圧ないし所定の低圧に保持されている圧縮装置によりペレット状に成型されたり、貯蔵タンクに保管されるようになっている。
【0015】
[第1の生成装置1]
前記第1のガスハイドレート生成装置1は、生成圧力(例えば、5.3MPa程度)を保持できる耐圧タンク1aに、内容物(原料ガスg、原料水w、ガスハイドレートスラリーs)を攪拌する攪拌翼1cと、原料ガスgを下方から細かい気泡状に噴出させるノズル1bが配設されて形成されている。また、タンク1a内の内容物を所定の温度(例えば、5℃程度)に保持するための熱交換器1dが設けてある。そして、原料ガスgと原料水wとが水和反応して生成したガスハイドレートスラリーsを圧送するスラリーポンプ18が設けられている。
【0016】
[脱水装置2]
前記脱水装置2は、生成したガスハイドレートスラリーsを積み上げる縦長の筒状本体6で構成された脱水装置2であって、この筒状本体6の中間部には多孔質壁2bとその外周に配置された排水タンク室2dで構成された脱水部2aが形成され、その筒状本体6の上端には第2の生成装置にガスハイドレートを移送するスクリューコンベア型の移送装置8が設けられている。
【0017】
[第2の生成装置3]
前記脱水装置2で脱水された半脱水状態のガスハイドレートhを再び原料ガスgと水和反応させる第2生成装置3は、前記生成圧力に耐える耐圧タンク3aに、原料ガスgを下方から噴出させるノズル3bと、このノズル3bの上部に配置されたガスハイドレートの排出用のスクリューコンベア型移送装置9が設けられている。
【0018】
[ガスハイドレート加圧体製造装置4]
前記ガスハイドレート加圧体製造装置4には、噛合型の2軸スクリューコンベアを使用しており、このスクリューコンベアは、ガスハイドレートの供給口4gから吐出口4hに向かって次第に大径となるテーパーが形成された2本のスクリュー軸4a,4bが並行に列設されてバレル4eに嵌挿されており、一方のスクリュー軸のフライトの間に他方のスクリュー軸のフライトが互いに接触することなく入り込んで配置され、スクリュー軸の先端部と吐出口4hとの間に加圧室7が形成され、さらに前記吐出口4hから吐出するガスハイドレートの吐出を制限する弁装置10が形成されて構成されている。また、両スクリューは同方向に同一速度で回転するようになっている。
【0019】
従って、この装置4内を移送されるガスハイドレート微粉末は、移送されながら圧縮作用により加圧体が形成されるようになっている。
【0020】
[放圧装置5]
前記放圧装置5は、ガスハイドレート加圧体pを一時的に保持するバッファタンクBと、そのタンクBから加圧体pを受入れて減圧する耐圧容器からなる小分けタンクT1と副小分けタンクT2が並列に2台配設され、小分けタンクT1の上部に受入れバルブb1が、下部に払出しバルブe1が、さらに、上部にガス放出バルブc1,d1が設けられている。さらに、副小分けタンクT2の上部に受入れバルブb2が、下部に払出しバルブe2が、また、上部にガス放出バルブc2,d2が設けられている。
【0021】
小分けタンクT1の上部には、タンクT1内に受入れた加圧体pを冷却する冷却ガスg(原料ガス)の供給管路がガス供給バルブa1を介して接続されている。同様に副小分けタンクT2の上部には、タンクT2内に受入れた加圧体を冷却する冷却ガスg(原料ガス)の供給管路がガス供給バルブa2を介して接続されている。そして、小分けタンクT1と副小分けタンクT2に還流ガス路11,12が設けられて形成されている。
【0022】
還流ガス路11は、小分けタンクT1内のガス圧力を副小分けタンクT2内に放出、または副小分けタンクT2内のガス圧力を小分けタンクT1内に放出した際の高圧ガスgを回収する回収タンク11aと、その回収タンク11aに回収された高圧ガスgを圧縮してバッファタンクBの圧力(略生成工程の圧力)に高めて戻す圧縮機11bから構成されている。この圧縮機11bの吐出側に、バッファタンクBに戻される原料ガスgを所定の温度に冷却する熱交換器E2が配設されている。
【0023】
また、一方の還流ガス路12は、小分けタンクT1内のガス圧力を副小分けタンクT2内に放出、または副小分けタンクT2内のガス圧力を小分けタンクT1内に放出した後の、小分けタンクT1内または副小分けタンクT2内に保持されている中圧・低圧ガスを回収する回収タンク12aと、その回収タンク12aに回収された中低圧ガスgを圧縮する圧縮機12bから構成されている。また、この圧縮機12bの吐出側は前記圧縮機11bの供給側に接続されている。
【0024】
次に、本発明のガスハイドレート製造方法を適用したガスハイドレート製造装置の操作方法について説明する。
【0025】
前記第1のガスハイドレート生成装置1の耐圧タンク1aに供給し充填した原料水wを所定の生成条件下(例えば、5.3MPa、5℃)に保持し、その水w中に原料ガスg(例えば、天然ガス、メタンガス)を循環ポンプ17によりタンク1aの下方より細かい気泡状に噴出させ、同時に攪拌翼1cにより攪拌することで、前記原料ガスgと原料水wとの気/液接触がなされ、ガスハイドレートスラリーsが生成される。このガスハイドレートスラリーsは含水率が高く、ガスハイドレートの含有率が低い(ガスハイドレート含有率20〜30重量%)。このスラリーsは、脱水装置2にスラリーポンプ18により圧送される。
【0026】
生成されたガスハイドレートスラリーsは、脱水装置2を構成する縦長の筒状本体6の下端に形成された供給口4eに供給され、この筒状本体6内に積み上げられた状態となる。そして、この積み上げられたスラリーsの自重により圧縮されて、含有水分が押出される作用を受ける。このスラリーsの含有水分は、筒状本体6の中間部に形成した脱水部2aの多孔質壁2bから排水され、半乾燥状態のガスハイドレートhが生成される(ガスハイドレート含有率50〜70重量%)。そして、この半乾燥状態のガスハイドレートhは、筒状本体の上部に設けたスクリューコンベア型の排出装置8により第2のガスハイドレート生成装置3へ移送される。
【0027】
第2のガスハイドレート生成装置3に供給されたガスハイドレートhは、生成条件下(5.3MPa、5℃)に保持される耐圧タンク3aの下方に配置された原料ガス噴出ノズル3bからの噴流により撹乱され、タンク3a内で分散・流動化して流動層fを形成しながらその含有水分が原料ガスgと水和反応してガスハイドレート微粉末nが生成される。この微粉末nはガスハイドレートの含有率95〜98%であり、粉雪の如くサラサラの粉末状である。このガスハイドレート微粉末nは、綿の如く嵩密度が小さい。そして、この微粉末nは、タンク3aの下方に設けたスクリューコンベア型の排出装置9によりガスハイドレート加圧体製造装置4に移送される。
【0028】
ガスハイドレート加圧体製造装置4の供給口4gに供給された微粉末nは、2本のスクリューの回転に伴って吐出口4hへと移送される。この加圧体製造装置4は、供給側から吐出口側に向かって両スクリュー軸とバレル4eの内壁面との間隙が減少するように両スクリュー軸が供給口側から吐出口側に向かって大径となるテーパー状に形成されており、移送される微粉末体nは、加圧・圧縮の作用を受けて、ガスハイドレート加圧体pが製造される。
【0029】
また、この装置4の吐出口4hと両スクリューの先端に形成した加圧室7と、その吐出口4hから吐出される加圧体pの吐出を制限する弁装置10が設けてあり、この弁装置10の弁10aが前記吐出口4hを押圧するように形成されている。この弁10aが吐出口4hを加圧する作用により、効果的に加圧体pが製造できるようになっている。そして、このようにして製造された加圧体pは、放圧装置5に移送され、バッファタンクBに一時的に収容される。そして、後述する複数段の放圧操作により生成工程の高圧雰囲気から常圧ないし低圧の雰囲気に減圧される。この放圧装置5における操作手順と圧力の一例を図3に示す。
【0030】
先ず、小分けタンクT1の上部に設けられた冷却ガス(原料ガスg)の供給バルブa1を操作し、加圧体pを常圧下で分解しない温度(例えば、−30〜−20℃)に冷却する冷却ガスg(例えば、−50℃程度)が小分けタンクT1に充填させる(ガス充填操作)。
【0031】
次に、この冷却ガスgが充填された小分けタンクT1内の圧力を、前記冷却ガスgによって略生成工程の高圧に保持されているバッファタンクB内の圧力と均圧(例えば、5.3MPa、符号イ)とし、供給バルブa1を閉止する(略生成圧力と均圧にする操作)。この操作により、バッファタンクBから加圧体pを受入れる際に略生成工程の高圧の原料ガスgが小分けタンクT1内に噴出しないようになっている。
【0032】
冷却ガスgを充填し、前記操作によりバッファタンクB内と均圧とした小分けタンクT1の上部に設けた加圧体受入れバルブb1を操作し、バッファタンクB内のガスハイドレート加圧体pを小分けタンクT1内に収容し、受入れバルブb1を閉止する(加圧体受入れ操作)。
【0033】
次に、小分けタンクT1と、このタンクT1に隣接して設置された副小分けタンクT2とを連通する連通管のバルブVを操作して、小分けタンクT1と副小分けタンクT2とを均圧にして小分けタンク内を減圧し、バルブVを閉止する(小分けタンク均圧工程)。この際、副小分けタンクT2内は常圧(0.1MPa)から高圧(2.6MPa程度)となり、同時に前記小分けタンクT1内も2.6MPa程度になる(元の圧力の1/2、符号ロ)。
【0034】
次に、前記小分けタンクT1の上部に設けた高圧放出バルブc1を操作し、小分けタンクT1内のガスgを還流ガス路11に放出して、この小分けタンクT1内と回収タンク11a内とを均圧(1.3MPa程度、元の圧力の1/4、符号ハ)とし、高圧放出バルブc1を閉止する(高圧ガス放出操作)。
【0035】
回収タンク11aへ放出されたガスgは、圧縮機11bによりバッファタンクB内の高圧にまで加圧され、熱交換器E2により冷却(例えば、−30〜−20℃)されてバッファタンクB内に戻される。そして、この冷却されたガスによりバッファタンクB内の加圧体pを予備冷却するようになっている。
【0036】
次に、小分けタンクT1の上部に設けた中低圧放出バルブd1を操作し、一方の還流ガス路12により小分けタンクT1内のガスgを放出し、この小分けタンクT1内と回収タンク12a内とを均圧(0.6MPa、元の圧力の1/8、符号ニ)とすると共に、小分けタンク内が常圧あるいはそれに近い低圧となるまで圧縮機12bによりガスgを送出し、バルブd1を閉止する(中低圧ガス放出操作)。放出されたガスgは、圧縮機12bで所定の圧力まで加圧(例えば、2〜3MPa程度)された後、前記圧縮機11bによりバッファタンクB内の高圧にまで加圧され、熱交換器E2により冷却されてバッファタンクBに戻される。
【0037】
そして、小分けタンクT1の下部に設けた加圧体払出しバルブe1を操作して、この小分けタンクT1内のガスハイドレート加圧体pを、図示しない常圧または所定の低圧に保持されている成形機に払出したり、貯蔵タンクに払い出したりする(加圧体払出し操作)。これらの一連の放圧操作を単位とし、この一連の操作を繰返すことで略生成工程の高圧状態にある加圧体pを減圧している。
【0038】
一連の操作の繰り返しとして、小分けタンクT1と副小分けタンクT2とを均圧にする操作の際の高圧(2.6MPa程度、符号ロ’)が保持されている副小分けタンクT2に冷却ガスgを充填し(ガス充填操作)、次にこの副小分けタンクT2内とバッファタンクB内の圧力を均圧とし(略生成圧力と均圧にする操作、符号イ)、バッファタンクB内のガスハイドレート加圧体pを副小分けタンクT2に収容する(加圧体受入れ操作)。
【0039】
次いで、小分けタンクT1と副小分けタンクT2とを均圧とし(小分けタンク均圧操作、符号ロ)、還流ガス路11により副小分けタンクT2内のガスgを放出し(高圧ガス放出操作、符号ハ)、還流ガス路12により副小分けタンクT2内のガスgを常圧になるまで放出し(中低圧ガス放出操作、符号ニ)、常圧となった加圧体pを払出す(加圧体払出し操作)。
【0040】
本発明に係るガスハイドレートの製造方法により、生成雰囲気の高圧(例えば、5.3MPa程度)に保持されているガスハイドレート微粉末を加圧体製造装置により圧縮されて加圧体とするので、嵩密度が高くなり放圧容器に充填されるガスハイドレートの重量が増加する。また、付着性を有する微粉末が圧縮された加圧体となるのでバルブのシール性と操作性が確保され、配管の閉塞がなくなる。
【0041】
また、脱圧装置の稼動時は、常時一方の中間タンク内はバッファタンクの1/2の圧力に保持されており、その圧力の保持されている中間タンクに冷却ガスを充填するという操作が行われるので、完全に減圧された中間タンクに冷却ガスを充填するのに比べて非常に効率がよい。
【0042】
なお、本実施形態では、第1生成装置と脱水装置と第2生成装置からなる一連の生成装置で生成されたガスハイドレートを円滑に減圧する方法を提供するものであるが、生成装置はこれに限られるものではない。例えば、所定の圧力・温度に保持された原料ガス中に原料水を噴霧させてガスハイドレートスラリーを生成し、スクリュープレス脱水器等の物理脱水を経て、仕上げ装置で再度原料ガスと水和反応させてサラサラの乾燥したガスハイドレート微粉末を生成するような装置を使用することもできる。
【0043】
また、本実施形態においては、加圧体製造装置として2軸スクリューコンベアを使用したが、ガスハイドレート微粉末を加圧して加圧体を製造するように形成された単軸スクリューコンベアを使用したり、他の加圧手段を使用したりすることもできる。
【0044】
さらに、本実施形態においては、加圧体製造装置に弁装置が配設されているものについて説明したが、これに限定されるものではない。例えば、供給側から吐出口側に向かって移送スクリューの軸とバレル内壁面との間隙が減少するようにスクリュー軸がテーパー状に形成されたスクリューコンベア型移送装置を使用することもできる。この場合、移送されるガスハイドレート微粉末は圧縮作用を付与されて付着性のない嵩密度の高くなったガスハイドレートが放圧装置に移送されることとなる。
【0045】
さらにまた、本実施形態では、減圧操作に2つの還流ガス路を用いているが、例えば、1つの還流ガス路により生成工程の高圧から常圧にまで減圧することもできるし、他の手順(シーケンス)によるバルブ操作をすることもできる。
【図面の簡単な説明】
【0046】
【図1】本発明に係るガスハイドレートの製造方法を適用した生成装置の概略構成図である。
【図2】本発明に係るガスハイドレートの製造方法を適用した加圧体製造装置及び加圧体の減圧装置の概略構成図である。
【図3】本発明に係るガスハイドレートの製造方法を適用した減圧装置のシーケンスと小分けタンク内及び副小分けタンク内の圧力を示す概略図である。(a)は小分けタンクT1のシーケンスとそのタンク内圧力の概略図、(b)は副小分けタンクT2のシーケンスとそのタンク内圧力の概略図である。
【符号の説明】
【0047】
s ガスハイドレートスラリー h 半乾燥状態ガスハイドレート
n ガスハイドレート微粉末 p ガスハイドレート加圧体
a1,a2 ガス供給バルブ b1,b2 加圧体受入れバルブ
V 連通バルブ c1,c2 高圧放出バルブ
d1,d2 中低圧放出バルブ B バッファタンク
1 第1生成装置 2 脱水装置 3 第2生成装置
4 加圧体製造装置 5 放圧装置 7 加圧室
10 弁装置 11,12 還流ガス路
11a,12a 回収タンク 11b,12b 圧縮機
T1 小分けタンク T2 副小分けタンク

【特許請求の範囲】
【請求項1】
所定の高圧に保持されている水中に、原料ガスを分散状態で供給して水和反応させてガスハイドレートスラリーを生成し、このガスハイドレートスラリーを脱水処理した後、再び原料ガスと反応させてガスハイドレート微粉末を生成し、
前記ガスハイドレート微粉末を加圧してガスハイドレート加圧体を製造し、この加圧体をバッファタンクに収容した後、
前記バッファタンク内に収容されたガスハイドレート加圧体を、前記バッファタンクと略同圧に保持された小分けタンク内に一旦収容し、次いでこの小分けタンク内のガスを副小分けタンク内に放出して前記小分けタンク内を減圧し、さらに前記小分けタンク内のガスを還流ガス路に流した後、前記小分けタンク内の加圧体を、この小分けタンク内より低圧に保持されている別の機器に送出する操作からなる一連の操作を繰返すことを特徴とするガスハイドレートの製造方法。
【請求項2】
前記製造方法において、小分けタンク内または副小分けタンク内のガスを前記バッファタンクへ、あるいは、ガスハイドレート生成工程と略同圧として還流させることを特徴とする請求項1記載のガスハイドレートの製造方法。
【請求項3】
小分けタンクと、副小分けタンクと、さらに還流ガス路を介して減圧されたガスハイドレート加圧体を常圧ないし所定の低圧・低温に保持されている貯蔵タンク内に収容、或いは、成型装置によって圧縮成型することを特徴とするガスハイドレートの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2007−269952(P2007−269952A)
【公開日】平成19年10月18日(2007.10.18)
【国際特許分類】
【出願番号】特願2006−96602(P2006−96602)
【出願日】平成18年3月31日(2006.3.31)
【出願人】(000005902)三井造船株式会社 (1,723)
【Fターム(参考)】