説明

チラー

【課題】 凝縮器の下流側の液冷媒の温度上昇を早くして、早期に正常運転を行うこと。
【解決手段】 第一流量制御膨張機構5の上流側と蒸発器6の下流側とを接続し、第二流量制御膨張機構14および被冷却液以外の媒体から吸熱して液冷媒が蒸発する補助熱交換器15を設けたバイパス路16と、第一流量制御膨張機構5の上流側の冷媒温度または冷媒圧力が設定値を超える場合、前記蒸発器6へ液冷媒を導入すると共に第二流量制御膨張機構14を制御して補助熱交換器15への液冷媒の導入を停止する第一運転と、第一流量制御膨張機構5の上流側の冷媒温度または冷媒圧力が設定値以下の場合、前記蒸発器6への液冷媒の導入を停止または制限すると共に前記補助熱交換器15へ液冷媒を導入する第二運転とを行う制御器25とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、水などの被冷却液を冷却するチラーに関するものである。たとえば、食品冷却や空調などのために、水の凍結を防止しつつ0℃付近(たとえば0.5℃)の冷水を得るためのチラーに関するものである。
【背景技術】
【0002】
この種のチラーは、圧縮機、凝縮器、膨張弁および蒸発器に冷媒を循環させて冷凍サイクルを実行する冷凍機と、蒸発器において冷媒と熱交換させる被冷却液を、蒸発器へ導入する導入路および蒸発器において冷媒と熱交換させた被冷却液を、蒸発器から導出する導出路とを備えている。
【0003】
このチラーにおいては、外気温が低い状態で冷凍機を起動させると、起動直後に凝縮器から低温の冷媒が膨張弁を介して蒸発器へ入ることが避けられず、蒸発器内において水が凍結するおそれがある。そこで、出願人は、この凍結を防止するとともに、凍結防止運転時の液バックを防止する技術を特許文献1にて提案している。
【0004】
特許文献1においては、凝縮器の上流側と膨張弁の下流側とを接続するバイパス路を設け、バイパス路を介して凝縮器上流側の冷媒を蒸発器へ供給することで、凍結を防止するように構成している。また、凝縮器の下流側の冷媒温度または冷媒圧力が設定値以下の場合、蒸発器への被冷却液の導入を停止または制限すると共に、蒸発器への液冷媒の導入を停止した状態でバイパス路を介して凝縮器上流側の冷媒を蒸発器へ導入して冷凍機を起動することで、液バックを防止するように構成している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009―174769号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
特許文献1の発明の目的は、蒸発器での被冷却液の凍結が生じないように、凝縮器の下流側の液冷媒の温度を上昇させることである。ところが、特許文献1の発明では、バイパス路を流れる冷媒量が多くなり、凝縮器の下流側の液冷媒の温度上昇が遅くなる。また、蒸発器への被冷却液の導入を停止または制限すると、蒸発器での吸熱量が零または減少することになり、凝縮器の下流側の液冷媒の温度上昇が遅れる。その結果、正常運転への復帰が遅くなるという課題がある。
【0007】
また、特許文献1では、液バック防止のために、蒸発器への被冷却液の導入を停止または制限するように構成することを開示しているが、そうした場合、被冷却液がユースポイント(被冷却液を使用する機器または箇所)へ供給されない断水状態や供給量が制限されることとなり、正常運転時と同様に被冷却液を使用したいユーザーの要求に答えることができない。
【0008】
この発明が解決しようとする主課題は、凝縮器の下流側の液冷媒の温度上昇を早くして、早期に正常運転を行うことであり、副課題は、被冷却液がユースポイントへ供給されない断水状態や供給量が制限される状態を回避することである。
【課題を解決するための手段】
【0009】
この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、第一流量制御膨張機構および蒸発器に冷媒を循環させて冷凍サイクルを実行する冷凍機と、前記蒸発器において冷媒と熱交換させる被冷却液を前記蒸発器へ導入する導入路および前記蒸発器において冷媒と熱交換させた被冷却液を前記蒸発器から導出する導出路とを備えるチラーであって、前記第一流量制御膨張機構の上流側と前記蒸発器の下流側とを接続し、第二流量制御膨張機構および補助熱交換器を設けたバイパス路と、前記第一流量制御膨張機構および前記第二流量制御膨張機構を制御する制御器とを備え、前記制御器は、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が設定値を超える場合、前記第一流量制御膨張機構を制御して前記蒸発器へ液冷媒を導入すると共に前記第二流量制御膨張機構を制御して前記補助熱交換器への液冷媒の導入を停止する第一運転と、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が設定値以下の場合、前記第一流量制御膨張機構を制御して前記蒸発器への液冷媒の導入を停止または制限すると共に前記第二流量制御膨張機構を制御して前記補助熱交換器へ液冷媒を導入する第二運転とを行うことを特徴としている。
【0010】
請求項1に記載の発明によれば、前記第二運転時、前記補助熱交換器での吸熱により前記凝縮器の下流側の液冷媒温度の上昇が早くなり、液冷媒の予熱運転である前記第二運転の時間を短縮して、早期に正常運転である前記第一運転を行うことができる。また、前記第二運転時、前記補助熱交換器にて吸熱されるので、蒸発器への被冷却液の導入を停止または制限することなく、チラーの運転を継続することができる。
【0011】
請求項2に記載の発明は、請求項1において、前記制御器は、前記第二運転時、前記凝縮器の冷却を停止または制限することを特徴としている。
【0012】
請求項2に記載の発明によれば、請求項1に記載の発明による効果に加えて、前記凝縮器での放熱が減少するので、前記第二運転における液冷媒の上昇を速くすることができるという効果を奏する。
【0013】
請求項3に記載の発明は、請求項1または請求項2において、前記圧縮機を容量制御可能なものとし、前記制御器は、前記第一運転時、前記蒸発器の負荷に応じて前記圧縮機の容量を制御するとともに、前記第二運転時、前記圧縮機を前記補助熱交換器の熱交換容量に合わせた所定の容量で運転することを特徴としている。
【0014】
請求項3に記載の発明によれば、請求項1または請求項2に記載の発明による効果に加えて、前記第二運転時、前記補助熱交換器へ過剰に冷媒が供給されることが防止され、結果として、前記補助熱交換の容量を小さくしても前記第二運転を支障なく行えるという効果を奏する。
【0015】
請求項4に記載の発明は、請求項1〜請求項3において、前記補助熱交換器は、大気から吸熱する空気熱交換器であることを特徴としている。
【0016】
請求項4に記載の発明によれば、請求項1〜請求項3に記載の発明による効果に加えて、チラー設置場所の大気から吸熱できるので、前記補助熱交換器の構成を簡素化できるという効果を奏する。
【発明の効果】
【0017】
この発明によれば、凝縮器の下流側の液冷媒の温度上昇を早くして、早期に正常運転を行うことができる。また、被冷却液がユースポイントへ供給されない断水状態や供給量が制限される状態を回避することができる。
【図面の簡単な説明】
【0018】
【図1】この発明の実施例1のチラーの概略構成図である。
【図2】同実施例1の制御手順を説明するフローチャート図である。
【図3】この発明の実施例1のチラーを用いたチラーシステムの概略構成図である。
【発明を実施するための形態】
【0019】
つぎに、この発明の実施の形態について説明する。この発明の実施の形態は、水などの被冷却液を冷却するチラーに実施される。このチラーは、冷凍機の蒸発器を、冷媒と被冷却液との熱交換器として用い、蒸発器における冷媒の気化熱で被冷却液の冷却を図る装置である。被冷却液は、典型的には水とされるが、凍結のおそれがある他の液体でもよい。チラーは、被冷却液が水の場合、ウォータチラーまたは冷水装置ということができ、蒸発器は、冷水熱交換器ということができる。
【0020】
この実施の形態のチラーは、圧縮機、凝縮器、第一流量制御膨張機構および蒸発器に冷媒を循環させて冷凍サイクルを実行する冷凍機と、前記蒸発器において冷媒と熱交換させる被冷却液を前記蒸発器へ導入する導入路および前記蒸発器において冷媒と熱交換させた被冷却液を前記蒸発器から導出する導出路とを備えている。
【0021】
この実施の形態の特徴とするところは、ハード的には、前記第一流量制御膨張機構の上流側(前記凝縮器の下流側)と前記蒸発器の下流側とを接続し、第二流量制御膨張機構および被冷却液以外の媒体から吸熱して液冷媒が蒸発する補助熱交換器を設けたバイパス路と、前記第一流量制御膨張機構および前記第二流量制御膨張機構を制御する制御器とを備える構成にある。前記第一流量制御膨張機構,前記第二流量制御膨張機構は、それぞれ第一流量制御機構,第二流量制御機構ということができる。
【0022】
前記第一流量制御膨張機構は、閉止機能,前記蒸発器の負荷に応じた流量制御機能および減圧膨張機能をなすように構成される。この第一流量制御膨張機構は、好ましくは、閉止機能と前記蒸発器の負荷に応じた開度調整による流量制御機能および減圧膨張機能とを単一の弁で行うものとする。「前記蒸発器の負荷に応じた開度調整」とは、好ましくは、前記蒸発器の出口側の冷媒温度と冷媒圧力とに応じた開度調整とする。そして、前記流量制御は、好ましくは、前記蒸発器の下流側の冷媒過熱度に応じて、冷媒過熱度が高くなると流量を増加させ、低くなると流量を減少させるように構成する。
【0023】
前記第一流量制御膨張機構は、前記の閉止機能と流量制御機能および減圧膨張機能とを単一の弁で行うものに限定されるものではなく、開度調整による流量制御機能および減圧膨張機能をなす膨張弁と、閉止機能をなす電磁弁との組合せにより構成することができる。
【0024】
また、前記第二流量制御膨張機構は、少なくとも閉止機能および減圧膨張機能をなすように構成される。この第二流量制御膨張機構は、好ましくは、閉止機能および減圧膨張機能を単一の弁で行うものとする。しかしながら、これに限定されるものではなく、減圧膨張機能をなす減圧膨張器と閉止機能をなす電磁弁との組合せにより構成することができる。また、前記減圧膨張器は、好ましくは、前記補助熱交換器の負荷に応じた開度調整による流量制御機能をなす膨張弁とするが、前記補助熱交換器の負荷が安定している場合には、開度調整を行えないキャピラリーチューブとすることができる。「前記補助熱交換器の負荷に応じた開度調整」は、前記「前記蒸発器の負荷に応じた開度調整」における蒸発器を補助熱交換器に代えた同様な制御を意味する。前記第二流量制御膨張機構を閉止機能および減圧膨張機能を単一の弁で行うものとする場合、前記第一流量制御膨張機構と同様の機能のものとする。
【0025】
この実施の形態のソフト的に特徴とするところは、前記制御器によるチラーの運転制御であり、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力に応じて第一運転と第二運転とを行うところにある。
【0026】
前記第一運転は、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が設定値を超える場合、前記第一流量制御膨張機構を制御して前記蒸発器へ液冷媒を導入すると共に前記第二流量制御膨張機構を制御して前記補助熱交換器への液冷媒の導入を停止する運転である。この第一運転は、正常運転または冷却運転と称することができる。前記第一流量制御膨張機構の上流側は、前記凝縮器の下流の受液器の下流側で、前記バイパス路の第二流量制御膨張機構側の分岐部(接続部)の上流側あればよいが、前記分岐部に近い箇所が望ましい。
【0027】
前記第二運転は、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が設定値以下の場合、前記第一流量制御膨張機構を制御して前記蒸発器への液冷媒の導入を停止すると共に前記第二流量制御膨張機構を制御して前記補助熱交換器へ液冷媒を導入する運転である。この第二運転における前記蒸発器への液冷媒の導入の停止は、前記蒸発器への被冷却液の導入を停止または制限することなく、前記蒸発器の凍結を防止するものである。なお、前記蒸発器が凍結しない範囲で、僅かな量の液冷媒を前記蒸発器へ導入する,すなわち前記蒸発器への液冷媒の導入を制限するように構成することができる。この第二運転は、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力を設定値以上とするように、前記第一流量制御膨張機構および前記第二流量制御膨張機構をフィードバック制御することによって実現される。
【0028】
この第二運転は、液冷媒を昇温させるという意味で、暖液運転と称することができ、低外気温時にチラーの起動時に行われることから暖機運転と称することができる。この第二運転は、チラーの起動時だけではなく、前記第一運転の途中でも条件を満たせば行われる。
【0029】
前記設定値は、寒冷地などで外気温が低い場合、凝縮器が冷やされることで、前記分岐部の上流側の冷媒温度または冷媒圧力が低く、前記設定値を下回る値の液冷媒が前記第一流量制御膨張機構を介して前記蒸発器へ供給されると、前記蒸発器内で被冷却液が凍結してしまうおそれがある値である。この値は、実験的に求められ、例えば、6℃程度に設定される。前記第一流量制御膨張機構の上流側の液冷媒温度6℃は、例えば、前記第一流量制御膨張機構の下流側では、−4.5℃に相当する。
【0030】
前記蒸発器の凍結に直接的に影響を与えるのは、前記第一流量制御膨張機構の下流側の冷媒温度または冷媒圧力であるが、前記第一流量制御膨張機構の下流側の冷媒温度または冷媒圧力により前記第二運転を行うと、前記第一流量制御膨張機構による応答遅れにより、前記蒸発器の凍結が生ずるおそれがある。これを防止するために、この実施の形態では、前記第一流量制御膨張機構の下流側の冷媒温度または冷媒圧力と相関関係のある前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力によって、前記第二運転を行うように構成する。
【0031】
また、フィードバック制御の常識から、設定値を第一設定値とすると、「第一設定値を超える」とは、前記第一設定値に制御のディファレンシャル分を加えた第二設定値(>第一設定値)以上となることと等価である。
【0032】
この実施の形態においては、寒冷地などで外気温が低い場合、前記凝縮器が冷やされ、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が第一設定値以下となると、前記第二運転が行われる。この第二運転では、前記第一流量制御膨張機構により、前記
蒸発器への液冷媒の導入が停止され、前記蒸発器では、蒸発作用が停止され、前記蒸発器の二次側(冷媒が流れる側が一次側)の被冷却液の凍結が防止される。また、前記第二流量制御膨張機構により、前記補助熱交換器へ液冷媒を減圧して導入するので、前記補助熱交換器にて蒸発作用が行われ、吸熱される。その結果、前記補助熱交換器での吸熱量と、前記圧縮機による仕事量に相当する熱量とで、前記第一流量制御膨張機構の上流側の液冷媒の温度が上昇することになる。この第二運転時、前記凝縮器での放熱をできるだけ少なくすることで、前記第一流量制御膨張機構の上流側の液冷媒の温度上昇を早くすることができる。
【0033】
この第二運転時、前記蒸発器への被冷却液の導入が行われても、前記蒸発器の凍結を生じないので、被冷却液のユースポイントへの供給を停止または、制限することなく行える。
【0034】
そして、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が第二設定値以上となると、前記第二運転から前記第一運転へ移行する。この第一運転では、前記第一流量制御膨張機構により、前記蒸発器へ液冷媒が減圧されて導入され、蒸発作用により被冷却液が冷却される。同時に、前記第二流量制御膨張機構により前記補助熱交換器への液冷媒の導入が停止されるので、前記補助熱交換器での蒸発作用は行われない。
【0035】
この第一運転時においても、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が設定値以下となると、起動時と同様に前記第二運転が行われる。
【0036】
この実施の形態においては、好ましくは、前記圧縮機を容量制御可能なものとし、前記制御器は、前記第一運転時、前記蒸発器の負荷に応じて前記圧縮機の容量を制御するとともに、前記第二運転時、前記圧縮機を前記補助熱交換器の熱交換容量に合わせた所定の低容量で運転するように構成する。このように構成することにより、前記第一運転のための圧縮機の容量制御機構を用いて、前記第二運転時、前記補助熱交換器へ過剰に冷媒が供給されることが防止される。その結果、前記補助熱交換器の容量を小さくしても前記第二運転を支障なく行えることになる。前記圧縮機の容量制御機構とは、複数台の圧縮機の台数制御および/または回転数制御可能な圧縮機の回転数制御である。
【0037】
ここで、この実施の形態のチラーの構成要素を、上記で説明していない点を中心に説明する。
【0038】
前記圧縮機は、その形式を特に問わないが、たとえばスクロール圧縮機が用いられる。凝縮器は、典型的にはファンを備える空冷式の熱交換器であるが、水冷式の熱交換器とすることができる。空冷式の凝縮器とした場合、前記第二運転時、前記ファンは、停止することが望ましい。しかしながら、前記ファンを前記第一運転における最低回転数か、これよりも低い回転数に制御するように構成できる。
【0039】
また、蒸発器は、冷媒流路(一次側流路)と被冷却液流路(二次側流路)とを有し、冷媒と被冷却液とを混ぜることなく、間接的に熱交換させる熱交換器である。蒸発器は、典型的にはプレート式熱交換器とされるが、二重管式熱交換器などでもよい。蒸発器を構成する熱交換器は、前述したように、冷媒が通される冷媒流路と、被冷却液が通される被冷却液流路とを有する。そして、前記蒸発器の二次側の被冷却液の導入路には、前記蒸発器へ被冷却液を送り込むためのポンプが設けられる。従って、前記ポンプを作動させることで、被冷却液は前記導入路から前記蒸発器の被冷却液通路を介して前記導出路へ流通し、蒸発器の冷媒通路を通過する間に、冷媒の気化熱により冷却を図られる。
【0040】
被冷却液は、前記蒸発器を通される限り、その流路を特に問わない。また、前記蒸発器
にて冷却を図られた被冷却液は、その用途を特に問わない。たとえば、被冷却液は、前記蒸発器を通されて冷却された後、負荷との熱交換(たとえば食材の冷却)に使用され、使い捨てられる(流水仕様)。この流水仕様では、前記第二運転時にポンプを停止することは好ましくない。また、被冷却液を貯留するタンクを備え、このタンクから前記導入路を介して前記蒸発器へ被冷却液を供給して、前記蒸発器にて冷却を図った後、前記導出路を介して前記タンクへ戻してもよい(循環仕様)。すなわち、前記蒸発器と前記タンクとの間で、前記導入路と前記導出路とを介して被冷却液を循環させてもよい。
【0041】
循環仕様の場合、前記蒸発器から前記タンクへの導出路において負荷との熱交換を図ってもよいし、前記タンク内において負荷との熱交換を図ってもよい。たとえば、前記タンクを冷却槽として用い、パックされた食品を、前記タンク内の被冷却液に浸して冷却を図ることができる。また、前記蒸発器と前記タンクとの間で被冷却液の循環を図って前記タンク内の被冷却液を冷却すると共に、その冷却された被冷却液を他の装置へ供給して利用してもよい。この循環仕様において、前記タンク内にて食品等の被冷却物を冷却する場合、前記第二運転時にポンプを停止することは好ましくない。また、前記蒸発器から前記タンクへの導出路において負荷との熱交換を行う循環仕様の場合も前記第二運転時にポンプを停止することは好ましくない。
【0042】
前記補助熱交換器は、好ましくは、大気から吸熱する空気熱交換器とするが、これに限定されないものであり、不凍液から吸熱する熱交換器とすることができる。空気熱交換器とすることにより、構造が簡素で、安価に構成することができる。
【0043】
前記制御器による制御は、予め記憶した制御手順(制御プログラム)により、前記第一運転を行う手順である第一運転制御手順と、前記第二運転を行う手順である第二運転制御手順と、チラー起動時および前記第一運転時の暖機運転制御とが実行されるように構成される。
【0044】
前記暖機運転制御手順は、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力を検出する検出手段による検出値が設定値以下(前記第一設定値以下)の場合、前記第二運転を行い、前記検出値が設定値を超える(前記第二設定値以上)場合、前記第一運転を行う手順である。
【実施例1】
【0045】
以下、この発明の具体的実施例を図面に基づいて詳細に説明する。ここでは、循環仕様でタンク内にて被冷却物を冷却するウォータチラーについて説明する。
【0046】
<実施例1の構成>
図1は、本発明のチラーの実施例1を示す概略構成図である。本実施例1のチラー1は冷凍機2を備えており、この冷凍機2は圧縮式冷凍機とされる。圧縮式冷凍機は、圧縮機3、凝縮器4、前記第一流量制御膨張機構としての第一電子膨張弁5および蒸発器6を備え、冷媒の圧縮、凝縮、膨張および蒸発の冷凍サイクルを実行する。
【0047】
圧縮機3は、冷媒を圧縮して高温高圧のガスにする。圧縮機3からのガスは、油分離器(図示省略)を介して凝縮器4へ送られる。圧縮機3は、その形式を特に問わないが、たとえばスクロール圧縮機が用いられる。圧縮機3は、図1では簡略化して図示しているが、複数台の圧縮機(図示省略)の台数制御と、1台の圧縮機(図示省略)回転数制御可能な圧縮機の回転数制御との組合せにより、第一運転および第二運転時の容量制御を可能に構成している。
【0048】
凝縮器4は、圧縮機3からのガスを凝縮液化する。本実施例1の凝縮器4は、ファン(
図示省略)を備える空冷式の熱交換器である。凝縮器4からの冷媒は、受液器7を介して第一電子膨張弁5へ送られる。受液器7は、凝縮器4で液化された冷媒を一時的に貯蔵する。
【0049】
第一電子膨張弁5は、閉止機能,蒸発器6の負荷に応じた開度調整による流量制御機能および減圧膨張機能を単一の弁で行うものであり、公知のものを用いる。第一電子膨張弁5は、つぎの構成で制御される。すなわち、受液器7の下流側の液冷媒温度を検出する第一温度センサ8と、蒸発器6の下流側の冷媒温度,冷媒圧力を検出する第二温度センサ9および第一圧力センサ10と、これらセンサ8,9,10の信号を入力する第一制御器11により、第一電子膨張弁5の開閉と開度とが制御される。第一温度センサ8の信号は、後記第三制御器25を介して第一制御器11へ入力される。
【0050】
第一電子膨張弁5は、凝縮器4からの液化冷媒を通過させることで、冷媒の圧力を低下させる。そして、蒸発器6は、冷媒の蒸発により、二次側の水から熱を奪う熱交換器である。蒸発器6は、一次側の冷媒流路12と二次側の水流路13とを有し、冷媒と水とを混ぜることなく、冷媒と水とで熱交換させる間接熱交換器である。本実施例1の蒸発器6は、プレート式熱交換器とされる。
【0051】
蒸発器6にて気化された冷媒は、アキュムレータ(図示省略)を介して圧縮機3へ戻される。冷凍機2は、以上のように構成されることで、冷凍サイクルを実行可能とされる。
【0052】
本実施例1の冷凍機2は、さらに、第一電子膨張弁5の上流側と蒸発器6の下流側とを接続し、前記第二流量制御膨張機構としての第二電子膨張弁14および大気から吸熱して液冷媒が蒸発する補助熱交換器15を設けたバイパス路16を備えている。
【0053】
第二電子膨張弁14は、閉止機能,補助熱交換器15の負荷に応じた開度調整による流量制御機能および減圧膨張機能を単一の弁で行うものであり、公知のものを用いる。第二電子膨張弁14は、つぎの構成で制御される。すなわち、受液器7の下流側の液冷媒温度を検出する第一温度センサ8と、補助熱交換器15の下流側の冷媒温度,冷媒圧力を検出する第三温度センサ17および第二圧力センサ18と、これらセンサ8,17,18の信号を入力する第二制御器19により、第二電子膨張弁14の開閉と開度とが制御される。第一温度センサ8の信号は、後記第三制御器25を介して第二制御器19へ入力される。
【0054】
図1において、二点鎖線で囲む部分がチラー1であり、このチラー1にユースポイントであり、冷水負荷としての冷水タンク20が設けられる。蒸発器6の二次側の水流路13と接続される被冷却水の導入路21には、蒸発器6の水流路13へ被冷却水を送り込むためのポンプ22が設けられる。冷水タンク20は、冷却水の導出路23を介して蒸発器6の一次側の水流路13と接続されている。冷水タンク20には、冷水タンク20と別の負荷(図示省略)へ冷水を供給する供給路(図示省略)と負荷からの戻り路(図示省略)を接続することができる。
【0055】
なお、図1において、一点鎖線で囲む部分が、チラー1の凝縮ユニット24である。本実施例1では、バイパス路16を、凝縮器4の上流側に接続する必要がないので、凝縮ユニット24を凍結防止運転のために特別に改造する必要がない。
【0056】
第三制御器25は、第一温度センサ8,第一電子膨張弁5の下流側の冷媒温度を検出する第四温度センサ26などの信号を入力して、予め記憶した制御手順(制御プログラム)により、圧縮機3,第一電子膨張弁5,第二電子膨張弁14およびポンプ22などを制御する。
【0057】
第三制御器25の制御手順には、第一運転(冷却運転)を行う手順である第一運転制御手順と、第二運転(暖機運転)を行う手順である第二運転制御手順と、チラー起動時および第一運転時の暖機運転制御とが実行されるように構成されている。
【0058】
第一運転は、第一温度センサ8により検出される受液器7の下流側の液冷媒温度が第二設定値T2(第一設定値T1よりディファレンシャル分だけ高い値)以上の場合、第一電子膨張弁5を開き、第二温度センサ9および第一圧力センサ10からの信号に基づき開度調節をしながら蒸発器6へ液冷媒を導入すると共に、第二電子膨張弁14を閉じて補助熱交換器15への液冷媒の導入を停止する運転である。第一設定値T1は、第一設定値T1を下回ると蒸発器6で被冷却液である水が凍結するおそれのある温度で、本実施例1では6℃とし、第二設定値T2は、6℃+ΔT℃としている。ΔTは、例えば3℃とする。
【0059】
第二運転は、第一温度センサ8により検出される受液器7の下流側の液冷媒温度が第二設定値T1以下の場合、第一電子膨張弁5を閉じて蒸発器6への液冷媒の導入を停止すると共に、第二電子膨張弁14を開き、第三温度センサ17および第二圧力センサ18からの信号に基づき開度調節をしながら補助熱交換器15へ液冷媒を導入する運転である。
【0060】
暖機運転制御手順は、第一温度センサ8の検出値により第一運転と第二運転とを切り替える,すなわち第一温度センサ8の検出値が第一設定値T1以下の場合、第二運転を行い、前記検出値が第二設定値T2以上の場合、第一運転を行う手順であり、図2に手順の一例を示す。この暖機運転制御手順には、第四温度センサ26の検出値が第三設定値T3(第一設定値T1より低い値,例えば−4.5℃に設定)以下となると、チラーの運転を停止して(具体的には、圧縮機3を停止し、ポンプ22を運転)、蒸発器6での凍結を防止する凍結防止運転制御が含まれている。凍結防止運転は、第二運転を第一凍結防止運転とすれば、第二凍結防止運転ということができる。
【0061】
<実施例1の動作>
本実施例1の動作を説明する。図2を参照して、処理ステップS1(以下、処理ステップSNは、単にSNという。)において、チラー1の運転開始かどうかを判定する。チラー1の運転開始および停止は、運転スイッチ(図示省略)の開始操作および停止操作により行われる。
【0062】
S1にてYESが判定されると、S2へ移行して、第一温度センサ8による検出値Tが第一設定値T1以下かどうかを判定する。今、外気温が低く、第一電子膨張弁8の上流側の液冷媒温度が第一設定値未満になっていたとする。今の場合、S2でYESが判定され、S3へ移行して第二運転が行われる。
【0063】
この第二運転では、図1を参照して、第一電子膨張弁5を閉じ、第二電子膨張弁14を開き、凝縮器4のファンを停止した状態で、圧縮機3を起動する。なお、ポンプ22は、S1にてYESが判断されたときから起動され、第二運転中および後記第一運転中停止されることなく、運転を続ける。第一電子膨張弁5を閉じるので、蒸発器6への液冷媒の導入が停止される。その結果、蒸発器6では、蒸発作用が停止され、凍結が防止される。
【0064】
また、第二電子膨張弁14の開度が第二温度センサ9と第一圧力センサ10からの信号を入力した第一制御器11により調整され、補助熱交換器15へ液冷媒が減圧して導入される。また、圧縮機3は、回転数制御可能な圧縮機の回転数を補助熱交換器15の容量に合わせた所定の回転数で回転制御される。
【0065】
その結果、補助熱交換器15にて蒸発作用が行われ、大気より吸熱されるとともに、凝縮器4での放熱がファンの停止により最小限とされる。また、蒸発器6での放熱もない。
このため、補助熱交換器15での吸熱量と、圧縮機3による仕事量に相当する熱量とで、前記第一膨張弁5の上流側の液冷媒の温度が速やかに上昇することになる。
【0066】
また、圧縮機3を所定の容量で運転するので、補助熱交換器15へ過剰に冷媒が供給されることが防止され、補助熱交換器15の容量を小さくしても第二運転を支障なく行える。
【0067】
図2を参照して、第二運転中において、S4の処理が実行される。S4では、運転停止操作が行われたか、または運転停止が必要な異常が生じたかどうかを判定する。運転停止が必要な異常の一つは、第四温度センサ26による検出温度が第三設定値T3以下を検出した場合である。S4でYESが判定されると、S8へ移行して、運転停止処理が行われる。運転停止処理は、圧縮機3、ポンプ22を停止し、第一電子膨張弁5および第二電子膨張弁14を閉じる処理である。
【0068】
S4でNOが判定されると、S5へ移行し、第一温度センサ8による検出値Tが第二設定値T2以上かどうかを判定する。第二運転により、第一電子膨張弁5の上流側の液冷媒温度が上昇し、第二設定値T2以上(YES)が判定されると、S6へ移行する。S5でNOが判定されると、S3の第二運転が継続される。
【0069】
S6では、第一運転が行われる。この第一運転では、第一電子膨張弁5が開き、蒸発器6の冷媒流路12へ液冷媒が減圧されて導入される。上述のように、S1でYESが判断されたときから、ポンプ22が運転され、蒸発器6の水流路13には、冷水タンク20から水が循環供給されている。その結果、冷媒流路12での冷媒の蒸発作用により水流路13の水が冷却される。同時に、第二電子膨張弁14が閉じられ、補助熱交換器15への液冷媒の導入が停止される。その結果、補助熱交換器15での蒸発作用は行われないので、無駄な吸熱が防止される。
【0070】
第一運転中において、S7の処理が実行される。S7は、S4と同様の処理である。S7でYESが判定されると、S8へ移行して運転停止処理が行われる。S7でNOが判定されると、S2に戻って、S2の処理が行われる。
【0071】
これは、第一運転中において、第一温度センサ8の検出温度Tが第一設定値T1以下となり、蒸発器6の凍結する場合があるので、これを防止する第二運転をおこなうためである。S2でYESが判定されると、前述のようにS3で第二運転が行われる。その結果、第一電子膨張弁5の上流側の液冷媒の温度を速やかに上昇させた後、S6の第一運転に復帰することができる。
【0072】
次に、実施例1の好ましい具体的適用例を図3に基づき説明する。図3では、実施例1のチラー1と同じ複数台のチラー1A,1B,1Cを冷水タンク20に対して並列に接続したチラーシステムとしている。このチラーシステムは、各チラー1A,1B,1C毎にポンプ22を設けるのではなく、共通の1台のポンプ22としてシステム構成を簡素化した点に特徴がある。
【0073】
従来のチラーでは、チラー1A,1B,1Cのいずれかで凍結防止運転をするためにポンプを停止する必要が生じ、他のチラーでは凍結防止運転を行う必要がなく、ポンプを停止する必要がない事態が生ずる。こうした場合、1台のポンプで水を供給するように構成することができないが、本実施例1のチラー1によれば、第二運転時もポンプ22を停止することがないので、図3のようにチラーシステムを簡素化して構成することができる。
【0074】
この発明は、前記実施例1に限定されるものではなく、例えば、第一電子膨張弁5、第
二電子膨張弁14は、開閉のみを行う液電磁弁(図示省略)と、これと別体の開度調整を行う膨張弁(図示省略)との組合せに代えることができる。この場合、第一制御器11,第二制御器19は、不要となり、第三制御器25により液電磁弁の開閉を制御することで、液冷媒の導入、停止の制御を実現する。また、前記実施例1では、第一電子膨張弁5、第二電子膨張弁14の上流側の液冷媒温度を検出する第一温度センサ8により第一電子膨張弁5と第二電子膨張弁14への液冷媒の流れを切り替えるように構成しているが、第一電子膨張弁5、第二電子膨張弁14の上流側の液冷媒圧力を検出する圧力センサ(図示省略)により液冷媒の流れ切り替えるように構成することができる。
【符号の説明】
【0075】
1 チラー
2 冷凍機
3 圧縮機
4 凝縮器
5 第一電子膨張弁(第一流量制御膨張機構)
6 蒸発器
8 第一温度センサ
14 第二電子膨張弁(第二流量制御膨張機構)
15 補助熱交換器
16 バイパス路
25 第三制御器(制御器)

【特許請求の範囲】
【請求項1】
圧縮機、凝縮器、第一流量制御膨張機構および蒸発器に冷媒を循環させて冷凍サイクルを実行する冷凍機と、前記蒸発器において冷媒と熱交換させる被冷却液を前記蒸発器へ導入する導入路および前記蒸発器において冷媒と熱交換させた被冷却液を前記蒸発器から導出する導出路とを備えるチラーであって、
前記第一流量制御膨張機構の上流側と前記蒸発器の下流側とを接続し、第二流量制御膨張機構および被冷却液以外の媒体から吸熱して液冷媒が蒸発する補助熱交換器を設けたバイパス路と、
前記第一流量制御膨張機構および前記第二流量制御膨張機構を制御する制御器とを備え、前記制御器は、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が設定値を超える場合、前記第一流量制御膨張機構を制御して前記蒸発器へ液冷媒を導入すると共に前記第二流量制御膨張機構を制御して前記補助熱交換器への液冷媒の導入を停止する第一運転と、前記第一流量制御膨張機構の上流側の冷媒温度または冷媒圧力が設定値以下の場合、前記第一流量制御膨張機構を制御して前記蒸発器への液冷媒の導入を停止または制限すると共に前記第二流量制御膨張機構を制御して前記補助熱交換器へ液冷媒を導入する第二運転とを行う
ことを特徴とするチラー。
【請求項2】
前記制御器は、前記第二運転時、前記凝縮器の冷却を停止または制限することを特徴とする請求項1に記載のチラー。
【請求項3】
前記圧縮機を容量制御可能なものとし、
前記制御器は、前記第一運転時、前記蒸発器の負荷に応じて前記圧縮機の容量を制御するとともに、前記第二運転時、前記圧縮機を前記補助熱交換器の熱交換容量に合わせた所定の容量で運転することを特徴とする請求項1または請求項2に記載のチラー。
【請求項4】
前記補助熱交換器は、大気から吸熱する空気熱交換器であることを特徴とする請求項1〜請求項3のいずれか1項に記載のチラー。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−29215(P2013−29215A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2011−163856(P2011−163856)
【出願日】平成23年7月27日(2011.7.27)
【出願人】(000175272)三浦工業株式会社 (1,055)