説明

ゴム組成物及びそれを用いたタイヤ、並びに変性共役ジエン系重合体及びその製造方法

【課題】低発熱性及び破壊特性(耐亀裂成長性)に優れるゴム組成物を提供する。
【解決手段】シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ第一級アミノ基を有する変性共役ジエン系重合体を10質量%以上含むゴム成分100質量に対し、無機充填剤及び/又はカーボンブラックを10〜100質量部配合してなることを特徴とするゴム組成物である。ここで、上記変性共役ジエン系重合体は、(1)活性末端を有する所定の共役ジエン系重合体に所定の官能基を二つ以上有する化合物を反応させ、(2)更に得られる生成物に第一級アミノ基を有する化合物を反応させることで得られる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変性共役ジエン系重合体及びその製造方法、並びに該重合体を用いたゴム組成物及びタイヤに関し、特に低発熱性及び破壊特性(耐亀裂成長性)に優れたゴム組成物に関するものである。
【背景技術】
【0002】
近年、省エネルギー、省資源の社会的要請の下、自動車の燃料消費量を節約するため、転がり抵抗の小さいタイヤが求められ、従来よりも低発熱性(低ロス性)及び破壊特性に優れたゴム組成物が望まれている。タイヤの転がり抵抗を低減するには、低発熱性のゴム組成物を用いる手法が一般的であるが、特に、ゴム組成物中の充填剤と相互作用する官能基を導入した重合体をゴム成分として使用することが極めて有効な手段である。例えば、充填剤と相互作用する官能基を導入した変性ハイシスポリブタジエンゴム等のゴム組成物への適用が検討されている(特許文献1)。
【0003】
しかしながら、工業的な条件下で配位重合により製造されたハイシスポリブタジエンゴムでは、重合体末端に対する変性剤の反応性が低く、一般に全重合体末端の約30%程度の反応効率でしか充填剤との親和性が高い官能基を導入することができない。従って、ハイシスポリブタジエンゴムを用いた場合、ゴム組成物の低ロス効果を向上させることが困難であった。一方、充填剤との親和性が高い官能基を重合体末端にほぼ100%の反応効率で導入することが可能なアニオン重合系では、ゴム組成物の低ロス性を大幅に改善できるものの、配位重合系で得られる未変性ハイシスポリブタジエンゴムを配合したゴム組成物よりも破壊特性が低いことが確認されている。
【0004】
なお、充填剤と相互作用する官能基を導入した変性ハイシスポリブタジエンゴムは、未変性ハイシスポリブタジエンゴムに比べて破壊特性に優れることが知られており、ゴム組成物の低ロス効果を向上させることが可能な変性ハイシスポリブタジエンゴムが求められている。
【0005】
【特許文献1】国際公開第2006/112450号パンフレット
【発明の開示】
【発明が解決しようとする課題】
【0006】
上記のように、充填剤と相互作用する官能基を導入した変性ハイシスポリブタジエンゴムは、ゴム組成物の低ロス性及び破壊特性を向上させるものであり、精力的な研究開発により、一応の成果を上げている。しかしながら、重合体末端と変性剤との反応効率は依然として低く、この反応効率の上昇よって低ロス効果を向上させるには限界がある。
【0007】
また、本発明者らが重合体末端に導入する官能基について検討したところ、カーボンブラックとの親和性が極めて高い活性水素を有するアミノ基を重合体末端に導入することにより、これまでにないレベルで、低ロス効果が向上できることが分かった。また、更に検討したところ、第一級アミノ基の重合体末端への導入が、第二級アミノ基又は第三級アミノ基の導入に比べて顕著な低ロス効果をもたらすことも分かった。
【0008】
そこで、本発明の目的は、ゴム組成物の低発熱性及び破壊特性(耐亀裂成長性)を向上させることが可能な変性共役ジエン系重合体と、該変性共役ジエン系重合体の製造方法を提供することにある。また、本発明の他の目的は、かかる変性共役ジエン系重合体をゴム成分として用いたゴム組成物と、該ゴム組成物を用いたタイヤを提供することにある。
【課題を解決するための手段】
【0009】
本発明者らは、上記目的を達成するために鋭意検討した結果、(1)活性末端を有する所定の共役ジエン系重合体に所定の官能基を二つ以上有する化合物を反応させ、(2)更に得られる生成物に第一級アミノ基を有する化合物を反応させることにより、特定のシス-1,4結合量及びビニル結合量と第一級アミノ基とを有する変性共役ジエン系重合体が得られ、該変性共役ジエン系重合体をゴム成分として用い、更に特定の充填剤を配合したゴム組成物をタイヤに適用することで、低発熱性及び破壊特性を大幅に向上できることを見出し、本発明を完成させるに至った。
【0010】
即ち、本発明のゴム組成物は、シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ第一級アミノ基を有する変性共役ジエン系重合体を10質量%以上含むゴム成分100質量に対し、無機充填剤及び/又はカーボンブラックを10〜100質量部配合してなることを特徴とする。
【0011】
なお、シス-1,4結合量とは、重合体中の共役ジエン化合物単位におけるシス-1,4結合の割合であり、ビニル結合量とは、重合体中の共役ジエン化合物単位におけるビニル結合の割合である。
【0012】
本発明のゴム組成物において、前記カーボンブラックは、窒素吸着比表面積が20〜180m2/gであることが好ましく、20〜100m2/gであることが更に好ましい。
【0013】
本発明のゴム組成物の好適例においては、前記ゴム成分が、前記変性共役ジエン系重合体10〜90質量%及び該変性共役ジエン系重合体以外のジエン系重合体90〜10質量%を含む。ここで、前記変性共役ジエン系重合体以外のジエン系重合体としては、天然ゴムが好ましい。
【0014】
本発明のゴム組成物は、硫黄架橋性であることが好ましい。
【0015】
また、本発明のタイヤは、上記のゴム組成物をタイヤ部材のいずれかに用いたことを特徴とする。
【0016】
更に、本発明の変性共役ジエン系重合体の製造方法は、(1)シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ活性末端を有する共役ジエン系重合体に、該活性末端に対して反応性を示す官能基Aと、少なくとも一つの反応性官能基Bとを有する化合物X(但し、官能基Aと官能基Bは同一であってもよい)を反応させて一次変性共役ジエン系重合体を得る工程と、
(2)前記一次変性共役ジエン系重合体に、前記反応性官能基Bに対して反応性を示す官能基Cと、少なくとも一つの第一級アミノ基又は保護された第一級アミノ基とを有する化合物Y(但し、官能基Cは第一級アミノ基又は保護された第一級アミノ基であってもよい)を反応させて二次変性共役ジエン系重合体を得る工程と、
を含むことを特徴とする。
【0017】
本発明の変性共役ジエン系重合体の製造方法の好適例においては、更に(3)前記二次変性共役ジエン系重合体を加水分解し、化合物Y由来の保護された第一級アミノ基を脱保護する工程を含む。
【0018】
本発明の変性共役ジエン系重合体の製造方法の好適例においては、前記共役ジエン系重合体が希土類金属を触媒として合成される。
【0019】
本発明の変性共役ジエン系重合体の製造方法の他の好適例においては、前記化合物Xがポリメチレンポリフェニルポリイソシアネートであり、前記化合物Yがヘキサメチレンジアミンである。
【0020】
また更に、本発明の変性共役ジエン系重合体は、上記の方法によって製造されたことを特徴とする。
【発明の効果】
【0021】
本発明によれば、(1)活性末端を有する所定の共役ジエン系重合体に所定の官能基を二つ以上有する化合物を反応させ、(2)更に得られる生成物に第一級アミノ基を有する化合物を反応させることで、特定のシス-1,4結合量及びビニル結合量と第一級アミノ基とを有し、ゴム組成物に低発熱性及び破壊特性(耐亀裂成長性)を付与することが可能な変性共役ジエン系重合体と、該変性共役ジエン系重合体の製造方法を提供することができる。また、該変性共役ジエン系重合体を用いることで、低発熱性及び破壊特性(耐亀裂成長性)に優れるゴム組成物及びタイヤを提供することができる。
【発明を実施するための最良の形態】
【0022】
以下に、本発明を詳細に説明する。本発明のゴム組成物は、シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ第一級アミノ基を有する変性共役ジエン系重合体を10質量%以上含むゴム成分100質量に対し、無機充填剤及び/又はカーボンブラックを10〜100質量部配合してなることを特徴とする。ここで、本発明のゴム組成物のゴム成分として用いる変性共役ジエン系重合体は、シス-1,4結合量が90%以上で且つビニル結合量が1.2%以下であるため、伸張結晶性を示す重合体である。また、かかる変性共役ジエン系重合体は、一般に変性剤との反応効率が低い。しかしながら、本発明のゴム組成物のゴム成分として用いる変性共役ジエン系重合体は、第一級アミノ基が導入されており、無機充填剤、カーボンブラック等の充填剤に対する親和性が非常に高く、低い反応効率でも効果的に充填剤を分散させることができる。このため、本発明のゴム組成物は、変性共役ジエン系重合体の伸張結晶性から破壊特性が向上し、更には、充填剤の分散性が改善されたことにより、低発熱性を大幅に向上させることもできる。なお、本発明のゴム組成物にゴム成分として用いる変性共役ジエン系重合体の製造方法は、下記に詳細に説明する。
【0023】
本発明のゴム組成物のゴム成分は、上記変性共役ジエン系重合体を10質量%以上含むことを要する。ゴム成分中に占める変性共役ジエン系重合体の割合が10質量%未満では、特に充填剤の分散性を改良する効果が小さくなり、ゴム組成物の低発熱性が十分に得られない。また、本発明のゴム組成物は、上記変性共役ジエン系重合体を、該変性共役ジエン系重合体以外のゴム成分と組み合わせて用いてもよい。かかる変性共役ジエン系重合体以外のゴム成分(ジエン系重合体)としては、天然ゴム(NR)、ポリイソプレンゴム(IR)、スチレン−ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン−プロピレン−ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル−ブタジエンゴム(NBR)等が挙げられ、これらの中でも、天然ゴムが特に好ましい。これら変性共役ジエン系重合体以外のゴム成分は、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。なお、変性共役ジエン系重合体に天然ゴムを組み合わせる場合、変性共役ジエン系重合体10〜90質量%及び該変性共役ジエン系重合体以外のジエン系重合体90〜10質量%を含むゴム成分であることが好ましい。
【0024】
本発明のゴム組成物は、充填剤として、無機充填剤及び/又はカーボンブラックを上記ゴム成分100質量部に対して10〜100質量部含有する。無機充填剤及び/又はカーボンブラックの配合量がゴム成分100質量部に対して10質量部未満では、ゴム組成物の破壊特性が低下し、一方、100質量部を超えると、ゴム組成物の低発熱性が悪化するおそれがある。
【0025】
上記カーボンブラックは、特に制限されないが、窒素吸着比表面積が20〜180m2/gの範囲であることが好ましく、20〜100m2/gの範囲であることが更に好ましい。窒素吸着比表面積が20〜180m2/gの範囲にあるカーボンブラックは、粒子径が大きく、低発熱性の向上効果が非常に高い。かかるカーボンブラックとして、具体的には、HAF以下のグレードのものが好ましく、例えば、HAF,FF,FEF,GPF,SRF,FTグレードのものが挙げられるが、破壊特性の観点から、HAF,FEF,GPFグレードのものが特に好ましい。一方、上記無機充填剤としては、例えば、シリカ、タルク、水酸化アルミニウム等が挙げられる。なお、これら充填剤は、一種単独で用いてもよいし、二種以上を混合して用いてもよい。
【0026】
本発明のゴム組成物は、上記ゴム成分に、無機充填剤及び/又はカーボンブラックと共に、ゴム工業界で通常使用される配合剤、例えば、軟化剤、ステアリン酸、老化防止剤、亜鉛華、加硫促進剤、加硫剤等を、本発明の目的を害しない範囲で適宜選択して配合し、混練り、熱入れ、押出等することにより製造することができる。
【0027】
なお、本発明のゴム組成物は、硫黄架橋性であることが好ましく、加硫剤として硫黄等を用いることが好ましい。加硫剤の使用量は、上記ゴム成分100質量部に対し、硫黄量として0.1〜10.0質量部が好ましく、1.0〜5.0質量部が更に好ましい。
【0028】
また、本発明のタイヤは、上記ゴム組成物をタイヤ部材に用いたことを特徴とし、上記タイヤ部材としては、例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等が挙げられる。なお、本発明のタイヤは、上記ゴム組成物を未加硫の状態で用いて各タイヤ部材を形成し、常法に従って、生タイヤを形成し、該生タイヤを加硫することで得られる。上記ゴム組成物をいずれかのタイヤ部材に適用したタイヤは、破壊特性(耐亀裂成長性)及び低発熱性に優れる。また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
【0029】
次に、本発明の変性共役ジエン系重合体及びその製造方法について詳細に説明する。本発明の変性共役ジエン系重合体の製造方法は、(1)シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ活性末端を有する共役ジエン系重合体に、該活性末端に対して反応性を示す官能基Aと、少なくとも一つの反応性官能基Bとを有する化合物X(但し、官能基Aと官能基Bは同一であってもよい)を反応させて一次変性共役ジエン系重合体を得る工程(一次変性反応)と、(2)前記一次変性共役ジエン系重合体に、前記反応性官能基Bに対して反応性を示す官能基Cと、少なくとも一つの第一級アミノ基又は保護された第一級アミノ基とを有する化合物Y(但し、官能基Cは第一級アミノ基又は保護された第一級アミノ基であってもよい)を反応させて二次変性共役ジエン系重合体を得る工程(二次変性反応)とを含むことを特徴とし、更に必要に応じて(3)前記二次変性共役ジエン系重合体を加水分解し、化合物Y由来の保護された第一級アミノ基を脱保護する工程(脱保護反応)を含むことができる。
【0030】
上記工程(1)及び工程(2)により得られる変性共役ジエン系重合体又は上記工程(1)、工程(2)及び工程(3)により得られる変性共役ジエン系重合体は、シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ第一級アミノ基を有しているため、上記したゴム組成物の変性共役ジエン系重合体として用いることができ、その結果、ゴム組成物の破壊特性及び低発熱性を大幅に向上させる。なお、上記共役ジエン系重合体の活性末端と反応性を有し且つ第一級アミノ基を有する化合物が現在市販されておらず、該共役ジエン系重合体に第一級アミノ基を一段階で導入することが困難であるため、本発明の製造方法においては、変性共役ジエン系重合体を得るために2回の変性反応(一次変性反応及び二次変性反応)を行っている。
【0031】
本発明の変性共役ジエン系重合体は、シス-1,4結合量が90%以上であることを要するが、該シス-1,4結合量が90%未満では、ゴム組成物中における低ロス効果を十分に得ることができない。また、本発明の変性共役ジエン系重合体は、ビニル結合量が1.2%以下であることを要し、0.8%以下であることが好ましい。これは、該ビニル結合量が1.2%を超えると、重合体の結晶性が低下するためである。
【0032】
また、本発明の変性共役ジエン系重合体は、分子内に第一級アミノ基又は保護された第一級アミノ基を有する。よって、本発明の変性共役ジエン系重合体が分子内に第一級アミノ基を有する場合は、該重合体を直接ゴム成分として用い、また、本発明の変性共役ジエン系重合体が分子内に保護されたアミノ基を有する場合は、上記工程(3)を経て脱保護された重合体をゴム成分として用いることで、得られるゴム組成物の低発熱性を大幅に向上させることができる。
【0033】
更に、本発明の変性共役ジエン系重合体の数平均分子量(Mn)は、特に限定されず、下記に説明する製造過程において低分子量化の問題が起きることもない。また更に、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、3.5以下が好ましく、3.0以下が更に好ましく、2.5以下が一層好ましい。ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求めることができる。
【0034】
更にまた、本発明の変性共役ジエン系重合体のムーニー粘度[ML1+4(100℃)]は、10〜100が好ましく、20〜80が更に好ましい。ムーニー粘度[ML1+4(100℃)]が10未満では、破壊特性を始めとするゴム物性が低下する傾向にあり、一方、100を超えると、作業性が悪くなり、配合剤と共に混練りすることが困難な場合がある。
【0035】
本発明の変性共役ジエン系重合体を製造するには、第一に上記工程(1)によって一次変性共役ジエン系重合体を得ることを要する。
【0036】
上記工程(1)に用いる共役ジエン系重合体は、シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で、活性末端を有する。このような共役ジエン系重合体の製造方法については特に制限はなく、従来公知の重合反応を用いた製造方法を用いることができるが、配位重合を用いた製造方法が好ましい。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、シクロペンタン、シクロヘキサン、1-ブテン、2-ブテン、ベンゼン、トルエン、キシレン、塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、1,2-ジクロロエタン、クロロベンゼン、ブロムベンゼン、クロロトルエン等が挙げられる。更に、重合反応の温度は、-30℃〜200℃の範囲が好ましく、0℃〜150℃の範囲が更に好ましい。また更に、共役ジエン系重合体を製造し、該共役ジエン系重合体の活性末端を失活させないためにも、重合系内に酸素、水又は炭酸ガス等の失活作用のある化合物の混入を極力なくすような配慮を行うことが好ましい。なお、重合形式は特に限定されず、回分式でも連続式でもよい。
【0037】
上記共役ジエン系重合体は、共役ジエン化合物の単独重合体、又は芳香族ビニル化合物と共役ジエン化合物との共重合体が好ましい。ここで、単量体としての共役ジエン化合物としては、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン、1,3-ヘキサジエン、ミルセン等が挙げられ、これらの中でも、1,3-ブタジエン及びイソプレンが好ましい。一方、単量体としての芳香族ビニル化合物としては、スチレン、p-メチルスチレン、m-メチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、クロロメチルスチレン、ビニルトルエン等が挙げられる。
【0038】
上記共役ジエン系重合体は、希土類金属を触媒として合成されることが好ましく、例えば、下記(a)〜(c)成分を主成分として含む重合触媒組成物の存在下、上記単量体を重合して得られる。
(a)成分:ランタノイド元素(周期律表の原子番号57〜71にあたる希土類元素)の少なくともいずれかを含有するランタノイド元素含有化合物、又は前記ランタノイド元素含有化合物とルイス塩基との反応により得られる反応生成物
(b)成分:アルモキサン、及び/又は一般式(I):AlR123で表される有機アルミニウム化合物(但し、一般式(I)中、R1及びR2は、同一でも異なっていてもよく、炭素数1〜10の炭化水素基又は水素原子であり、R3は、R1及びR2と同一でも異なっていてもよく、炭素数1〜10の炭化水素基である)
(c)成分:その分子構造中に少なくとも一つのハロゲン元素を含有するハロゲン含有化合物
【0039】
このような触媒(触媒組成物)を用いて重合して共役ジエン系重合体を製造することにより、分子量分布が狭く、シス-1,4結合量の高い共役ジエン系重合体を得ることができる。また、この触媒(触媒組成物)は、従来用いられているメタロセン触媒に比して安価であるとともに、極低温で重合反応を行う必要がない。このため、操作が簡便であり、工業的生産工程として有用である。
【0040】
上記重合触媒組成物に用いる(a)成分は、ランタノイド元素(周期律表の原子番号57〜71にあたる希土類元素)の少なくともいずれかを含有するランタノイド元素含有化合物、又はこのランタノイド元素含有化合物とルイス塩基との反応により得られる反応生成物である。ランタノイド元素の具体例としては、ネオジム、プラセオジウム、セリウム、ランタン、ガドリニウム、サマリウム等を挙げることができる。これらのうち、ネオジムが好ましい。なお、これらのランタノイド元素は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。ランタノイド元素含有化合物の具体例としては、上記ランタノイド元素のカルボン酸塩、アルコキサイド、β-ジケトン錯体、リン酸塩、亜リン酸塩等を挙げることができる。このうち、カルボン酸塩、又はリン酸塩が好ましく、カルボン酸塩が更に好ましい。
【0041】
上記ランタノイド元素のカルボン酸塩としては、2-ヘキシルへキサン、ナフテン酸、バーサチック酸[商品名,シェル化学社製,カルボキシル基が三級の炭素原子に結合しているカルボン酸]等の塩が好適に挙げられる。上記ランタノイド元素のアルコキサイドの具体例としては、一般式(II):(R4O)3Mで表される化合物を挙げることができる(但し、一般式(II)中、Mは、ランタノイド元素であり、R4は、炭素数1〜20の炭化水素基である)。式(II)において、「R4O」で表されるアルコキシ基としては、2-エチル-ヘキシルアルコキシ基、ベンジルアルコキシ基等が好適に挙げられる。上記ランタノイド元素のβ-ジケトン錯体としては、アセチルアセトン錯体、エチルアセチルアセトン錯体等が好適に挙げられる。上記ランタノイド元素のリン酸塩又は亜リン酸塩としては、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、ビス(2-エチルヘキシル)ホスフィン酸等の塩が好適に挙げられる。
【0042】
これまで例示したもののうち、ランタノイド元素含有化合物としては、ネオジムのリン酸塩、又はネオジムのカルボン酸塩が更に好ましく、ネオジムの2-エチルヘキサン酸塩、ネオジムのバーサチック酸塩等のカルボン酸塩が特に好ましい。
【0043】
上記ランタノイド元素含有化合物を溶剤に可溶化させるため、又は長期間安定に貯蔵するために、ランタノイド元素含有化合物とルイス塩基を混合すること、又はランタノイド元素含有化合物とルイス塩基を反応させて反応生成物とすることも好ましい。ルイス塩基の量は、上記したランタノイド元素1molあたり、0〜30molとすることが好ましく、1〜10molとすることが更に好ましい。ルイス塩基の具体例としては、アセチルアセトン、テトラヒドロフラン、ピリジン、N,N-ジメチルホルムアミド、チオフェン、ジフェニルエーテル、トリエチルアミン、有機リン化合物、一価又は二価のアルコール等を挙げることができる。これまで述べてきた(a)成分は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0044】
上記重合触媒組成物に用いる(b)成分は、アルモキサン、及び/又は上記一般式(I)で表される有機アルミニウム化合物である。アルモキサン(アルミノオキサンともいう)は、その構造が、下記一般式(III)又は(IV)で表される化合物である。なお、ファインケミカル,23,(9),5(1994)、J.Am.Chem.Soc.,115,4971(1993)及びJ.Am.Chem.Soc.,117,6465(1995)において開示された、アルモキサンの会合体であってもよい。
【化1】

【化2】

【0045】
上記一般式(III)及び(IV)中、R5は、炭素数1〜20の炭化水素基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ヘキシル基、イソヘキシル基、オクチル基、イソオクチル基等が挙げられ、これらの中でも、メチル基が特に好ましい。n'は、2以上の整数であり、4〜100の整数であることが好ましい。
【0046】
アルモキサンの具体例としては、メチルアルモキサン(MAO)、エチルアルモキサン、n-プロピルアルモキサン、n-ブチルアルモキサン、イソブチルアルモキサン、t-ブチルアルモキサン、ヘキシルアルモキサン、イソヘキシルアルモキサン等を挙げることができる。アルモキサンは、公知の方法によって製造することができる。例えば、ベンゼン、トルエン、キシレン等の有機溶媒中に、トリアルキルアルミニウム、又はジアルキルアルミニウムモノクロライドを加え、更に水、水蒸気、水蒸気含有窒素ガス、又は硫酸銅5水塩や硫酸アルミニウム16水塩等の、結晶水を有する塩を加えて反応させることにより製造することができる。なお、アルモキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0047】
一方、上記一般式(II)で表される有機アルミニウム化合物の具体例としては、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウム等を挙げることができる。なお、有機アルミニウム化合物は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0048】
上記重合触媒組成物に用いる(c)成分は、その分子構造中に少なくとも一個のハロゲン原子を含有するハロゲン含有化合物であり、例えば、金属ハロゲン化物とルイス塩基との反応物や、ジエチルアルミニウムクロリド、四塩化ケイ素、トリメチルクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、エチルアルミニウムジクロリド、エチルアルミニウムセスキクロリド、四塩化スズ、三塩化スズ、三塩化リン、ベンゾイルクロリド、t-ブチルクロリド、トリメチルシリルアイオダイド、トリエチルシリルアイオダイド、ジメチルシリルジヨード、ジエチルアルミニウムアイオダイド、メチルアイオダイド、ブチルアイオダイド、ヘキシルアイオダイド、オクチルアイオダイド、ヨードホルム、ジヨードメタン、ヨウ素、ベンジリデンアイオダイド等を好適に挙げることができる。
【0049】
上記金属ハロゲン化物とルイス塩基との反応物に用いることができる金属ハロゲン化物としては、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅、ヨウ化マグネシウム、ヨウ化マンガン、ヨウ化亜鉛、ヨウ化銅等が好適に挙げられる。一方、ルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等を好適に用いることができ、具体的には、リン酸トリ-2-エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2-エチルヘキサン酸、バーサチック酸、2-エチルヘキシルアルコール、1-デカノール、ラウリルアルコール等が好適に挙げられる。上記ルイス塩基は、上記金属ハロゲン化物1モル(mol)あたり、0.01mol〜30molの割合で反応させることが好ましく、0.5mol〜10molの割合で反応させることが更に好ましい。このルイス塩基との反応物を使用すると、重合体中に残存する金属を低減することができる。
【0050】
なお、このような触媒の主成分となる上記各成分((a)〜(c)成分)の配合割合は、必要に応じて適宜設定することができる。(a)成分の使用量は、単量体100gに対して、0.00001mmol〜1.0mmolが好ましく、0.0001mmol〜0.5mmolが更に好ましい。
【0051】
(b)成分がアルモキサンである場合、触媒に含有されるアルモキサンの好ましい量は、(a)成分と、アルモキサンに含まれるアルミニウム(Al)とのモル比で表すことができる。即ち、「(a)成分」:「アルモキサンに含まれるアルミニウム(Al)」(モル比)=1:1〜1:500であることが好ましく、1:3〜1:250であることが更に好ましく、1:5〜1:200であることが特に好ましい。一方、(b)成分が有機アルミニウム化合物である場合、触媒に含有される有機アルミニウム化合物の好ましい量は、(a)成分と、有機アルミニウム化合物とのモル比で表すことができる。即ち、「(a)成分」:「有機アルミニウム化合物」(モル比)=1:1〜1:700であることが好ましく、1:3〜1:500であることが更に好ましい。
【0052】
また、触媒組成物に含有される(c)成分の好ましい量は、(c)成分に含有されるハロゲン原子と、(a)成分とのモル比で表すことができる。即ち、(ハロゲン原子)/((a)成分)(モル比)=20〜0.1であることが好ましく、15〜0.2であることが更に好ましく、8〜0.5であることが特に好ましい。
【0053】
上記した触媒には、上記の(a)〜(c)成分以外に、必要に応じて、重合用単量体と同じ共役ジエン化合物及び/又は非共役ジエン化合物を用いて予備的に調製してもよい。
【0054】
上記触媒組成物は、例えば、溶媒に溶解した(a)〜(c)成分、更に必要に応じて添加される共役ジエン化合物及び/又は非共役ジエン化合物を反応させることにより、調製することができる。なお、各成分の添加順序は任意でよい。但し、各成分を予め混合及び反応させるとともに、熟成させておくことが、重合活性の向上、及び重合開始誘導期間の短縮の点から好ましい。熟成温度は0℃〜100℃とすることが好ましく、20℃〜80℃とすることが更に好ましい。なお、熟成時間には、特に制限はない。重合反応槽に添加する前に、各成分同士をライン中で接触させてもよい。熟成時間は、0.5分以上であれば十分である。また、調製した触媒組成物は、数日間は安定である。
【0055】
このような触媒(触媒組成物)を用いることにより、シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で、活性末端を有する共役ジエン系重合体を得ることができる。なお、シス-1,4結合量及びビニル結合量は、重合温度を制御することで、容易に調整することができる。
【0056】
上記工程(1)においては、上記活性部位を有する共役ジエン系重合体に、化合物Xを反応させることにより、共役ジエン系化合物の活性末端に化合物Xを導入した一次変性共役ジエン系重合体が得られる。
【0057】
上記工程(1)に用いる化合物Xは、共役ジエン系重合体の活性末端に対して反応性を示す官能基Aと、少なくとも一つの反応性官能基Bとを有する化合物である。ここで、官能基A及び官能基Bは、同一でも異なっていてもよく、例えば、ケテン基、イソシアネート基、チオイソシアネート基、カルボジイミド基等が挙げられる。
【0058】
上記化合物Xとしては、4,4'-ジフェニルメタンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、4,4'-ジシクロヘキシルメタンジイソシアネート、イソプロピリデンビス(4-シクロヘキシルイソシアネート)、キシリレンジイソシアネート、3,3'-ジメチル-4,4'-ビフェニルジイソシアネート、3,3'-ジメトキシ-4,4'-ビフェニルジイソシアネート、3,3'-ジメチル-4,4'-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、ビス(2-イソシアネートエチル)フマラート、2,4-トリレンジチオイソシアネート、4,4'-ジフェニルメタンジチオイソシアネート、1,6-ヘキサメチレンジチオイソシアネート等が好適に挙げられる。本発明の変性共役ジエン系重合体の製造方法においては、化合物Xとして、二つ以上のイソシアネート基を有するヘテロクムレン化合物を用いることが好ましく、ポリメチレンポリフェニルポリイソシアネートを用いることが特に好ましい。なお、化合物Xは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
【0059】
化合物Xの使用量は、単量体100gに対して、0.02mmol〜20mmolであることが好ましく、0.1mmol〜10mmolであることが更に好ましく、0.2mmol〜5mmolであることが特に好ましい。化合物Xの使用量が0.02mmol未満では、一次変性反応の進行が十分ではなく、化合物Yと反応する官能基が共役ジエン系重合体に十分に導入されないことがあり、一方、20mmolを超えると、共役ジエン系重合体中の化合物Yと反応する官能基数は飽和しており、経済上好ましくない。
【0060】
この一次変性反応は、溶液反応で行うことが好ましい。この溶液反応は、例えば、共役ジエン系重合体を重合する際に使用した未反応モノマーを含んだ溶液でもよい。また、一次変性反応の形式については特に制限はなく、バッチ式反応器を用いて行ってもよく、多段連続式反応器やインラインミキサ等の装置を用いて連続式で行ってもよい。また、この一次変性反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などを行う前に実施することが肝要である。
【0061】
一次変性反応の温度は、共役ジエン系重合体の重合温度をそのまま用いることができる。具体的には、0℃〜120℃が好ましく、10℃〜100℃が更に好ましい。この温度が低くなると、得られる重合体(一次変性共役ジエン系重合体)の粘度が上昇する傾向があり、一方、温度が高くなると、重合活性末端が失活し易くなるので好ましくない。また、一次変性反応に要する時間は、例えば、5分〜5時間が好ましく、15分〜1時間が更に好ましい。
【0062】
一次変性反応は、共役ジエン系重合体の活性末端と化合物Xの官能基Aを反応させて一次変性共役ジエン系重合体を得るものであるが、後述する二次変性反応(工程(2))において、化合物Yと更に反応させるため、化合物Xの官能基Bの少なくとも一つは、未反応の状態で残存させておく必要がある。
【0063】
次いで、本発明の変性共役ジエン系重合体を製造するには、上記工程(2)により二次変性共役ジエン系重合体を得ることを要する。上記工程(2)においては、上記工程(1)によって得られる一次変性共役ジエン系重合体に、化合物Yを反応させて、化合物X由来の反応性官能基Bに化合物Yを導入した二次変性共役ジエン系重合体を得ることができる。
【0064】
上記工程(2)に用いる化合物Yは、化合物X由来の反応性官能基Bに対して反応性を示す官能基Cと、少なくとも一つの第一級アミノ基又は保護された第一級アミノ基とを有する化合物である。ここで、官能基Cとしては、アミノ基、イミノ基、メルカプト基、水酸基等が挙げられる。なお、官能基Cは、第一級アミノ基でもよいし、保護された第一級アミノ基であってもよい。
【0065】
上記化合物Yとしては、ヘキサメチレンジアミン、ヘプタメチレンジアミン、ノナメチレンジアミン、ドデカメチレンジアミン、デカメチレンジアミン、1,5-ナフタレンジアミン、1,8-ナフタレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等が好適に挙げられる。
【0066】
また、上記化合物Yが保護された第一級アミノ基を有する場合において、上記化合物Yとしては、例えば、ヘキサメチルジシラザン、N-クロロヘキサメチルジシラザン、N-ブロモヘキサメチルジシラザン、1-(3-ブロモプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシアシクロペンタン、1-(3-クロロプロピル)-2,2,5,5-テトラメチル-1-アザ-2,5-ジシアシクロペンタン等が好適に挙げられる。
【0067】
この二次変性反応は、上記した一次変性反応と連続して行うことができ、一次変性反応と同様に溶液反応で行うことが好ましい。この溶液反応は、例えば、共役ジエン系重合体を重合する際に使用した未反応モノマーを含んだ溶液でもよい。また、二次変性反応の形式についても特に制限はなく、一次変性反応と同様に、バッチ式反応器を用いて行ってもよく、多段連続式反応器やインラインミキサ等の装置を用いて連続式で行ってもよい。また、この二次変性反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などを行う前に実施することが肝要である。
【0068】
化合物Yの使用量は、単量体100gに対して、0.02mmol〜20mmolであることが好ましく、0.1mmol〜10mmolであることが更に好ましく、0.2mmol〜5mmolであることが特に好ましい。なお、化合物Yの使用量が0.02mmol未満では、二次変性反応の進行が十分ではなく、また、充填剤との分散性が充分に発現されないうえ、破壊特性の改良効果が発現されないことがあり、一方、20mmolを超えると、充填剤の分散性や物性の改良効果は飽和しており、経済上好ましくない。
【0069】
二次変性反応の温度は、一次変性反応の温度をそのまま用いることができる。具体的には、0℃〜120℃が好ましく、10℃〜100℃が更に好ましい。この温度が低くなると、得られる重合体(二次変性共役ジエン系重合体)の粘度が上昇する傾向があり、一方、温度が高くなると、重合活性末端が失活し易くなるので好ましくない。また、二次変性反応に要する時間は、例えば、5分〜5時間が好ましく、15分〜1時間が更に好ましい。
【0070】
また、上記工程(2)において、一次変性共役ジエン系重合体の化合物X由来の官能基Bと、化合物Yの官能基Cとの反応を促進させる触媒(付加反応触媒)を用いることが好ましい。具体的には、工程(1)における化合物Xを添加した後、又は工程(2)における化合物Yを添加した後に、一次変性共役ジエン系重合体の化合物X由来の官能基Bと化合物Yの官能基Cとの反応を促進させる触媒(付加反応触媒)を添加することが好ましい。このような付加反応触媒としては、三級アミノ基を含有する化合物、又は周期律表の4A族、2B族、3B族、4B族及び5B族の内のいずれかに属する元素を一つ以上含有する化合物を用いることができ、さらに好ましくは、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、アルミニウム(Al)、又はスズ(Sn)の内の元素を一つ以上含有する化合物であり、この触媒を構成する化合物が、アルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩であることが特に好ましい。
【0071】
付加反応触媒として、具体的には、テトラメトキシチタニウム、テトラエトキシチタニウム、テトラn-プロポキシチタニウム、テトラi-プロポキシチタニウム、テトラn-ブトキシチタニウム、テトラn-ブトキシチタニウムオリゴマー、テトラsec-ブトキシチタニウム、テトラtert-ブトキシチタニウム、テトラ(2-エチルヘキシル)チタニウム、ビス(オクタンジオレート)ビス(2-エチルヘキシル)チタニウム、テトラ(オクタンジオレート)チタニウム、チタニウムラクテート、チタニウムジプロポキシビス(トリエタノールアミネート)、チタニウムジブトキシビス(トリエタノールアミネート)、チタニウムトリブトキシステアレート、チタニウムトリプロポキシステアレート、チタニウムトリプロポキシアセチルアセトネート、チタニウムジプロポキシビス(アセチルアセトネート)、チタニウムトリプロポキシエチルアセトアセテート、チタニウムプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムトリブトキシアセチルアセトネート、チタニウムジブトキシビス(アセチルアセトネート)、チタニウムトリブトキシエチルアセトアセテート、チタニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)チタニウムオキサイド、ビス(ラウレート)チタニウムオキサイド、ビス(ナフテート)チタニウムオキサイド、ビス(ステアレート)チタニウムオキサイド、ビス(オレエート)チタニウムオキサイド、ビス(リノレート)チタニウムオキサイド、テトラキス(2-エチルヘキサノエート)チタニウム、テトラキス(ラウレート)チタニウム、テトラキス(ナフテート)チタニウム、テトラキス(ステアレート)チタニウム、テトラキス(オレエート)チタニウム、テトラキス(リノレート)チタニウム等のチタニウムを含む化合物を挙げることができる。
【0072】
また、付加反応触媒としては、例えば、トリス(2-エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマス、テトラエトキシジルコニウム、テトラn-プロポキシジルコニウム、テトラi-プロポキシジルコニウム、テトラn-ブトキシジルコニウム、テトラsec-ブトキシジルコニウム、テトラtert-ブトキシジルコニウム、テトラ(2-エチルヘキシル)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2-エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウム等を挙げることができる。
【0073】
更に、付加反応触媒としては、例えば、トリエトキシアルミニウム、トリn-プロポキシアルミニウム、トリi-プロポキシアルミニウム、トリn-ブトキシアルミニウム、トリsec-ブトキシアルミニウム、トリtert-ブトキシアルミニウム、トリ(2-エチルヘキシル)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム等を挙げることができる。
【0074】
また更に、付加反応触媒としては、ビス(n-オクタノエート)スズ、ビス(2-エチルヘキサノエート)スズ、ビス(ラウレート)スズ、ビス(ナフトエネート)スズ、ビス(ステアレート)スズ、ビス(オレエート)スズ、ジブチルスズジアセテート、ジブチルスズジn-オクタノエート、ジブチルスズジ2-エチルヘキサノエート、ジブチルスズジラウレート、ジブチルスズマレート、ジブチルスズビス(ベンジルマレート)、ジブチルスズビス(2-エチルヘキシルマレート)、ジn-オクチルスズジアセテート、ジn-オクチルスズジn-オクタノエート、ジn-オクチルスズジ2-エチルヘキサノエート、ジn-オクチルスズジラウレート、ジn-オクチルスズマレート、ジn-オクチルスズビス(ベンジルマレート)、ジn-オクチルスズビス(2-エチルヘキシルマレート)等を挙げることができる。
【0075】
この付加反応触媒の使用量は、付加反応触媒として例示した化合物のモル数が、反応系内に存在する未反応の官能基A及び官能基Bの合計に対するモル比として、0.1〜10であることが好ましく、0.5〜5であることが更に好ましい。該モル比が0.1未満では、変性反応(具体的には、二次変性反応)が十分に進行せず、一方、10を超えると、付加反応触媒としての効果は飽和しており、経済上好ましくない。
【0076】
本発明の変性共役ジエン系重合体は、上記工程(1)及び工程(2)が終了した後、必要に応じて、重合停止剤や重合安定剤を反応系に加え、変性共役ジエン系重合体の製造における従来公知の脱溶媒、乾燥操作を行うことによって回収することができる。また、上記化合物Yが保護された第一級アミノ基を有する場合においては、上記工程(1)及び工程(2)が終了した後、更に(3)二次変性共役ジエン系重合体を加水分解し、化合物Y由来の保護された第一級アミノ基を脱保護する工程を行うことが好ましい。これにより、第一級アミノ基を有する変性共役ジエン系重合体が得られ、上記したゴム組成物の変性共役ジエン系重合体として用いることができる。なお、加水分解には、通常の方法を用いることができる。
【実施例】
【0077】
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
【0078】
(重合体A)
窒素置換された5Lオートクレーブに、窒素雰囲気下、シクロヘキサン2.4kg、1,3-ブタジエン300gを仕込んだ。該オートクレーブに、触媒成分としてのバーサチック酸ネオジム(0.09mmol)のシクロヘキサン溶液、メチルアルモキサン(以下「MAO」ともいう)(3.6mmol)のトルエン溶液、水素化ジイソブチルアルミニウム(以下「DIBAH」ともいう)(5.5mmol)及びジエチルアルミニウムクロリド(0.18mmol)のトルエン溶液と、1,3-ブタジエン(4.5mmol)とを40℃で30分間反応熟成させて、予備調製した触媒組成物を仕込み、60℃で60分間重合を行った。1,3-ブタジエンの反応転化率は、ほぼ100%であった。この重合体溶液200gを、2,4-ジ-tert-ブチル-p-クレゾール0.2gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、変性前の重合体A(共役ジエン系重合体)を得た。このようにして得た重合体Aについて、下記の方法で測定したところ、ムーニー粘度[ML1+4(100℃)]は18であり、分子量分布(Mw/Mn)は2.2であり、シス-1,4結合量は96.3%であり、1,2-ビニル結合量は0.64%であった。
【0079】
(1)ムーニー粘度[ML1+4(100℃)]
JIS K6300に従い、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。
【0080】
(2)分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー(商品名「HLC−8120GPC」,東ソー社製)を使用し、検知器として、示差屈折計を用いて、以下の条件で測定し、標準ポリスチレン換算値として算出した。
カラム;商品名「GMHHXL」(東ソー社製) 2本
カラム温度;40℃
移動相;テトラヒドロフラン
流速;1.0ml/min
サンプル濃度;10mg/20ml
【0081】
(3)ミクロ構造[シス-1,4結合量(%),1,2-ビニル結合量(%)]
フーリエ変換赤外分光光度計(商品名「FT/IR−4100」,日本分光社製)を使用し、赤外法(モレロ法)によって測定した。
【0082】
(重合体B)
上記重合体Aの製造例と同様に重合を行った後、更に重合体溶液を温度60℃に保ち、ポリメチレンポリフェニルポリイソシアネート(商品名「PAPI*135」,ダウ・ケミカル日本社製)(以下「cMDI」ともいう)(イソシアネート基(NCO)換算で4.16mmol)のトルエン溶液を添加し、15分間反応(一次変性反応)させた。続いて、ヘキサメチレンジアミン(以下「HMDA」ともいう)(2.08mmol)のトルエン溶液を添加し、15分間反応(二次変性反応)させた。その後、2,4-ジ-tert-ブチル-p-クレゾール1.3gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、重合体B(変性共役ジエン系重合体)を得た。このようにして得た重合体Bについて、上記の方法で測定したところ、ムーニー粘度[ML1+4(100℃)]は35であり、分子量分布(Mw/Mn)は2.3であり、シス-1,4結合量は96.2%であり、1,2-ビニル結合量は0.59%であった。
【0083】
(重合体C)
上記重合体Aの製造例と同様に重合を行った後、更に重合体溶液を温度60℃に保ち、4,4'-ビス(ジエチルアミノ)ベンゾフェノン(2.08mmol)のトルエン溶液を添加し、15分間反応させた。その後、2,4-ジ-tert-ブチル-p-クレゾール1.3gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、重合体Cを得た。このようにして得た重合体Cについて、上記の方法で測定したところ、ムーニー粘度[ML1+4(100℃)]は24であり、分子量分布(Mw/Mn)は2.0であり、シス-1,4結合量は96.0%であり、1,2-ビニル結合量は0.58%であった。
【0084】
(重合体D)
上記重合体Aの製造例と同様に重合を行った後、更に重合体溶液を温度60℃に保ち、トリメチロールプロパントリス[(3-(1-アジリジニル))プロピオナート](2.08mmol)のトルエン溶液を添加し、15分間反応させた。その後、2,4-ジ-tert-ブチル-p-クレゾール1.3gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、重合体Dを得た。このようにして得た重合体Dについて、上記の方法で測定したところ、ムーニー粘度[ML1+4(100℃)]は33であり、分子量分布(Mw/Mn)は2.2であり、シス-1,4結合量は96.3%であり、1,2-ビニル結合量は0.62%であった。
【0085】
(重合体E)
約1リットル容積のゴム栓付きガラスびんを乾燥・窒素置換し、窒素置換されたガラスびんに乾燥精製されたブタジエンのシクロヘキサン溶液及び乾燥シクロヘキサンを各々投入し、ブタジエンのシクロヘキサン溶液(ブタジエン濃度:12.0質量%)が400g投入された状態とした。次に、tert-ブチルリチウム(1.57M)0.30mL、2,2-ジ(2-テトラヒドロフリル)プロパン(0.2N)0.185mLを添加し、50℃の水浴中で1.5時間重合を行った。更に、重合体溶液を温度50℃に保ち、cMDI(イソシアネート基(NCO)換算で0.84mmol)を添加し、15分間反応させた後、HMDA(0.42mmol)を反応させた。その後、2,4-ジ-tert-ブチル-p-クレゾール1.3gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、重合体Eを得た。このようにして得た重合体Eについて、上記の方法で測定したところ、ムーニー粘度[ML1+4(100℃)]は42であり、分子量分布(Mw/Mn)は1.70であり、シス-1,4結合量は45.1%であり、1,2-ビニル結合量は18.33%であった。
【0086】
(重合体F)
上記重合体Aの製造例と同様に重合を行なった後、更に重合体溶液を60℃に保ち、1-トリメチルシリル-2-メチルクロロ-1-アザ-2-シラシクロペンタン(2.08mmol)のトルエン溶液を添加し、15分間反応させた。その後、2,4-ジ-tert-ブチル-p-クレゾール1.3gを含むメタノール溶液に抜き取り、重合停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、重合体F(変性共役ジエン系重合体)を得た。このようにして得た重合体Fについて、上記の方法で測定したところ、ムーニー粘度[ML1+4(100℃)]は26であり、分子量分布(Mw/Mn)は2.1であり、シス-1,4結合量は96.4%であり、1,2-ビニル結合量は0.62%であった。
【0087】
次に、表1に示す配合処方のゴム組成物を調製し、145℃で33分間加硫して得た加硫ゴムに対し、耐亀裂成長性及び低発熱性(3%tanδ)を下記の方法により測定した。結果を表2〜3に示す。
【0088】
(4)耐亀裂成長性
JIS 3号試験片中心部に0.5mmの亀裂を入れ、室温で50〜100%の歪みで繰り返し疲労を与え、サンプルが切断するまでの回数を測定した。各歪みでの値を求め、その平均値を用いた。表2においては、重合体Aを配合した比較例をそれぞれ100として、同一の窒素吸着比表面積を有するカーボンブラックを配合した実施例及び比較例を指数表示した。また、表3においては、比較例1を100として指数表示した。指数値が大きい程、耐亀裂成長性が良好であることを示す。
【0089】
(5)低発熱性(3%tanδ)
動的スペクトロメーター(米国レオメトリックス社製)を使用し、引張動歪3%、周波数15Hz、50℃の条件で測定した。表2においては、重合体Aを配合した比較例をそれぞれ100として、同一の窒素吸着比表面積を有するカーボンブラックを配合した実施例及び比較例を指数表示した。また、表3においては、比較例1を100として指数表示した。指数値が小さい程、低発熱性(低ロス性)に優れることを示す。
【0090】
【表1】

【0091】
*1 重合体A〜F,使用した重合体の種類を表2〜3に示す.
*2 使用したカーボンブラックの窒素吸着比表面積を表2〜3に示す.
*3 N-(1,3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン.
*4 大内新興化学工業(株)製,「ノクラック224」.
*5 N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド.
*6 ジ-2-ベンゾチアゾリルジスルフィド.
【0092】
【表2】

【0093】
表2の結果から、シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ第一級アミノ基を有する変性共役ジエン系重合体を配合した実施例1〜4のゴム組成物は、シス-1,4結合量が90%以上で且つビニル結合量が1.2%以下であるが、第一級アミノ基を有していない共役ジエン系重合体を配合した比較例1〜3のゴム組成物と比べて、耐亀裂成長性及び低発熱性を大幅に向上できることが分かる。また、実施例1〜4の結果から、耐亀裂成長性及び低発熱性の向上効果は、窒素吸着比表面積が20〜180m2/gの範囲であるカーボンブラックを配合させた場合に大幅に改善できることが分かる。なお、比較例4のゴム組成物は、配合した重合体Eのシス-1,4結合量が低いので、低発熱性は改善されるものの、耐亀裂成長性が大幅に低下することが分かる。
【0094】
【表3】

【0095】
表3の結果から、第一級アミノ基を導入した重合体Bを配合した実施例1のゴム組成物が、第三級アミノ基を導入した重合体C及び重合体Dを配合した比較例5〜6のゴム組成物と比べて、耐亀裂成長性及び低発熱性を大幅に向上できることが分かる。
【0096】
次に、表1に示す配合処方におけるカーボンブラックの配合量を変えた以外は、上記した方法と同様にして得た加硫ゴムに対し、耐亀裂成長性及び低発熱性(3%tanδ)を上記の方法により測定した。結果を表4に示す。
【0097】
なお、表4中、ゴム成分(重合体及び天然ゴム)100質量部に対するカーボンブラックの配合量を示す。また、耐亀裂成長性及び低発熱性(3%tanδ)については、重合体Aを配合した比較例をそれぞれ100として、カーボンブラックの配合量が等しい実施例を指数表示した。
【0098】
【表4】

【0099】
表4の結果から、ゴム成分100質量部に対するカーボンブラックの配合量が10〜100質量部の範囲内であれば、耐亀裂成長性及び低発熱性の向上効果を大幅に向上できることが分かる。

【特許請求の範囲】
【請求項1】
シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ第一級アミノ基を有する変性共役ジエン系重合体を10質量%以上含むゴム成分100質量に対し、無機充填剤及び/又はカーボンブラックを10〜100質量部配合してなることを特徴とするゴム組成物。
【請求項2】
前記カーボンブラックは、窒素吸着比表面積が20〜180m2/gであることを特徴とする請求項1に記載のゴム組成物。
【請求項3】
前記カーボンブラックは、窒素吸着比表面積が20〜100m2/gであることを特徴とする請求項2に記載のゴム組成物。
【請求項4】
前記ゴム成分が、前記変性共役ジエン系重合体10〜90質量%及び該変性共役ジエン系重合体以外のジエン系重合体90〜10質量%を含むことを特徴とする請求項1に記載のゴム組成物。
【請求項5】
前記変性共役ジエン系重合体以外のジエン系重合体が天然ゴムであることを特徴とする請求項1に記載のゴム組成物。
【請求項6】
硫黄架橋性であることを特徴とする請求項1に記載のゴム組成物。
【請求項7】
請求項1〜6のいずれかに記載のゴム組成物をタイヤ部材のいずれかに用いたことを特徴とするタイヤ。
【請求項8】
(1)シス-1,4結合量が90%以上及びビニル結合量が1.2%以下で且つ活性末端を有する共役ジエン系重合体に、該活性末端に対して反応性を示す官能基Aと、少なくとも一つの反応性官能基Bとを有する化合物X(但し、官能基Aと官能基Bは同一であってもよい)を反応させて一次変性共役ジエン系重合体を得る工程と、
(2)前記一次変性共役ジエン系重合体に、前記反応性官能基Bに対して反応性を示す官能基Cと、少なくとも一つの第一級アミノ基又は保護された第一級アミノ基とを有する化合物Y(但し、官能基Cは第一級アミノ基又は保護された第一級アミノ基であってもよい)を反応させて二次変性共役ジエン系重合体を得る工程と、
を含むことを特徴とする変性共役ジエン系重合体の製造方法。
【請求項9】
更に(3)前記二次変性共役ジエン系重合体を加水分解し、化合物Y由来の保護された第一級アミノ基を脱保護する工程を含むことを特徴とする請求項8に記載の変性共役ジエン系重合体の製造方法。
【請求項10】
前記共役ジエン系重合体が希土類金属を触媒として合成されたことを特徴とする請求項8に記載の変性共役ジエン系重合体の製造方法。
【請求項11】
前記化合物Xがポリメチレンポリフェニルポリイソシアネートであり、前記化合物Yがヘキサメチレンジアミンであることを特徴とする請求項8に記載の変性共役ジエン系重合体の製造方法。
【請求項12】
請求項8〜11のいずれかに記載の方法によって製造された変性共役ジエン系重合体。

【公開番号】特開2009−242769(P2009−242769A)
【公開日】平成21年10月22日(2009.10.22)
【国際特許分類】
【出願番号】特願2008−205812(P2008−205812)
【出願日】平成20年8月8日(2008.8.8)
【出願人】(000005278)株式会社ブリヂストン (11,469)
【Fターム(参考)】