説明

ホログラムラベル

【課題】
ホログラムを用いたホログラムラベルにおいて、その真正性を高めるために、一つの波長(色調)のホログラム再生像を再生するホログラムとは異なり、加熱・昇温により、異なる波長(別の色調)のホログラム再生をする新規なホログラムラベルを提供する。
【解決手段】
ホログラム形成層上にサーモクロミック薄膜層を設け、サーモクロミック薄膜層を加熱・昇温して、可視光領域にある、その発光の色調によるホログラム再生像を目視にて判定可能とし、偽造防止性を高めた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規なホログラムシート、特に、位相ホログラムを呈するレリーフホログラムのレリーフ位置に、サーモクロミック薄膜を配した発色型のホログラムシートに関するものである。
以下、サーモクロミック薄膜層が、「ある色調」から「別の色調」へと変化することを所定の加熱(熱板プレスまたは赤外線照射等。)による「変色」といい、「無色」乃至は「白色」の状態から「有色」の状態へ変化することを所定の加熱(熱板プレスまたは赤外線照射等。)による「発色」という。(もしくは、「変色」と「発色」を併せて、新たな「色」を発するという意味において、単に「発色」という場合もある。)
本明細書において、配合を示す「部」は質量基準である。また、「ホログラム」はホログラムと、回折格子などの光回折性機能を有するものも含む。「回折格子」には、光干渉縞などの光学的に形成したものや、電子線描画方法などの直接描画方法によって形成したものを含む。
本発明において、「不活性化処理」とは、「ある樹脂層」の表面の表面張力を低下させるなどして、その樹脂層のその表面の上に積層する、「別の樹脂層(別の材料層の場合もある。)」との接着性を低下させ、「ある樹脂層」と「別の樹脂層」との積層における、その両層の界面の接着強度(JIS Z0237で規定する180°剥離試験による、「剥離強度」を意味する。以下、剥離強度ともいう。)に関し、「不活性化処理」している領域の「接着強度の大きさ」を、「不活性化処理」していない領域における本来の「接着強度の大きさ」より低下させる処理を施すことを意味する。
この処理により、「ある樹脂層」の最表面に、表面張力の大きい領域と、小さい領域が現れることとなる。
この「不活性化処理」には、「ある樹脂層」の表面全面を「活性化処理」した後、その一部を不活性化処理することや、もともと表面張力の小さい「ある樹脂層」の一部を「活性化処理」することをも含み、結果として、「積層」された両層の界面の一部領域に、他の領域よりも接着強度の低い部分を形成することを含む。
もちろん、「ある樹脂層」と「別の樹脂層」との接着強度が小さい場合(すなわち、「別の樹脂層」の表面張力が小さいことを意味する。)にも、「ある樹脂層」の最表面の一部を「不活性化処理」することによって、結果として、「積層」された両層の界面の一部領域に、他の領域よりも接着強度の低い部分を形成することを含む。
【背景技術】
【0002】
(主なる用途)
本発明のホログラムシートの主なる用途としては、偽造防止分野に使用されるホログラムシートであって、具体的には、クレジットカード等の偽造されて使用されると、カード保持者やカード会社等に損害を与え得るもの、運転免許証、社員証、会員証等の身分証明書、入学試験用の受験票、パスポート等、紙幣、商品券、ポイントカード、株券、証券、抽選券、馬券、預金通帳、乗車券、通行券、航空券、種々の催事の入場券、遊戯券、交通機関や公衆電話用のプリペイドカード等がある。
これらはいずれも、経済的、もしくは社会的な価値を有する情報を保持した情報記録体であり、偽造による損害を防止する目的で、記録体そのものの真正性を識別できる機能を有することが望まれる。
【0003】
また、これら情報記録体以外であっても、高額商品、例えば、高級腕時計、高級皮革製品、貴金属製品、もしくは宝飾品等の、しばしば、高級ブランド品と言われるもの、または、それら高額商品の収納箱やケース等も偽造され得るものである。また、量産品でも有名ブランドのもの、例えば、オーディオ製品、電化製品等、または、それらに吊り下げられるタグも、偽造の対象となりやすい。
さらに、著作物である音楽ソフト、映像ソフト、コンピュータソフト、もしくはゲームソフト等が記録された記憶体、またはそれらのケース等も、やはり偽造の対象となり得る。また、プリンター用のトナー、用紙など、交換する備品を純正材料に限定している製品などにも、偽造による損害を防止する目的で、そのものの真正性を識別できる機能を有することが望まれる。
【0004】
(背景技術)
従来、情報記録体や上記した種々の物品(総称して、真正性識別対象物と言う。)の偽造を防止する目的で、その構造の精密さから、製造上の困難性を有すると言われるホログラムを真正性の識別可能なものとして適用することが多く行なわれている。しかしながら、ホログラムの製造方法自体は知られており、その方法により精密な加工を施すことができることから、ホログラムが単に目視による判定だけのものであるときは、真正なホログラムと偽造されたホログラムとの区別は困難である。
これらの真正性識別対象物、特にラベル形態や転写形態にてホログラム画像を施された物品は、ホログラム画像の目視確認という真正性識別のみでなく、新たな真正性識別方法を用いてその対象物の真正性を識別する必要が生じている。
【0005】
(先行技術)
これらの要求に応えるため、ホログラムに積層して、入射した光の内、左回り偏光もしくは、右回り偏光のいずれか一方の光のみを反射する光選択反射層を有するホログラムシートが提案された。(例えば、特許文献1参照。)
この光選択反射層として、コレステリック液晶を使用し、偏光版等を用いて確認する方法で偽造防止性を高めている。
しかしながら、特許文献1の記載にあるように、ホログラム形成層上の反射性薄膜層の反射率が高いため、コレステリック液晶層で反射されず透過した光(選択的反射光の補色光)が、この反射性薄膜層で反射し、再びコレステリック液晶層へ戻る(以下戻り光とする)ことにより、この戻り光が、コレステリック液晶を観察する際のノイズ成分となって、選択的反射光に付加・混在し、液晶本来の色調とならず、視認・識別することすら難しくなっていた。
【0006】
また、コレステリック液晶材料そのものが高価であり、その液晶性能を引き出すためには液晶層に接して、配向膜の形成が不可欠であって煩雑であり、さらには、コレステリック液晶の光散乱性により、ホログラム画像を再生する光がその液晶層を通過するときに画像にボケ・歪みを生じる等の問題があった。
このため、コレステリック液晶層の光散乱性を抑えたり、コレステリック液晶層そのものを薄くする等の工夫が考えられたが、コレステリック液晶層の光散乱性を抑えるために屈折率差を小さくしたり、コレステリック液晶層を薄くしたりすると、上記した光選択反射層としての機能が低下してしまい、ホログラム画像の鮮明性と偽造防止性能を確保する最適な条件を得ることが難しいという欠点を有していた。
さらには、ホログラム形成層をサーモクロミック材料で構成し、そのサーモクロミック層の一方の面にホログラムレリーフと反射性薄膜層を形成することで、そのホログラムレリーフの存在を隠蔽する偽造防止方法が提案されているが、この積層におけるサーモクロミック層は、あくまで「意外な色調変化をする」層としての役目をしているのみであり、偽造防止効果としては不十分であった。(例えば、特許文献2参照。)
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2007−90538号公報
【特許文献2】特開平3−248188号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
そこで、本発明はこのような問題点を解消するためになされたものである。その目的は、位相ホログラムのホログラム形成層、すなわちホログラムレリーフに接するようにサーモクロミック薄膜層を設け、もしくは、ホログラムレリーフに同調してサーモクロミック薄膜層を部分形成して、定められた条件下で、色調が変化したホログラムを視認することができ、もしくは、定められた条件下でのみ、所定の色調からなるホログラムを視認することができる、新規なホログラムラベルを提供することである。さらに、このホログラムラベルを不正に剥がした際には、サーモクロミック薄膜層に変形が生じ、さらには、ホログラムレリーフとサーモクロミック薄膜層との間に、空隙が発生し、不正を行った者には気づかれないうちに、再生されるホログラムが不鮮明化されているという高い偽造防止性を有するホログラムラベルを提供することである。
【課題を解決するための手段】
【0009】
本発明のホログラムラベルの第1の態様は、
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記ホログラムレリーフを形成する凹凸に追従して、且つ、均一な厚さで設けられたサーモクロミック薄膜層、及び、接着剤層が設けられているホログラムラベルであって、前記透明樹脂層の前記ホログラムレリーフ面の一部が不活性化処理されていることを特徴とするものである。
上記第1の態様のホログラムラベルによれば、
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記ホログラムレリーフを形成する凹凸に追従して、且つ、均一な厚さで設けられたサーモクロミック薄膜層、及び、接着剤層が設けられているホログラムラベルであって、前記透明樹脂層の前記ホログラムレリーフ面の一部が不活性化処理されていることを特徴とするホログラムラベルを提供することができ、不正にホログラムラベルを剥がした者には気づかれずに、その不正の痕跡を残すことができる高い偽造防止性を有するホログラムラベルを提供することができる。
また、本発明のホログラムラベルの第2の態様は、
前記サーモクロミック薄膜層が、前記ホログラムレリーフを形成する凹凸の凹部にのみ形成されていることを特徴とするものである。
上記第2の態様のホログラムラベルによれば、
前記サーモクロミック薄膜層が、前記ホログラムレリーフを形成する凹凸の凹部にのみ形成されている第1の態様に記載のホログラムラベルが提供でき、第1の態様の特徴に加えて、サーモクロミック薄膜層を発色させたときに、より鮮明なホログラム再生像を視認可能な、ホログラムラベルを提供することができる。
さらに、本発明のホログラムラベルの第3の態様は、
前記サーモクロミック薄膜層の厚さが、0.01μm以上0.5μm以下であることを特徴とするものである。
【0010】
上記第3の態様のホログラムラベルによれば、
前記サーモクロミック薄膜層の厚さが、0.01μm以上0.5μm以下である第1の態様または第2の態様に記載のホログラムラベルが提供でき、第1または第2の態様の特徴に加えて、サーモクロミック薄膜層を発色させたときに、著しく鮮明なホログラム再生像を視認可能な、ホログラムラベルを提供することができる。
そして、本発明の第4の態様であるホログラムラベルは、
第1〜第3の何れか一つの態様のホログラムラベルの前記ホログラムレリーフ面の前記不活性化処理されている前記一部の領域が、50μm〜300μmの大きさの微細なパターン形状の集まりであることを特徴とするものである。
上記の態様のホログラムラベルによれば、
第1〜第3の何れか一つの態様のホログラムラベルの前記ホログラムレリーフ面の前記不活性化処理されている前記一部の領域が、50μm〜300μmの大きさの微細なパターン形状の集まりであることを特徴とするホログラムラベルを提供することができ、不正にホログラムラベルを剥がした際のホログラム再生像の不鮮明化をさらに著しくすることが可能な、ホログラムラベルを提供することができる。

本発明のホログラムラベルにおいては、ホログラム画像を再生する回折格子群が、ホログラムレリーフとして、透明基材の一方の面に形成された透明樹脂層面上に略一平面として形成されており、このレリーフ上に、若しくは、このレリーフに追従して均一な厚さでサーモクロミック薄膜層が設けられている。
すなわち、ホログラムレリーフは、位相ホログラムとしての位相差を「レリーフ形状(凹凸形状を意味する。)」に現しているが、この位相差を有する「レリーフ形状」に追従して(沿って)サーモクロミック薄膜層が設けられることにより、サーモクロミック薄膜層が呈する色調が、上記位相差を有して(含んで)観察されることになる。言い換えれば、サーモクロミック薄膜が所定の条件下において呈する「色調」を有する「光」がそのサーモクロミック薄膜層から「発する」ことになる。
【0011】
サーモクロミック薄膜層が、既に、「ある色調」を呈している(「有色」の状態を意味する。)場合には、通常の室内照明光の下で、その色調によるホログラムラベルとして視認できるため、「ある色調」と「同一の色」(色の三要素である「色相」「色彩」「明度」が実質的に一致することを意味する。)を呈する「真正」等のそのホログラムラベルが本物であることを意味する文字や図柄等印刷層を、ホログラムラベルを構成する各層の上下、特には、透明基材と透明樹脂層との間に設けることが好適である。
また、サーモクロミック薄膜層が、透明性を有しているか、もしくは、「白色」(サーモクロミック材料表面の光散乱性により、「白色」と視認されることを意味する。)である場合には、サーモクロミック薄膜層を加熱しない限り、単なる透明なラベル、もしくは、白色ラベルとして視認される。
そのため、上記した種々のホログラムラベルの用途においては、その用途に適合する文字や絵柄等の印刷層を、ホログラムラベルを構成する各層の上下、特には、透明基材と透明樹脂層との間に設けることが好適である。
これにより、サーモクロミック薄膜層に対して所定の加熱をし、所定の加熱による「変色」をさせた際に、その「真正」等の文字が浮き上がるようにすることができる。
この場合における「同一の色」の範囲は、「色差」、例えば、L*a*b*色度図(LAB表色系)における△E{=(△a2+△b2+△L21/2)}で表される「色差」において、△Eが、0.5以下となることを意味する。
国際照明委員会(CIE)が提唱する表色系には、その他RGB系、XYZ系(Yxy系)、UVW系(Luv系)等があるが、これらは相関しており、容易に換算が可能であって、その換算値を用いることもできる。
そして、「色」の変化は、この△Eが0.5を超えると「差があるもの」として認識され(SLIGHT:差がわずかに感じられる。)、1.5を超えると明確にその「違い」を視認できる(NOTICEABLE:差がかなり感じられる。)。
【0012】
このような「通常のデザインを有する通常のラベル」もしくは、ある色調を呈するホログラムラベルとしか視認されない「ラベル」が、所定の加熱により「変色」乃至は「発色」して、その「変色」波長、乃至は「発色」波長のホログラム再生像を出現する。
その上、ホログラムラベルを不正に剥がそうとすると、その剥がす力により、ホログラムラベルに変形応力や張力が負荷としてかかり、その力により、透明樹脂層のホログラムレリーフ面の一部の「不活性化処理されている領域」において優先的に界面剥離が発生し、その部分において、ホログラムラベルのサーモクロミック薄膜層が一部変形を起こすこととなる。
すなわち、ホログラム再生像を再生する発色面であるサーモクロミック薄膜層のホログラムレリーフ形状が部分的に歪み、サーモクロミック薄膜層の形状が保持する「位相情報」が乱れることにより、その「領域」においてホログラムレリーフの干渉効果(ホログラムレリーフの一つ一つの凹凸から発する光が互いに干渉し、強め合ったり、弱めあったりして、ホログラム再生像を結像する、その効果を意味する。)を低減させて、ホログラム再生像の輝度、さらには、そのコントラストが低下し、不鮮明なものとなる。
そして、その変形がサーモクロミック薄膜層の比較的大きな領域(ホログラムレリーフ形成面の大半を意味する。)に及ぶと、再生されるホログラム再生像そのものに歪みを生じることとなる(互いに干渉し、強め合って進む、「ホログラム再生像を結像する光」の進行方向が乱れることを意味する。)。
さらに、界面剥離が生じた部分において、「空隙」が発生し、この部分に、断熱性の高い「空気」が入り込むことによって、この「空気」と透明樹脂層との界面、及び、「空気」とサーモクロミック薄膜層との界面において、所定の加熱が伝わり難くなり、この「空隙」の下に位置するサーモクロミック薄膜層においては、所定の加熱が大幅に低下し、その位置のサーモクロミック薄膜層の「変色」や「発色」が十分に起こらず、「変色」においては、「元の色調」と、「新たな色調」とが混ざり合ったものとなったり、「発色」においては、その明るさ(明度)に欠けるものとなる。
【0013】
従って、その結果、この「空隙」の下に位置するサーモクロミック薄膜層と、それ以外の位置にあるサーモクロミック薄膜層とで、その「色調」や、「明るさ」に差を生じることとなる。
このような現象を、目視にて容易に判定できるように、「空隙」が発生していない領域における「変色」前の「色」による「印刷層A」と、「変色」後の「色」と「同一の色」による「印刷層B」とを、ホログラムラベルの中に併設することが好適である。
すなわち、「変色」するサーモクロミック薄膜層においては、
その「空隙」が発生していない領域においては、
・「変色」前には、「印刷層A」が視認できず、「印刷層B」が鮮明に視認でき、
・「変色」後には、「印刷層A」が視認できて、「印刷層B」が視認でき なくなる
現象を確認して、そのホログラムラベルの「真正性」を判定し、
その「空隙」が発生している領域においては、
・「変色」前は、上記と同様に視認されるが、
・「変色」後には、「印刷層A」が視認できて、さらに、「印刷層B」を も視認できる状態となり、その「ホログラムラベルを剥離した痕跡」 を容易に判定できることとなる。
また、「発色」するサーモクロミック薄膜層においても、「発色」後の「色」と「同一の色」による「印刷層B」を、ホログラムラベルの中に設けることで、
その「空隙」が発生していない領域においては、
・「発色」後には、「印刷層B」が視認できなくなる現象を確認して、そ のホログラムラベルの「真正性」を判定し、
その「空隙」が発生している領域においては、
・「発色」後には、その「明度」の差によって、「印刷層B」が視認でき る状態としてのこり、その「ホログラムラベルを剥離した痕跡」を容 易に判定できることとなる。
そして、このような「サーモクロミック薄膜層の変形」は、ホログラムラベルの外観上において、何らの変化も示さないため、不正行為を行った者には、このような「不正の痕跡」が残されたことを知るすべもなく、且つ、不正行為を確認する者にとっては、容易にその「不正の痕跡」の有無を判定せしめるものである。
【0014】
本発明で使用される透明基材には、厚みを薄くすることが可能であって、機械的強度や、ホログラムラベルを製造する際の加工に耐える耐溶剤性および耐熱性を有するものが好ましい。使用目的にもよるので、限定されるものではないが、5〜250μm厚さのフィルム状もしくはシート状のプラスチックを用いる。
透明基材の上に形成される、ホログラムレリーフを有する透明樹脂層(以下、ホログラム形成層ともいう。)を構成する、透明な樹脂材料としては、各種の熱可塑性樹脂、熱硬化性樹脂、もしくは電離放射線硬化性樹脂を用いることができ、グラビアコーティング方式等の各種コーティング方式や、オフセット印刷方式、スクリーン印刷方式等の各種印刷方式を用いて、5μm〜50μm厚さの透明樹脂層を形成する。
上記の透明な樹脂材料を用いてホログラムレリーフを有する透明樹脂層を形成するには、感光性樹脂材料にホログラムの干渉露光を行なって現像することによって直接的に形成することもできるが、予め作成したレリーフホログラムもしくはその複製物、またはそれらのメッキ型等を複製用型として用い、その型面を上記の樹脂材料の層に押し付けることにより、賦型を行うことが好適である。
熱硬化性樹脂や電離放射線硬化性樹脂を用いる場合には、型面に未硬化の樹脂を密着させたまま、加熱もしくは電離放射線照射により、硬化を行わせ、硬化後に剥離することによって、硬化した透明な樹脂材料からなる層の片面にレリーフホログラムの微細凹凸を形成することができる。なお、同様な方法によりパターン状に形成して模様状とした回折格子を有する回折格子形成層も光回折構造として使用できる。
レリーフホログラムは、物体光と参照光との光の干渉による干渉縞を凹凸のレリーフ形状で記録されたもので、例えば、フレネルホログラムなどのレーザ再生ホログラム、及びレインボーホログラムなどの白色光再生ホログラム、さらに、それらの原理を利用したカラーホログラム、コンピュータジェネレーティッドホログラム(CGH)、ホログラフィック回折格子などがある。また、マシンリーダブルホログラムのように、その再生光を受光部でデータに変換し所定の情報として伝達したり、真偽判定を行うものであってもよい。
【0015】
微細な凹凸を精密に作成するため、光学的な方法だけでなく、電子線描画装置を用いて、精密に設計されたレリーフ構造を作り出し、より精密で複雑な再生光を作り出すものであってもよい。このレリーフ形状は、ホログラムを再現もしくは再生する光もしくは光源の波長(域)と、再現もしくは再生する方向、及び強度によってその凹凸のピッチや、深さ、もしくは特定の周期的形状が設計される。凹凸のピッチ(周期)は再現もしくは再生角度に依存するが、通常0.1μm〜数μmであり、凹凸の深さは、再現もしくは再生強度に大きな影響を与える要素であるが、通常0.1μm〜1μmである。
そして、このホログラムレリーフを有する透明樹脂層の表面の一部に、「不活性化処理」を施す。ここで、「一部」とは、ホログラムレリーフ面全体に対して、「一部」の面積、すなわち、「領域」を意味する。この「領域」は、連続する領域であっても、離散的な領域の集まりであってもよい。
この「領域」への不活性化処理においては、ホログラムレリーフ面の最表面のみ、すなわち、その表面から透明樹脂層の内側(厚さ方向)に対して、僅かな距離のみ(例えば、0.001μm〜0.01μm程度。)の部分の樹脂の性質を、変性乃至は改質する。もしくは、これ以上の距離を変性乃至改質する場合においても、その透明樹脂層のホログラムレリーフ形状に実質的な変化を起こさない方法を用いる。
「不活性化処理」は、透明樹脂層上に直接「不活性化処理」を行う方法、例えば、熱硬化性樹脂や、硬化剤を添加した樹脂を用いて、その最表面の一部を赤外線加熱等により完全硬化させて、未反応成分を解消したり、離型成分を含む樹脂の部分加熱や部分硬化により、その離形成分を最表面にブリードする方法等と、まず、「活性化処理」、例えば、炭酸ガスレーザー照射、遠赤外線炭酸ガスレーザー照射、172nm真空紫外線(VUV、エキシマ光)照射、酸素増感エキシマ光照射、プラズマ処理等の透明樹脂層最表面の化学結合エネルギーよりも大きいエネルギー(7.2eV)により、透明樹脂層最表面の化学結合を切断し、または、172nmの真空紫外線等のように、大気中の酸素に吸収されてオゾンまたは直接励起酸素を発生し、この接触により官能基を生成する等の物理的処理等を用いて、透明樹脂層の最表面のみを「活性化(表面張力が大きくなることを意味する。)」し、その後、活性化した透明樹脂層の最表面の一部(領域)に、その最表面のみを部分的に溶解する、もしくは、その最表面の活性化した官能基と反応して官能基の活性を解消する、溶剤類等を、活版印刷方式やインクジェット方式を用いて、活性化処理面への接触を避けてパターン形成し、透明樹脂層の活性化された最表面の部分のみと反応して、その部分のみを不活性化させる方法とがある。
【0016】
これらの方法によれば、透明樹脂層上のホログラムレリーフの形状には、精密な意味において、「何らの変化」も生じないため、この上に形成するサーモクロミック薄膜層の形状は、精密に「ホログラムレリーフ」の形状となる。
例えば、後者の不活性化処理によれば、ポリエチレンテレフタレート樹脂で、60mN/mに増大した表面張力が、36mN/mとなり、透明樹脂層としてのメラミン樹脂との剥離強度が0.8kg/25mm幅から0.1kg/25mm幅へと小さくなり、「不活性化処理」領域と、他の領域のとの剥離強度の差を大きくすることができる。
また、「不活性化処理」としては、透明樹脂層とはそもそも接着し難い、表面張力の小さい樹脂、例えば、シリコーン樹脂やパラフィン系樹脂等を透明樹脂層上に形成して、その上に形成するサーモクロミック薄膜層と透明樹脂層との剥離強度を低下させる方法もあるが、この場合には、このシリコーン樹脂等が、透明樹脂層のホログラムレリーフ上に「厚さ」を有して残り、この上に形成するサーモクロミック薄膜層の「レリーフ形状」を本来のホログラムレリーフ形状からかけ離れたものとしてしまうため、その方法を用いることができない。(もちろん、透明樹脂層内に「浸み込むタイプ」のものであって、ホログラムレリーフ上に実質的に何らの「厚さ」を付加しないものであれば、使用可能である。)
これは、ホログラムレリーフの凹凸形状の深さが0.1μm程度であるため、その1/10の深さである「0.01μm」程度の厚さの樹脂残りがあっても、ホログラム再生像の鮮明さに大きな影響を及ぼすためである。
そこで、このようなシリコーン樹脂等による「不活性化処理」は、透明樹脂層上にサーモクロミック薄膜層を形成して、そのサーモクロミック薄膜層を「精密なホログラムレリーフ形状」とした、そのサーモクロミック薄膜層上にそのシリコーン樹脂等を設けて、サーモクロミック薄膜層と、接着剤層との界面において、容易に剥離する部分を設ける方法が好適である。
もちろん、サーモクロミック薄膜層上に、透明樹脂層と同様な不活性化処理を施すことも好適であり、その際には、透明樹脂層上の不活性化処理の位置と、サーモクロミック薄膜層の不活性化処理の位置とを同調させることも、サーモクロミック薄膜層の変形効果が大きくなり、好適である(同調とは、ホログラムラベルの観察側から、ホログラムラベルに対して垂直方向に見て、全く重なる位置としてもよく、また、敢えて、互い違いに位置するようにしてもよい。いずれにしても、サーモクロミック薄膜層の厚さや材質に合わせ、サーモクロミック薄膜層の変形がし易い組み合わせとする。)。
【0017】
そして、この不活性化処理する領域、すなわち、ホログラムレリーフ面の不活性化処理されている一部の領域を、50μm〜300μmの大きさの「微細なパターン形状の集まり」とすることで、サーモクロミック薄膜層の変形をより効率的に発生させ、しかも、この「「微細なパターン形状の集まり」状に「発色」や「変色」の不十分な部分と、「発色」や「変色」が十分な部分とが発生させて、不正な剥離行為が行われた痕跡を目視にて容易に判定可能とすることができる。
その「微細なパターン形状」は、例えば、網点形状、市松模様状、ランダムパターン等とし、その「微細なパターン」の部分のみ不活性化処理することで、すなわち、「微細なパターン」と「微細なパターン」の間の領域は不活性化処理しないことで、
網点形状の場合には、その網点の中を不活性化処理し、網点と網点の間の領域は不活性化処理せず、市松模様状の場合には、升目で一様に区切り、その一つ飛ばしの升目の部分のみ、不活性化処理し、それ以外の升目は、不活性化処理しないことにより、ホログラムレリーフを有する透明樹脂層とサーモクロミック薄膜層との界面の剥離強度に微細な網点状や微細な市松模様状の強弱を付与することで、サーモクロミック薄膜層に与える変形、及び、空隙の大きさを、目視可能な大きさである、50μm〜300μmとする。
このため、「微細なパターン」の個々の大きさ(市松模様であれば、その一つのマスの大きさを意味する。)は、50μm〜300μmとする。好適には、100μm〜300μmである。
「微細なパターン」の個々の大きさが、300μmより大きいと、サーモクロミック薄膜層のホログラムレリーフ形状に対する変形の周期が大きすぎ、この部分の凹凸の干渉効果を低減するような変形となり難く、また、50μm未満とすると、不活性化処理の個々の領域が小さくなりすぎて、上記した方法による、目視判定がし難くなる。
この不活性化処理を施す範囲は、ホログラムレリーフを有する透明樹脂層全体に渡って施すこともできるが、この不活性化処理の目的が「不正行為の判定」であるため、ホログラムラベルの所定の一部範囲(1/10〜1/25の範囲。)に限定して施すことも、そのような処理が存在することをさらに秘匿する意味で好適である。
ここで、ホログラム再生像が出現する原理について以下に説明する。
サーモクロミック薄膜層が「発色」もしくは「変色」により呈する「光」は、レリーフホログラムを再生する場合に生じる(ホログラム再生の元となる)ホイヘンスの2次波に対し、本発明のホログラムラベルの場合において、この2次波に相当するものが、ホログラムレリーフ面に配されたサーモクロミック薄膜の呈する色調(以後、「発した色」、もしくは、「変色した色」からでる「光」を便宜上まとめて、「発色光」、又は「発光光」とも表現する。)であり、この発色光がその役目を担い、ホログラム画像に対応した回折格子群を含むホログラムレリーフが有する位相差を含んで発色光を観察者側に発するものである。
【0018】
この発色光が、ホログラムレリーフ面上の空間において干渉現象を起こし、その結果、所定の方向に所定のホログラム再生像を発現する。
サーモクロミック薄膜が、その色調を変化させる様子を、サーモクロミック分子ポテンシャル曲線(図1参照。)を用いて、以下に説明する。
サーモクロミック分子S1(光吸収波長λを有する。この波長が、紫外領域や、赤外領域の場合は、無色透明と観察される。)は、熱伝導、赤外線等の放射線照射、自発熱等によってエネルギーを得て、励起状態の分子S*になる。(STEP1)
このとき、励起状態となったサーモクロミック分子S*は分子内反応、例えば、固相反応、電子供与体ー受容体の電子授受、結晶転移、脱水、(結晶)構造変化にともなう化学変化等により、その分子の幾何構造や、電子構造を変化させる。
この変化によって、サーモクロミック分子S*は、サーモクロミック分子S1とは違った波長の光λ′(可視光領域の波長。可視光領域の吸収極大を有することを意味する。また、λとλ´が逆の場合は、発色→消色へと変化することになる。)を吸収するサーモクロミック分子S2 へと変化する。
そして、サーモクロミック分子S2 は、熱エネルギーを吸収(STEP3)して、再び、サーモクロミック分子S1 へと戻る。
そしてこのSTEP1〜STEP3を繰り返すことが可能であって、この性質をサーモクロミズム性と呼び、その性質を示す薄膜層を、サーモクロミック薄膜層と称する。
S1の方がS2よりも熱的に安定であり、常温でS1が主成分となり、高温下でS1が主成分となる。
△HをS2とS1のエンタルピー差とすれば、S1の存在量とS2の存在量の比は、
[S2]/[S1]=K×EXP(−△H1/RT) ・・・ (1)
と表される。(R:気体定数、T:温度)
この比の温度依存性が、S1のサーモクロミズム性の温度に対する感度である。この感度は、△H1に比例しており、△H1の大きいほど、感度が高く好ましい。例えば、常温でS1とS2の比が9/1である場合、100℃でこの比が逆転するためには、△H1=10kcal/mol(キロカロリー/1分子)である必要がある。この△H1が大きいことは、活性化エネルギー△H2の値を大きなものとし、S1からS2への変化速度を下げることになるが、本発明の用途においては、この速度が比較的緩慢であっても、意匠性や、偽造防止性に影響しないものであれば問題とならない。
また、応答速度反応定数k(平衡に達するまでの速度定数)は、
k={kS1+kS2×EKP(△H1/RT)}×EXP(−△H2/RT)
となり、活性化エネルギー△H2が高いと反応速度が遅く、また、△H1が高いと応答速度が早くなるものの、S2からS1への逆反応を早めるため、平衡時におけるS2の存在量を低くする。このようにサーモクロミズムは、熱力学パラメーター△H1及び△H2によって制御される。
【0019】
しかし、いかにS1からS2への変化が大きくても、両者のスペクトル差(色差)が小さければ、サーモクロミズム性は小さい。
スペクトル差の程度は、上記したような化学変化量に比例せず、個々のスペクトル位置によっても異なる。
「色変化」という観点からは、「無色」から「有色」への変化が、「鮮明な変化」として捉えやすく好適である。「有色」から「別の有色」への変化は、必ずしも鮮明とはならないが、互いに補色の関係にあれば、むしろ「色差」発生の程度は大きいものとなる。
S1が「無色」で、S2が「有色」の場合を、「クロミズム性」と呼び、逆の場合、すなわち、S1が「有色」で、S2が「無色」の場合を、「逆クロミズム性」という。
本発明の場合は、「クロミズム性」を示す場合の方が、その意外性から、意匠性及び、偽造防止性に優れるものとなる。
従って、サーモクロミック薄膜層に用いられるサーモクロミック材料としては、温度変化による変色が明瞭で且つ変色温度幅が狭ければ使用できるが、意匠性においても、その意外性を高めるためには、又は、偽造防止の目的に使うためには、その変色温度や、変色レベルが高い精度で繰り返し可能であって、所定の温度で急激に変化するものが望ましい。
特に、常温(室温)では、無色であって、所定の加熱により発色するものが、より望ましく、消色段階は、意匠性を求めるものにおいては、しばらく発色を維持しているものが望ましく、偽造防止目的であれば、速やかに消色するものが望ましい。
すなわち、サーモクロミック薄膜は、あるときはサーモクロミック分子S1で構成され、あるときは、サーモクロミック分子S2で構成されていることになる。
サーモクロミック分子S1もしくは、S2はそれぞれ特徴のある光吸収曲線を有しており、サーモクロミック分子S1は波長λにおいて、サーモクロミック分子S2は波長λ´において大きな吸収(曲線)部分を持つ。
一例として、サーモクロミック分子S1における波長λが、紫外線領域にある場合、サーモクロミック分子S1は、無色透明であって、励起状態S*を経て、サーモクロミック分子S2に変化して初めて、可視光領域にある特定の波長(これが波長λ´の場合もある。)を中心とする光の吸収により、特定の色調を呈するようになる。
この「色調を呈する」状況は、サーモクロミック分子S2が、可視光領域において所定の光吸収曲線を有しており、このサーモクロミック分子S2に白色光を当てた際に、特定の波長を含む所定の波長領域の光を吸収し、吸収されなかった波長領域の光が発散光として、サーモクロミック分子Bからなるサーモクロミック薄膜層から発することになる。
この例によるホログラムラベルにおいては、サーモクロミック分子S2から発する発散光が、上記したホイヘンスの2次波の役割を担うことになる。
従って、サーモクロミック薄膜層がサーモクロミック分子S1で構成されているときには、このサーモクロミック薄膜層が無色透明であって、その位置にホログラムがあるとは認識できず、そのサーモクロミック薄膜層の背景にあるものが見えているが、熱伝導等の手段で、サーモクロミック薄膜層を加熱・昇温させることにより、サーモクロミック薄膜層が上記した波長領域の光を発散し、その発散光の干渉により、その発散光の「色調」によるホログラムが空中に浮かんで見えることになる。
【0020】
この発散光の「色調」によるホログラム再生像は、サーモクロミック薄膜層が、上記した△H2と△H1との差が大きい場合には、その「色調」をしばらく維持し、徐々に消色し、また、サーモクロミック薄膜層が、上記した△H2と△H1との差が小さい場合には、比較的すみやかに「色調」が消色し、再び、無色透明となる。
また、サーモクロミック分子S1、S2がいずれも可視領域の色調を呈する場合には、ホログラム再生像の色調が変わる現象が現れることになる。
本発明のホログラムラベルのこのような効果を意匠性ととらえて、鑑賞用途に採用してもよい。
また、△H2と△H1との差が小さいものの中でも、その消色の速さを非常に早いものとして、加熱手段をはずすと同時に消色するように設計し、ホログラム真正性判定者が、ホログラムラベル(もしくはホログラムラベル貼着物)保持者から、そのホログラムラベル(もしくはホログラムラベル貼着物)を預かり、素早く加熱手段を僅かな時間あてて、その瞬間に、上記した発色光によるホログラム再生像を視認して、真正であることを確認し、その後、すみやかに、そのホログラムラベル(もしくはホログラムラベル貼着物)を、その保持者に返却するなど、その真正性判定を、その保持者に気づかれずにに行うことを可能とすることもできる。
この場合には、消色の速さを、発色強度(発色濃度)の半減期で表現して、その半減期が、0.1秒〜数秒となるように設計する必要がある。こうすることで、加熱手段を当てると、速やかに上記した変化が生じ、サーモクロミック分子S2の「色調」のホログラム再生像が現れ、加熱を止める(机の上に押し当てる等の不自然に見えない冷却手段を併用してもよい。)と、速やかに無色透明となる、真正性判定に優れるホログラムラベルを提供することができる。
もちろん、加熱後、発色を確認し、速やかに、再度、熱を加えて消色するような判定システムを用いることも好適である。
【0021】
次に、ホログラフィの原理について説明する。
物体がコヒーレント光で照明され,物体から回折された光が記録媒体(サーモレジスト等。)を照明しているとした場合、物体から回折されて記録面に到達した物体波は、
F(x,y)=A(x,y)EXP[φ(x,y)]
であらわされる。ここで、
A(x,y) は物体波の振幅分布とし、
φ(x,y) は位相分布とする。
このとき、記録媒体には、記録媒体に到達する光波の強度分布が記録される。その強度分布は、
I(x,y)=|F(x,y)|2=A2(x,y) (1)
となり、位相分布は記録されない。
ここで,物体波にこれと干渉性のある光波(参照波という)を重ね合わせると,記録される光波の強度分布は、
I(x,y)=|F(x,y)+R(x,y)|2
=|F(x,y)|2+|R(x,y)|2
+F(x,y)R*(x,y)+F*(x,y)R(x,y) (2)
となる.(*は複素共役項を表す。)
【0022】
ただし,参照光が記録面に角度θで入射する平面波であるとすれば、
R(x,y)=r(x,y)EXP(2πiαx) (3)
と書け、
α = SIN(θ)/λ (4)
である。(2)の第1項と第2項はそれぞれ、物体波の強度と参照波の強度でいずれも位相情報は欠落している。第3項と第4項は干渉の項でそれぞれ
F(x,y)R*(x,y)=
A(x,y)r(x,y)EXP[i [φ(x,y)−2παx] ] (5)
F*(x,y)R(x,y)=
A(x,y)r(x,y)EXP[−i [φ(x,y)−2παx]] (6)
とあらわされ、物体の位相項 φ(x,y) が残っている。(5)、(6)は互いに複素共役であり、(4.2)の第3項は物体の複素振幅分布を含んでいる。(5)、(6)を(2)に代入すると、
I(x,y)=|F(x,y)|2+|R(x,y)|2
+2A(x,y)r(x,y)COS [2παx−φ(x,y)] (7)
となる.物体波と参照波が干渉して干渉縞を形成していることがわかる。
【0023】
このように、物体波に参照波を重ね合わせて干渉記録し、 物体の位相情報を欠落させずに記録する方法がホログラフィである。(7)を記録したものが「ホログラム」と呼ばれる。ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布 I(x,y)に比例し、
T(x,y)=τI(x,y) (8)
とかけるとする。このホログラムに、記録したときに用いた参照波を所定の角度であてると、ホログラムを透過もしくは反射してきた波面は、
T(x,y)R(x,y)=τ(|F(x,y)|2+|R(x,y)|2
+τF(x,y)|R(x,y)|2
+τF*(x,y)R2(x,y) (9)
とあらわすことが出来る.この第2項は
τF(x,y)|R(x,y)|2
τA(x,y)r2(x,y)EXP[iφ(x,y)]] (10)
第3項は、
τF*(x,y)R2(x,y)=
τA(x,y)r2(x,y)EXP[−iφ(x,y)+2πiα] (11)
とかける。
【0024】
このことから、(9)の第1項は、照明光と同じ方向にホログラムを突き抜ける光束もしくは正反射する光束であり、第2項は、(10)より、物体光に比例した振幅を持つ光波であることがわかり、第3項は、(11)より、物体波と共役な位相分布を持ち、2θの方向に伝播する光波であることがわかる。
このようにして,ホログラフィの技術を使うと複素振幅分布を記録して再生することが出来る。
本発明の場合は、ホログラムの振幅透過率もしくは振幅反射率が、記録した強度分布に比例し、(8)の式で表されてはいるものの、このホログラムに、記録したときに用いた参照波を所定の角度であてるのではなく、(8)の振幅透過率もしくは振幅反射率と同様の空間的な分布を持つ発光波がこのホログラムから発せられることになる。
従って、参照光にホログラムに記録された位相項を付与するという従来のホログラム再生の原理によらず、既にホログラムに記録されている位相項を保持して発光波を放射するものである。従って、理論上は、物体の位相差を含む空間関数を持つ3次元の連続曲面状の発光面を有し、その1曲面から光が放射されることになる。
【0025】
従来のホログラム再生原理を透過タイプについて、単純化して説明すると、参照光としての平行光をホログラムにあてた際、遮蔽部分では、平行光が遮蔽され、透過部分からのみその平行光を透過し、透過部分と遮蔽部分との境界において回折が起こり、物体の持つ位相項を受け取り、ホログラムを透過した成分全体が重ね合わさり、それがホログラム再生光となって観察者の目に届くものである。
本発明の場合は、上記した参照光としての平行光が存在せず、ホログラムレリーフに接するように設けられた発光面での発光時(「発色」や「変色」により「色」が発することを「発光」と捉えることを意味する。ホログラム原理の説明をする場合においては、敢えてこの「発光」という言葉を使用する。)、その放射光が物体の位相項を保持しており、その放射光同士の干渉現象により、ホログラム再生がなされるものである。
時間的且つ空間的コヒーレンス性を持たない放射光同士の干渉効果は、レーザー光のような十分な干渉を生じないが、低コヒーレント光で ホログラムを照明した際と同様のレベルでホログラム再生が行われる。例示すれば、レーザー光のような特別な光源による照明を用いず、一般家庭や、一般的な事務所等において用いられている「蛍光灯」のような、「人工的に発生させた自然光」によっても、ホログラムを再生させることが十分可能である。但し、「人工的に発生させた自然光」であっても、その光源の大きさが、「点光源」であるか、「線状」であるか。もしくは「平面状」であるかによっても、また、その発光波長が、「単色光」であるか否か、さらには、その発光曲線の半値幅が狭いか否か等によって、その「ホログラム再生像の鮮明さ」は大きく左右されることになる。
以上のような原理によるホログラム再生であるため、ホログラム撮影時の参照光は平行光であることが好ましく(複雑な参照光を再現できないため。)、もしくは、「回折格子により表現されたホログラム」(回折格子は、物体光、参照光とも平行光である。)であることが好ましく、さらに、回折格子は計算機ホログラム等、電子線描画により形成したものが精密であり、好適である。
【0026】
さらに、上記の理由から、ホログラム再生像をより鮮明にするためには、放射光に、時間的若しくは空間的なコヒーレンス性に類する特性を付与することが必要であり、例えば、発光する層の厚さを薄いものとしたり、発光波長の幅を狭くすることが望ましい。
また、加熱する際、一つのホログラム画像を再生するホログラムの全体、すなわち、対応するサーモクロミック薄膜層全体を均一に加熱、そして、昇温させることが必要であり、温度分布を精度よく制御した加熱板(温度分布を±1度以内とする等。)や、強度の均一な赤外線照射を行うこと、さらに、観察時、その放射光をフィルタリングして発色光のみを取り出したり、さらにそれを増幅することも有効である。
これらの加熱により、ホログラムレリーフ面に接するように設けられたサーモクロミック薄膜層から、さらに言及すれば、そのサーモクロミック薄膜層に含まれるサーモクロミック分子等から個々に、加熱前の波長とは異なる波長の発光等が発現する。その発光等が、ホログラムレリーフと同一の空間的位相を含み、且つ、加熱前とは異なる波長(発光波長。)を有することから、ホログラムレリーフによる加熱前の回折方向とは異なる方向、すなわち、新たな発光波長による回折方向へホログラム像の再生が行われる。
但し、このサーモクロミック薄膜層の厚さが、ホログラムレリーフとは無関係にそのホログラム面上に分布している場合には、その厚さ分布に起因する発光強度分布が、場合によっては、ホログラムを再生する光と不要な干渉を生じ、ホログラム再生像を不鮮明にする要因となり得る。
この要因を排除するため、サーモクロミック薄膜層を、ホログラムレリーフを形成する凹凸に追従して均一な厚さで形成して、ホログラムレリーフ面のどの位置からも、同一の強度の発光が生じるようにし、ホログラム再生像の鮮明化を図る。
「ホログラムレリーフへ追従して、かつ、均一な厚さで形成する」とは、光が放出される発光層であるサーモクロミック薄膜層の膜厚さが、より薄く、且つ、より均一であることが要求されることを意味する。
すなわち、「ホログラムレリーフ面」と接する「発光層」との界面である「発光面」の形状はもちろんのこと、その「発光層」のホログラムレリーフ面とは反対側の「面」の形状も、そのホログラムレリーフのレリーフ形状と同一乃至はほぼ同一となることが重要である。(この「発光面」とその「面」との間に、サーモクロミック薄膜層が存在している。)
【0027】
ここで、ほぼ同一とは、レリーフ形状の凹凸の再現性(その二つの「面」の同一性を意味する。)が、90%以上、さらには、95%以上であることが望ましい。
これは、一つの凹凸の再現性であると同時に、ホログラムを再生する領域全体の再現性を示す指標である。
この再現性は、例えば、2つの3次元曲線の比較において、元の3次元曲線の凹凸領域の体積に対して、もう一つの3次元曲線との差分領域の体積が、その10%以内、さらには、5%以内にあることを意味する。これは、一つの凹凸の再現性であると同時に、ホログラムを再生する領域全体の再現性を示す指標である。簡易的な評価として、レリーフ断面同士を2次曲線で比較する方法を用いることも好適である。
本発明のホログラムラベルの加熱手段として、透明な発熱板を使用したり、紫外光や赤外光を使用した場合は、その板や光は観察者には見えず、あたかも(本来なら必要な)照明光のないところからホログラム再生像が浮き上がっているように観察されるが、このホログラム再生像は、昇温励起・発光というプロセスを経て発光するものであるため、その発光時の空間的なホログラムの位相を含んではいるとはいえ、その発色光同士の時間的及び空間的なコヒーレント性は小さく、ホログラム再生像は通常のレーザー再生レリーフホログラムのレーザー光による再生像より微弱であって且つ不鮮明となっている。
もちろん、ビーム形状の回折光を観察するのみであれば、その色調と回折方向を確認することは容易であり、そのままでも真正性の判定に差し支えないが、この微弱且つ不鮮明なホログラム再生像を観察者が認識しその存在を正確に判定可能とするために、サーモクロミック薄膜の発光性能を向上させ、且つ、回折角度を大きくとって波長―回折角依存性を強め、さらには、サーモクロミック薄膜層を薄くして、サーモクロミック薄膜層厚さ方向のばらつきを抑え且つ均一なものとすることが必要となる。(発光面が位相情報を含んでいるため、その空間的な形状を正確に再現するものとする。)
また、サーモクロミック薄膜層の発色光は、可視光領域にある「特定の吸収波長」を除くその「短波長側の領域の発光」と「長波長側の領域の発光」という二つの光(領域)の加色混合となることが多く、このことによるコヒーレント性の低下を招きやすい。このため、例えば、500nmに大きな吸収を有するサーモクロミック分子S2の場合には、「青色発光」と、「赤色発光」の加色混合により、通常なら「ピンク色の発光」色調となるところ、実際には、「青色発光」と「赤色発光」それぞれのホログラム再生像を再生し、それらが干渉して、ホログラム再生像の鮮明さを低下させるものである。
【0028】
この現象を回避するためには、「特定の吸収波長」の波長幅の比較的大きいもの、そして、500nm以下の領域と、500nmを越える領域の2つの領域にその吸収領域を持つことで、「発光波長」が、500nm付近にあって、且つその半値巾の狭い(50nm以下。)「発光」を実現し、より鮮明なホログラム再生像を得ることも好適である。
さらには、時間的なコヒーレント性を発現するため、サーモクロミック薄膜層の昇温と、冷却のサイクルを0.1秒〜1秒程度に速くすることも好適である。
これは、サーモクロミック薄膜層の「色が変化する温度」(サーモクロミズム温度。Tc温度ともいう。)を常温より高いものに設定し、赤外線ヒーター等による赤外線照射で、速やかに、Tc温度より高い温度まで薄膜層を昇温し、その赤外線照射を止めた後、速やかに冷却が進む(常温とTcの温度差が大きいほど、その冷却速度は速くなる。例えば、その差を20〜50度とする。冷却速度を確保するためには、20℃以上の差が必要であるし、その差が50℃を超えると、昇温に時間を要することとなる。)ようにし、薄膜層温度がTcより低くなった時点で、再び赤外線を照射して、薄膜層温度をTcより高いものとする、などの手法を用いることで達成できる。
これにより、一つの発光の発光面が、次の発光によって生じた発光面とは、互いに撹乱現象を起こさず、一つの発光面によって生じるホログラフィックな干渉現象により、鮮明なホログラム再生像を観察することができるようになる。このようにストロボ状の再生画像であっても、観察者には、連続して発光(再生)しているようにも見えるため、このような簡易な手段であっても目視で確認する場合には、鮮明なホログラム再生像を観察することができる。
サーモクロミック薄膜層は、サーモクロミック分子を樹脂に混入させたり、溶剤(若しくは水)に分散させたりしたサーモクロミック分子含有インキを、グラビア方式、オフセット方式、シルクスクリーン方式、ノズルコート方式さらにはインクジェット方式等でホログラムレリーフ上に形成することができる。
このとき、インキ中のサーモクロミック分子の含有割合を調整する等により、形成したサーモクロミック薄膜層を、ホログラムレリーフを形成する凹凸に追従して均一な厚さで形成することができる。
【0029】
ホログラムレリーフの凹凸は例えれば、1μmレベルの周期で、深さ0.01μmレベルの凹凸を持つ、ゆるやかな曲線であって略平面と見做せるため、この略平面上に適宜な粘度(0.1〜10パスカル・秒)に調整し、インキの自重によるレベリング効果を発揮させることと、インキ中の固形分を10%以下、さらには5%以下とすることで、例えば、厚さ1μmに対して、そのばらつきを1/10以下に、さらには1/20以下に抑えることができる。
ここで、サーモクロミック薄膜層を1μmオーダーとしたが、ホログラム再生像の鮮明度を向上させるためには、サーモクロミック薄膜層を離散的に設けることも好ましく、このために、サーモクロミック薄膜を形成する領域の単位(サイズ)を1.0μm程度もしくはそれ以下、例えば0.01μm〜0.5μm、より好適には、0.01〜0.05μmとし、ホログラムレリーフ面内に均一に点在させることも好適である。そして、サーモクロミック薄膜層厚さ方向には、サーモクロミック分子、もしくは、サーモクロミック分子を吸着させた微粒子を単位として1〜10分子もしくは1〜10粒子で並んでいる状態とすることが好ましい。
中でも、ノズルコート方式やインクジェット方式、さらには、化学蒸着等の物理的蒸着法では、樹脂を使用せず溶剤等とサーモクロミック分子や粒子のみで薄膜を形成可能であり、サーモクロミック薄膜層として非常に薄く形成(サーモクロミック分子や粒子1〜10分子等。)することができるため好適である。その上にそれらのサーモクロミック薄膜を固定するために適宜な透明樹脂層を保護層として形成してもよい。
ところで、サーモクロミック材料は、ホログラム記録材料や、光メモリ用記録材料そのものとして用いることは可能であり、そのような用途は既に公知であるが、これらは、サーモクロミック材料に直接ホログラフィックな記録(干渉縞の記録)を行うものであって、サーモクロミック材料に微細な明暗の記録を行うものである。
【0030】
この記録は、記録した領域のサーモクロミック分子に変化を与えない手法(変化を与えない程度に光を照射するなど。)を用いて、読み出されることになる。
これに対して、本発明のホログラムラベルは、均一に形成したサーモクロミック薄膜層を全て同様に(均一に)加熱し、均一な発色を生じさせるだけのものであって、ホログラム撮影光学系を組んでサーモクロミック薄膜層を露光するというような複雑な工程を必要とせず、サーモクロミック薄膜層そのものが「その形状として保有」している凹凸形状に、そのホログラム情報を担持させており、サーモクロミック薄膜層を均一に形成するだけでホログラム情報を「取得する」(「ホログラム再生情報」を「獲得する」という意味。)ことができるという顕著な効果を有するものである。
ホログラムレリーフは、周期1μm程度で、深さは、0.01μm、最大でも0.5μmの凹凸形状をしており、この凹部にのみサーモクロミック薄膜層を設けることで、ホログラムレリーフの周期に同調するかたちで、サーモクロミック薄膜層の有無、すなわち、発光の有無を設けることができる。
ホログラムレリーフの凹部とは、ホログラムレリーフ上にサーモクロミック薄膜層を形成する際の凹部であって、通常の観察の仕方、すなわち、ホログラム形成層側から観察する場合には、凸部側となる。サーモクロミック薄膜層の有無を利用して発光強度分布を形成するためには、凹凸どちらかに部分的に形成すればよく、さらには、凹部全体をサーモクロミック薄膜層で埋めてもよく、もしくは、凹部の底の部分のほんの一部のみに形成してもよい。但し、その位相分布と形成する分布が同調する必要があるため、一部に形成する場合は、常に同一の位置に同一のサーモクロミック薄膜「量」を持って形成しなければならない。(この「量」が、発光強度に比例するため。)
凹部に選択的にサーモクロミック薄膜層を形成する方法としては、溶剤等に分散した粒径の非常に小さい、サーモクロミック分子を含むか、その表面に吸着させた微粒子(粒径が0.01μm等。樹脂を含まない。)インキを使用して、ホログラムレリーフの上にインキ層を形成し、溶剤が揮発する間に、微粒子が自重で凸部から凹部へと移動するようにしても良い。
【0031】
また、規則的な回折格子を設け、その上に均一に設けたサーモクロミック薄膜層をフォトリソグラフィーを用いて、その規則的な回折格子に同調させて露光現像、エッチングすることにより、凹凸とサーモクロミック薄膜層を同調して設けることもできる。この方法によると、各凹部に点在するサーモクロミック薄膜層の厚さや大きさを制御可能であり、レリーフ面全体に、いわば”均一に”形成することができる。
以上の手法により形成したものは、上記のホログラムの原理において説明した、発光(放射光)にホログラムレリーフの位相情報を含ませること、に加え、その位相情報に同調した振幅情報をさらに含ませるものである。
従って、発光放射光に位相ホログラムと振幅ホログラムの両方のホログラム情報を含ませることができ、より鮮明なホログラムを得ることが可能となる。
これにより、その意匠性及び真正性判定性を向上することができる。
上記したホログラムの原理より、ホログラム再生像の鮮明度を高めるためには、サーモクロミック薄膜層の厚さは薄いことが望ましいが、薄くすればするほど、ホログラム再生時の発光強度が弱くなるため、サーモクロミック薄膜層厚さは、0.01μm以上1.0μm以下である必要があり、さらには、0.01μm以上0.5μm以下であることが好ましい。
0.01μm未満(最小粒径の粒子1個分)では、発光強度が弱すぎて、光電子倍増管を用いて増幅したとしても、迷光等のノイズとの区別がつきにくく、1.0μmを超えると、発光強度は本発明の目的には十分な強度を得ることが可能であるが、厚さ方向に複数存在する粒子からの発光により、ホログラムレリーフの位相情報を担う曲面の位置がその厚み方向に複数存在することになり、結果としてホログラム再生像が不鮮明となる。
これに対して、0.01μm以上として発光強度を確保し、0.5μm以下として、位相情報を担う曲面の位置を明確にして、ホログラム再生像を鮮明なものとする。
このようなサーモクロミック薄膜層は、ホログラムラベルを不正に剥がした際に非常に変形しやすいことから、真正性の判定性をさらに向上することができる。
【0032】
このサーモクロミック薄膜層上、もしくは、サーモクロミック薄膜層が無い領域においては、透明樹脂層上に直接、接着剤層を設け、本発明のホログラムラベルを形成することができる。
接着剤層に用い得る透明な樹脂としては、ポリメチルメタクリレート、ポリブチルアクリレート、ポリビニリデン、メチルセルロース、フッ素樹脂、メラミン樹脂、もしくは、この混合体等を適宜用いることができ、更に必要に応じて可塑剤、その他の添加剤を加えて使用することができる(接着剤を意味する。)。
これらの接着剤は、適宜、溶剤や、水に溶解させ、グラビア印刷等のコーティング方式や、シルク印刷、さらには、無溶剤のホットメルト方式等を用いて、上記のレリーフホログラムのホログラムレリーフ上に、乾燥後の形成厚さ、5μm〜50μmで、設けることができる。
5μm未満では、ホログラムラベルを貼着する被貼着体との接着力(接着強度、もしくは、剥離強度を意味する。)が不十分であり、また、50μmを超えると、ホログラムラベルの取扱い適性に欠けるものとなる。
この際、接着剤層の厚さと[透明基材+透明樹脂層]の厚さをほぼ等しくすると、透明樹脂層と接着剤層との界面が、ホログラムラベルのほぼ中央に位置し、ホログラムラベルを不正に剥がそうとしたときの、変形応力や引っ張り力が、この界面のずれ応力、乃至は剥離力となり易く、好適である。
上記した接着剤層に用いる透明な樹脂は、サーモクロミック薄膜層や透明樹脂層との接着性の強いものを適宜選択する。
【0033】
また、接着剤層には、光散乱性を有するもの、例えば、高屈折率である透明無機顔料微粒子(二酸化チタン顔料:屈折率2.70、酸化鉄パール顔料:屈折率3.0など。)を比較的多く混入させることが可能であって(接着剤層を通過する光は、「ホログラム再生」には寄与しないため。)、これにより、サーモクロミック薄膜層を変色、または、発色させた際の、観察側とは反対の方向に進む光を乱反射させて減衰させることができるとともに、接着剤層の粘性を抑制してホログラムラベルのブロッキングを防止でき、好適である。
接着剤層と、サーモクロミック薄膜層や透明樹脂層との180度剥離強度(剥離強度測定は、JIS Z−0237に準じ、剥離速度500mm/分とする。)は、100g/25mm〜3kg/25mm、特に、300g/25mm以上とすることが望ましい。100mm/25mm未満では、ホログラムラベルを被貼着体に貼着した後、ホログラムラベルを不正に剥がそうとした際に、被貼着体と接着剤層との界面においての剥離が起こり易くなり、ホログラムラベルに対して、曲げや、引っ張り等の力がほとんど働かず、サーモクロミック薄膜層の変形が小さいものとなる。
また、不正防止という意味では、剥離強度は、大きいことが望ましいが、3kg/25mmを超えると、ラベル加工適性や、ラベル貼付適性に劣るものとなる。
【発明の効果】
【0034】
本発明のホログラムラベルによれば、
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、及び、前記ホログラムレリーフに接するようにサーモクロミック薄膜層が設けられていることを特徴とするホログラムラベルが提供され、加熱前の波長と異なる波長によるホログラム再生像を持ち、ホログラムラベルを不正に剥がした際にはサーモクロミック薄膜層に変形が生じ、不正を行った者には気づかれないうちに、再生されるホログラムの不鮮明化等の不正の痕跡が残されているという、偽造防止性に優れるホログラムラベルが提供される。
【図面の簡単な説明】
【0035】
【図1】は、サーモクロミック分子ポテンシャル曲線を説明する図である。
【図2】は、本発明の一実施例を示すホログラムラベルAの断面図である。 (サーモクロミック薄膜層が、「ホログラムレリーフを形成する凹凸 に追従して均一な厚さで形成されている」例。)
【図3】は、本発明の他の実施例を示すホログラムラベルA´の断面図である。 (サーモクロミック薄膜層が、「ホログラムレリーフを形成する凹凸 の凹部にのみ形成されている」例。)
【図4】は、本発明の一実施例を判定するプロセスである。
【発明を実施するための形態】
【0036】
以下、本発明の実施形態について、図面を参照しながら、詳細に説明する。
(透明基材)本発明で使用される透明基材1は、厚みを薄くすることが可能であって、機械的強度や、ホログラムラベルAを製造する際の加工に耐える耐溶剤性および耐熱性を有するものが好ましい。使用目的にもよるので、限定されるものではないが、フィルム状もしくはシート状のプラスチックが好ましい。
例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリビニルアルコール、ポリスルホン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアリレート、トリアセチルセルロース(TAC)、ジアセチルセルロース、ポリエチレン/ビニルアルコール等の各種のプラスチックフィルムを例示することができる。
透明基材1の厚さは、通常5〜250μmであるが、ホログラム再生像の視認性を配慮する場合には、5〜50μm、特に5〜25μmとすることが望ましい。
【0037】
(ホログラムレリーフを有する透明樹脂層:ホログラム形成層ともいう。)
本発明のホログラムレリーフを有する透明樹脂層2(ホログラム形成層2)を構成するための透明な樹脂材料としては、各種の熱可塑性樹脂、熱硬化性樹脂、もしくは電離放射線硬化性樹脂を用いることができる。熱可塑性樹脂としては、アクリル酸エステル樹脂(屈折率n=1.47)、アクリルアミド樹脂(n=1.50)、ニトロセルロース樹脂(n=1.54)、酢酸ビニル樹脂(n=1.47)、もしくは、ポリスチレン樹脂(n=1.60)等が、また、熱硬化性樹脂としては、不飽和ポリエステル樹脂(n=1.64)、ウレタン樹脂(n=1.60)、エポキシ変性アクリル樹脂(n=1.55)、エポキシ変性不飽和ポリエステル樹脂(n=1.64)、アルキッド樹脂(n=1.54)、もしくはフェノール樹脂(n=1.60)等が挙げられる。
これらの熱可塑性樹脂および熱硬化性樹脂は、1種もしくは2種以上を使用することができる。これらの樹脂の1種もしくは2種以上は、各種イソシアネート樹脂を用いて架橋させてもよいし、あるいは、各種の硬化触媒、例えば、ナフテン酸コバルト、もしくはナフテン酸亜鉛等の金属石鹸を配合するか、または、熱もしくは紫外線で重合を開始させるためのベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド等の過酸化物、ベンゾフェノン、アセトフェノン、アントラキノン、ナフトキノン、アゾビスイソブチロニトリル、もしくはジフェニルスルフィド等を配合しても良い。
【0038】
また、電離放射線硬化性樹脂としては、エポキシアクリレート、ウレタンアクリレート、アクリル変性ポリエステル等を挙げることができ、このような電離放射線硬化性樹脂に架橋構造を導入するか、もしくは粘度を調整する目的で、単官能モノマーもしくは多官能モノマー、またはオリゴマー等を配合して用いてもよい。
上記の樹脂材料を用いてホログラム形成層2を形成するには、感光性樹脂材料にホログラムの干渉露光を行なって現像することによって直接的に形成することもできるが、予め作成したレリーフホログラムもしくはその複製物、またはそれらのメッキ型等を複製用型として用い、その型面を上記の樹脂材料の層に押し付けることにより、賦型を行なうのがよい。
熱硬化性樹脂や電離放射線硬化性樹脂を用いる場合には、型面に未硬化の樹脂を密着させたまま、加熱もしくは電離放射線照射により、硬化を行わせ、硬化後に剥離することによって、硬化した透明な樹脂材料からなる層の片面にレリーフホログラムの微細凹凸を形成することができる。なお、同様な方法によりパターン状に形成して模様状とした回折格子を有する回折格子形成層も光回折構造として使用できる。
ホログラム画像に対応した回折格子群を含むホログラムレリーフは物体光と参照光との光の干渉による干渉縞を凹凸のレリーフ形状で記録されたもので、例えば、フレネルホログラムなどのレーザ再生ホログラム、及びレインボーホログラムなどの白色光再生ホログラム、さらに、それらの原理を利用したカラーホログラム、コンピュータジェネレーティッドホログラム(CGH)、ホログラフィック回折格子などがある。また、マシンリーダブルホログラムのように、その再生光を受光部でデータに変換し所定の情報として伝達したり、真偽判定を行うものであってもよい。
【0039】
また、ホログラム画像に対応した回折格子群を含むホログラムレリーフである、微細な凹凸を精密に作成するため、光学的な方法だけでなく、電子線描画装置を用いて、精密に設計されたレリーフ構造を作り出し、より精密で複雑な再生光を作り出すものであってもよい。このレリーフ形状は、ホログラムを再現もしくは再生する光もしくは光源の波長(域)と、再現もしくは再生する方向、及び強度によってその凹凸のピッチや、深さ、もしくは特定の周期的形状が設計される。
また、カラーホログラム画像を、回折格子線からなる回折格子画素(同一の回折格子線からなる単一回折格子エリアの最小単位。これら画素から回折光としてでてくる光の集合が一つのカラーホログラム画像を形成する。)に要素分解し、所定の画素のサイズ、格子線ピッチ、格子線角度をその各要素に割り当てて再現するという画像処理方法を用いて形成することも可能である。(図示せず。)
凹凸のピッチ(周期)は再現もしくは再生角度に依存するが、通常0.1μm〜数μmであり、凹凸の深さは、再現もしくは再生強度に大きな影響を与える要素であるが、通常0.01μm〜0.5μmである。
単一回折格子のように、全く同一形状の凹凸の繰り返しであるものは、隣り合う凹凸が同じ形状であればある程、反射する光の干渉度合いが増しその強度が強くなり、最大値へと収束する。回折方向のぶれも最小となる。立体像のように、画像の個々の点が焦点に収束するものは、その焦点への収束精度が向上し、再現もしくは再生画像が鮮明となる。
【0040】
ホログラムレリーフ形状を賦形(複製ともいう)する方法は、回折格子や干渉縞が凹凸の形で記録された原版をプレス型(スタンパという)として用い、上記透明基材1上に、前記原版を重ねて加熱ロールなどの適宜手段により、両者を加熱圧着することにより、原版の凹凸模様を複製することができる。形成するホログラムパターンは単独でも、複数でもよい。
上記の極微細な形状を精密に再現するため、また、複製後の熱収縮などの歪みや変形を最小とするため、原版は金属を使用し、低温・高圧下で複製を行う。
原版は、Niなどの硬度の高い金属を用いる。光学的撮影もしくは、電子線描画などにより形成したガラスマスターなどの表面にCr、Ni薄膜層を真空蒸着法、スパッタリングなどにより5〜50nm形成後、Niなどを電着法(電気めっき、無電解めっき、さらには複合めっきなど)により50〜1000μm形成した後、金属を剥離することで作ることができる。
複製方式は、平板式もしくは、回転式を用い、線圧0.1トン/m〜10トン/m、複製温度は、通常60℃〜200℃とする。
(不活性化処理、及び、不活性化処理した領域)
このホログラムレリーフを有する透明樹脂層2の表面の一部に、「不活性化処理」を施して、[不活性化処理した領域]3を形成する。(図2または図3参照。)
「不活性化処理」は、まず、「活性化処理」として、炭酸ガスレーザー照射、遠赤外線炭酸ガスレーザー照射、172nm真空紫外線(VUV、エキシマ光)照射、酸素増感エキシマ光照射、プラズマ処理、オープンプラズマ処理、コロナ処理、電子線照射処理等の透明基材最表面の化学結合エネルギーよりも大きいフォトンエネルギー(7.2eV)、放電エネルギー、電子線エネルギー等により、透明樹脂層2の最表面の化学結合を切断し、または、172nmの真空紫外線等のように、大気中の酸素に吸収されてオゾンまたは直接励起酸素を発生し、この接触により官能基を生成する等の物理的処理等を用いて、透明樹脂層2の最表面のみを「活性化(表面張力が大きくなることを意味する。)」し、その後、活性化した透明樹脂層2の最表面の一部に、その最表面のみを部分的に溶解する、もしくは、その最表面の活性化した官能基と反応して官能基の活性を解消する、溶剤類等を、活版印刷方式やインクジェット方式を用いて、活性化処理面への接触を避けてパターン形成し、透明樹脂層2の活性化された最表面の部分のみと反応して、その部分のみを不活性化させ、不活性化した領域3を得る。(活性化領域、及び、プロセスは図示せず。)
【0041】
このうちの「活性化処理」の方法として、さらに、過マンガン酸塩、過酸化物等の酸化剤を塗布することによる酸化処理後、酸化剤を洗浄除去する化学的な処理や、ビニル、エポキシ、メタクリキシ、アミノ、メルカプト、アクリロキシ、イソシアネート、またはスチリル、アルコキシオリゴマータイプシランカップリング剤を用いた化学的な処理、さらには、真空処理であるアルゴンビームエッチング処理、もしくは、透明樹脂層2を部分的に溶解するエッチング液処理を、その透明樹脂層2の最表面の改質にのみ用いる等の物理的な処理も用いることができる。
さらに、使用する溶剤類として、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール、イソホロン、ジイソブチルケトン、等。)、アルコール類(メタノール、エタノール、イソプロピルアルコール、n−プロピルアルコール、イソブチルアルコール、n−ブチルアルコール等、さらにはその水溶液。)、芳香族類(ベンゼン、トルエン、キシレン、ソルベッソNo.100、ソルベッソNo.150、カクタスP−180等。)、環状炭化水素類(シクロヘキサン等)、エステル類(酢酸エチル、酢酸ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、酢酸セルソルブ、エチルー3−エトキシプロピオネート等。)、エーテル類(テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、t−ブチルセロソルブ等。)等を、「不活性化処理した領域3」を形成する領域に対して、活版印刷方式やインクジェット方式を用いて、活性化処理面への接触を避けてパターン形成し、その領域における「透明樹脂層2の活性化された最表面の部分のみ」と反応して、その部分のみを不活性化させる。
【0042】
このとき、溶剤が瞬時に揮発せず、所定時間、透明樹脂層2の表面に留まる必要があるため、その沸点は、60度以上200度以下、好適には、100度以上160度に調整する。 この方法は、透明樹脂層2のホログラムレリーフ(特に、「レリーフ」曲線の精度。)に悪影響をほとんど与えず、その最表面の性質のみを変化させる。
この不活性化処理により、ホログラムレリーフを有する透明樹脂層2のホログラムレリーフ面の不活性化処理した領域3の表面張力を、22mN/m〜40mN/m(ぬれ張力試験用混合液[濡れ試薬]による値。)とし、それ以外の領域を41mN/m〜73mN/mとする。
そして、不活性化処理した領域2とそれ以外の領域の表面張力の大きさの比を、1/1.5〜1/3とする。
この比が、1/1.5より大きいと、二つの領域の剥離強度の差が小さくなって、サーモクロミック薄膜層4の変形が生じ難くなり、1/3より小さいと、サーモクロミック薄膜層4の変形は非常に生じやすくなるものの、そのような大きな差を発現する、透明樹脂層2とその表面処理方法の組み合わせを得ることが物理的に難しくなる。
シリコーン樹脂等による「不活性化処理」は、透明樹脂層2上にサーモクロミック薄膜層4を形成して、そのサーモクロミック薄膜層4を「精密なホログラムレリーフ形状」とした後、そのサーモクロミック薄膜層4上にそのシリコーン樹脂等を設けて、サーモクロミック薄膜層4と、接着剤層5との界面において、容易に剥離する部分を設ける。(図示せず。)
もちろん、サーモクロミック薄膜層4上に、透明樹脂層2と同様な不活性化処理を施すことも可能である。
さらには、この「不活性化処理」の目的は、透明樹脂層2とサーモクロミック薄膜層4との界面において、一部とその他の部分とで、接着強度(剥離強度)の差を発現させることが目的であるため、表面張力の大きい透明樹脂層2上に、その透明樹脂層2との接着強度の小さいサーモクロミック薄膜層4を積層した場合においても、その透明樹脂層2上の一部を不活性化処理することで、その不活性化処理後の表面張力そのものの値が上記したものより大きいものであったとしても、結果として、両層の界面において、その部分の接着強度は非常に小さいものとなり、本発明の目的を達するものである。
そして、この不活性化処理する領域3、すなわち、「ホログラムレリーフ面の不活性化処理されている一部の領域」を、「微細なパターン形状の集まり」とすることで、サーモクロミック薄膜層4の変形をより効率的に発生させる。(図示せず。)
【0043】
「微細なパターン形状」の「形状」としては、網点形状、市松模様状、ランダムパターン等の「形状」を用いることができるが、これらの集合体である「微細なパターン形状の集まり」(図示せず。)を、「不活性化処理する領域3」とするためには、その「微細なパターン形状」の個々の「形状」の内側部分のみを不活性化処理する必要がある。
このためには、透明樹脂層2の最表面全体を上記の方法により、一様に「活性化」処理した後、この個々の「微細なパターン形状」の内側の領域のみに対して「不活性化処理」を施して、「不活性化処理した領域3」とすることが好適である。(図示せず。)
特に、この「微細なパターン形状」の「形状」は、精密に形成する必要がないため(個々の大きさや形を高い精度で同一とする必要はないということを意味する。)、上記した溶剤類を用い、インクジェット方式により「不活性化処理」をする方法、もしくは、炭酸ガスレーザー照射等の光学的手法により、レーザー照射のシャッターの開閉とその走査速度を制御することにより、「微細なパターン」状の活性化処理を行い、その未処理領域(不活性化処理した領域3に対応する。)を「微細なパターン形状」の集まり(集合体)とすることができる。
このため、「微細なパターン形状」の個々の大きさは、すなわち、不活性化処理した領域3の個々の大きさは、50μm〜300μmとする。好適には、100μm〜300μmである。
【0044】
この不活性化処理により、その不活性化処した領域3は、透明樹脂層2とサーモクロミック薄膜層3との剥離強度を、0.01kg/25mm幅以上0.1kg/25mm幅以下とすることができ、ホログラムラベルAもしくは、ホログラムラベルA´を一旦、被貼着体に貼着した後(図示せず。例えば、接着剤層5と被貼着体との剥離強度を、1kg/25mmとすると、不活性化処した領域3における、透明樹脂層2とサーモクロミック薄膜層3との剥離強度は、この1/10〜1/100ということになる。)、これを剥そうとすると、どのように工夫しても、必ず、不活性化処した領域3において、透明樹脂層2とサーモクロミック薄膜層3との間に剥離が生じ、空隙が発生するとともに、サーモクロミック薄膜層3の変形が発生する。
この変形は、サーモクロミック薄膜層3が透明、または、白色であるため、視認することはできず、もちろん、有色であっても、視認は難しく、サーモクロミック薄膜層3に用いるサーモクロミック材料に適合する波長の照明光を照射して初めて、本来のホログラム再生像より不鮮明なホログラム再生像、歪みを生じたホログラム再生像、さらには、発色や変色のムラを確認することができる。
このホログラム再生像の鮮明度の低下は、ホログラムレリーフを有する透明樹脂層2、サーモクロミック薄膜層3、及び接着剤層5に使用する材料、形成方法、層としての物理的特性や光学的特性、さらには、このホログラムラベルA、またはA´を剥がす方向や剥がそうとする力の大きさや速度に依存するが、JIS Z−0237に準じた剥離方法により(剥離速度500mm/分)、回折格子の回折効率に換算して、5%〜10%の低下に相当するようにする。
この低下が、5%未満では、剥がし行為の痕跡を確認する際の「判定精度」が不確かなものとなり。また、10%を超える低下とすると、その実現が物理的に困難である上、不正者にも何らかの異常が起こっていると察知される可能性がでてくる。
しかし、本発明のホログラムラベルは、加熱により変色乃至は発色するものであって、発生した「空隙」による断熱効果により、その変色乃至は発色を大幅に阻害して、その変形の確認を容易とするため、高い偽造防止性を有するものである。
【0045】
(サーモクロミック薄膜層)
本発明では、ホログラム形成層2のホログラムレリーフ面に、サーモクロミック薄膜層4を形成する。
このサーモクロミック薄膜層4に用いられる、サーモクロミック分子(サーモクロミック材料)としては、有機化合物系と、無機化合物系があり、
有機化合物系としては、
縮合芳香環置換エチレン誘導体として、
スピロピラン類:スピロピラン化合物の閉環型(無色)と開裂してできる平面的開環方(有色)との間の熱感度の高い平衡状態によるもの、すなわち、ビアントロンやジキサンチレン、キサンチリジエンアンスロン(無色→各色)、ジーα,β−ナフトイソスピロピラン、ベンゾーβーナフトイソスピロピラン、3−アルキル−ジ−ナフトイソスピロピラン、ビアンスロン、ジキサンチレン、キサンチリデンアンスロン等、
異性化タイプ:サリチルアルデヒド・アニリン誘導体縮合生成物等、
共役系有機化合物として、トリフェニルメタン系(無色→緑)、(緑→無色)等、
メタモカラーとして、電子供与呈色性有機化合物(色素)、電子受容性化合物、有極性有機化合物の3成分系からなるもの等がある。
【0046】
その電子供与性呈色性有機化合物としては、ジアリールフタリド類、インドリルフタリド類、ビニローグフタリド類、アザフタリド類、チアジン類、ボリアリールカルビナ−ル類、ロイコオーラミン類、アシルオーラミン類、アリールオーラミン類、ローダミンBラクタム類、インドリン類、スピロピラン類、フルオラン類、フルオレン類等があり、
フルオラン類としては、3,6−ジメトキシフルオラン、2−クロロ−6−シクロヘキシルアミノフルオラン、3−クロロ−6−シクロヘキシルアミノフルオラン、2−メチル−6−シクロヘキシルアミノフルオラン、3−メチル−6−シクロヘキシルアミノフルオラン、1,3−ジメチル−6−ジエチルアミノフルオラン、2−tert−ブチル−6−ジエチルアミノフルオラン、2−クロロ−6−ジエチルアミノフルオラン、2−クロロ−3−メチル−6−ジエチルアミノフルオラン、2−メチル−6−(N−エチル−4−メチルアニリノ)フルオラン、8−ジエチルアミノベンゾ[a]フルオラン、2−ジベンジルアミノ−6−ジエチルアミノフルオラン、2−ジベンジルアミノ−4−メチル−6−ジエチルアミノフルオラン、2−n−オクチルアミノ−6−ジエチルアミノフルオラン、2−アニリノ−6−(N−エチル−N−n−ヘキシルアミノ)フルオラン、2−(N−メチルアニリノ)−6−(N−エチル−4−メチルアニリノ)フルオラン、2−クロロ−3−メチル−6−[4−(4−アニリノアニリノ)アニリノ]フルオラン、2−アニリノ−3−メチル−6−ジメチルアミノフルオラン、2−アニリノ−3−メチル−6−ジエチルアミノフルオラン、2−アニリノ−3−メチル−6−ジ−n−プロピルアミノフルオラン等。
【0047】
さらに、2−アニリノ−3−メチル−6−ジ−n−ブチルアミノフルオラン、2−アニリノ−3−メチル−6−ジ−n−ペンチルアミノフルオラン、2−アニリノ−3−メチル−6−(N−メチル−N−エチルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−メチル−N−n−プロピルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−メチル−N−n−ブチルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−メチル−N−イソブチルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−メチル−N−n−ペンチルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−メチル−N−シクロヘキシルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−エチル−N−n−プロピルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−エチル−N−n−ブチルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−エチル−N−イソブチルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−エチル−N−n−ペンチルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−エチル−N−イソペンチルアミノ)フルオラン、2−アニリノ−3−メチル−6−(N−エチル−N−n−オクチルアミノ)フルオラン、2−アニリノ−3−メチル−6−[N−エチル−N−(3−エトキシプロピル)アミノ]フルオラン、2−アニリノ−3−メチル−6−(N−エチル−N−p−トリルアミノ)フルオラン、2−アニリノ−3−クロロ−6−ジエチルアミノフルオラン、2−アニリノ−3−クロロ−6−ジ−n−ブチルアミノフルオラン、2−(2−クロロアニリノ)−6−ジエチルアミノフルオラン、2−(2−クロロアニリノ)−6−ジ−n−ブチルアミノフルオラン、2−(2−フルオロアニリノ)−6−ジエチルアミノフルオラン、2−(2−フルオロアニリノ)−6−ジ−n−ブチルアミノフルオラン、2−(3−トリフルオロメチルアニリノ)−6−ジメチルアミノフルオラン、2−(3−トリフルオロメチルアニリノ)−6−ジエチルアミノフルオラン、2−(3−トリフルオロメチルアニリノ)−6−ジ−n−ブチルアミノフルオラン、2−(4−メチルアニリノ)−3−メチル−6−ジエチルアミノフルオラン、2−(4−t−アミルアニリノ)−3−メチル−6−ジエチルアミノフルオラン、2−(3−クロロ−4−メチルアニリノ)−3−メチル−6−ジエチルアミノフルオラン、2−(2,4−ジメチルアニリノ)−3−メチル−6−ジエチルアミノフルオラン、2−(2,4−ジメチルアニリノ)−3−メチル−6−ジ−n−ブチルアミノフルオラン、2−(2,6−ジメチルアニリノ)−3−メチル−6−ジエチルアミノフルオラン、2−(2,6−ジメチルアニリノ)−3−メチル−6−ジ−n−ブチルアミノフルオラン、2−(2,6−ジエチルアニリノ)−3−メチル−6−ジエチルアミノフルオラン、2−(2,6−ジエチルアニリノ)−3−メチル−6−ジ−n−ブチルアミノフルオラン,2−アニリノ−3−メトキシ−6−ジエチルアミノフルオラン、2,2−ビス{4−[6−(N−シクロヘキシル−N−メチルアミノ)−3−メチルフルオラン−2−イルアミノ]フェニル}プロパン等。
【0048】
ジアリールフタリド類としては、3,3−ビス(4−ジメチルアミノフェニル)−6−ジメチルアミノフタリド、3,3−ビス(4−ジメチルアミノフェニル)フタリド、3−(4−ジメチルアミノフェニル)−3−(4−ジエチルアミノ−2−メチルフェニル)−6−ジメチルアミノフタリド、3,3−ビス(9−エチルカルバゾール−3−イル)−6−ジメチルアミノフタリド、3−(4−ジメチルアミノフェニル)−3−(1−メチルピロール−3−イル)−6−ジメチルアミノフタリド等、
インドリルフタリド類としては、3−(4−ジメチルアミノフェニル)−3−(1,2−ジメチルインドール−3−イル)フタリド、3,3−ビス(1,2−ジメチルインドール−3−イル)−6−ジメチルアミノフタリド、3,3−ビス(1−エチル−2−メチルインドール−3−イル)フタリド、3,3−ビス(1−n−ブチル−2−メチルインドール−3−イル)フタリド、3,3−ビス(1−n−オクチル−2−メチルインドール−3−イル)フタリド、3−(2−エトキシ−4−ジエチルアミノフェニル)−3−(1−エチル−2−メチルインドール−3−イル)フタリド、3−(2−エトキシ−4−ジブチルアミノフェニル)−3−(1−エチル−2−メチルインドール−3−イル)フタリド、3−(2−エトキシ−4−ジエチルアミノフェニル)−3−(1−オクチル−2−メチルインドール−3−イル)フタリド等、
ビニローグフタリド系化合物としては、3−(4−ジエチルアミノフェニル)−3−[2,2−ビス(1−エチル−2−メチルインドール−3−イル)エテニル]フタリド、3,3−ビス[2−(4−ジメチルアミノフェニル)−2−(4−メトキシフェニル)エテニル]−4,5,6,7−テトラクロロフタリド、3,3−ビス[2−(4−ピロリジノフェニル)−2−(4−メトキシフェニル)エテニル]−4,5,6,7−テトラクロロフタリド、3,3−ビス[2,2−ビス(4−ジメチルアミノフェニル)エテニル]−4,5,6,7−テトラクロロフタリド、3,3−ビス[2,2−ビス(4−ピロリジノフェニル)エテニル]−4,5,6,7−テトラブロモフタリド等。
【0049】
アザフタリド類としては、3,3−ビス(4−ジエチルアミノ−2−エトキシフェニル)−4−アザフタリド、3−(4−ジエチルアミノ−2−エトキシフェニル)−3−[4−(N−エチル−N−フェニルアミノ)−2−エトキシフェニル]−4−アザフタリド、3−(4−ジエチルアミノ−2−エトキシフェニル)−3−(1−エチル−2−メチルインドール−3−イル)−4−アザフタリド、3−(4−ジエチルアミノ−2−エトキシフェニル)−3−(1−n−オクチル−2−メチルインドール−3−イル)−4−アザフタリド等が、ジアリールメタン系化合物としては、4,4'−ビス(ジメチルアミノ)ベンズヒドリールベンジルエーテル、N−ハロフェニルロイコオーラミン等が、ローダミンラクタム系化合物としては、ローダミンBアニリノラクタム、ローダミンB(4−ニトロアニリノ)ラクタム、ローダミンB(4−クロロアニリノ)ラクタム等、
チアジン類としては、ベンゾイルロイコメチレンブルー、p−ニトロベンゾイルロイコメチレンブルー等が、スピロピラン系化合物としては、3−メチルスピロジナフトピラン、3−エチルスピロジナフトピラン、3−フェニルスピロジナフトピラン、3−ベンジルスピロジナフトピラン、3−プロピルスピロジベンゾピラン等が、
フルオレン類としては、3,6−ビス(ジメチルアミノ)フルオレンスピロ[9,3']−6'−ジメチルアミノフタリド、3−ジエチルアミノ−6−(N−アリル−N−メチルアミノ)フルオレンスピロ[9,3']−6'−ジメチルアミノフタリド、3,6−ビス(ジメチルアミノ)スピロ[フルオレン−9,6'−6'H−クロメノ(4,3−b)インドール]、3,6−ビス(ジメチルアミノ)−3'−メチルスピロ[フルオレン−9,6'−6'H−クロメノ(4,3−b)インドール]、3,6−ビス(ジエチルアミノ)−3'−メチルスピロ[フルオレン−9,6'−6'H−クロメノ(4,3−b)インドール]等を用い得る。
【0050】
電子受容性化合物としては、炭素2〜5のヒドリン誘導体、フェノール性水酸基含有化合物、そのアルキル基、アリール基、アシル基、アルコキシカルブニル基等置換物も、用いることができる。
具体的には、tert−ブチルフェノール、ノニルフェノール、ドデシルブエノール、スチレン化フェノール、2,2−メチレンビス(4−メチル−5−tert−ブチルフェノール)、α−ナフトール、β−ナフトール、ハイドロキノンモノメチルエーテル、グアヤコール、オイゲノール、p−クロロフェノール、p−ブロモフェノール、0−クロロフェノール、0−ブロモフェノール、0−フェニルフェノール、p−(p−クロロフェニル)−フェノール、0−(0−クロロフェニル)−フェノール、p−オキシ安息香酸メチル、p−オキシ安息香酸エチル、p−安息香酸プロビル、p−オキシ安息香酸ブチル、p−オキシ安息香酸オクチル。p−オキシ安息香酸rデシル、3−iso−プロピルカテコール、p−tert−ブチルカテコール、4.4−メチレンジフェノール、4.4−チオ−ビス(6−tert−ブチル−3−メチルフェノール)、1.1−ビス(4−ヒドロキシフェニル)−シクロヘキサン、4,4−ブチリデン−ビス(6−tert−ブチル−3−メチルフェノール、ビスフェノールA、ビスフェノールS、 1.2−ジオキシナフクレン、クロロカテコール。ブロモカテコール、2.4−ジヒドロキシベンゾフェノン、フェノールフタレイン、0−クレゾールフタレイン、プロトカテキュ−酸メチル、プロトカテキュ−酸エチル、プロトカテキュ−酸プロピル、プロトカテキュ−酸オクチル、プロトカテキュ−酸ドデシル、2,4.6−)リオキシメチルベンゼン、2,3.4−トリオキシエチルベンゼン、没食子酸メチル、没食子酸エチル、没食子酸プロピル、没食子酸ブチル、没食子酸ヘキシル、没食子酸オクチル、没食子酸ドデシル、没食子酸セチル、没食子酸ステアリル、2.3.5−トリオキシナフタレン、タンニン酸、フェノール樹脂等がある。
また、フェノール性水酸基を有する化合物の金属塩として、上記フェノール性水酸基を有する化合物のナトリウム、カリウム、リチウム、カルシウム、亜鉛、アルコニウム、アルミニウム、マグネシウム、ニッケル、コバルト、スズ、銅、鉄、バナジウム、チタン、鉛、モリブデン等の金属の塩がある。
【0051】
有極性有機化合物としては、
エステル類として、芳香族及び脂肪族カルボン酸のアルキルエステル、アリ−ルアルキルエステル、脂環アルキルエステル、分校アルキルエステル及びそれらの置換誘導体があげられる。具体的には、パルミチン酸n−ブチル、ステアリン酸n−ブチル、ベヘン酸n−ブチル、酪酸2−エチルヘキシル、ベヘン酸2−エチルヘキシル、ミリスチン酸2〜エチルヘキシル、カプリン酸2−エチルヘキシル、パルミチン酸3.5.5−1リメチルヘキシル、カプロン酸2−メチルブチル、カプリル酸2−メチルブチル、カプリン酸2−メチルブチル、パルミチン酸1−エチルプロピル、ステアリン酸1−エチルプロピル、ベヘン酸1−エチルプロピル、ラウリン酸l−エチルヘキシル、ミリスチン酸1−エチルヘキシル、パルミチン酸1−エチルヘキシル、カプロン酸2−メチルペンチル、カプリル#2−メチルペンチル、カプリン酸2−メチルペンチル、ラウリン酸2−メチルペンチル、ステアリン酸3−メチルブチル、ベヘン酸3−メチルブチル、ステアリン酸1−メチルヘプチル、ベヘン酸1−メチルヘプチル、カプロン酸1−エチルペンチル、パルミチン酸1−エチルペンチル、ステアリン酸l−メチルプロピル、ステアリン酸l−メチルオクチル、ステアリン酸1−メチルヘキシル、ラウリン酸1.1−ジメチルプロピル、カプリン酸1−メチルペンチル、ステアリン酸2−メチルヘキシル、ベヘン酸2−メチルヘキシル、ラウリン酸3,7−シメチルオクチル、ミリスチン酸3.7−シメチルオクチル、パルミチン酸3,7−シメチルオクチル、ステアリン酸3゜7−シメチルオクチル、ベヘン酸3,7−シメチルオクチル、エルカ酸n−ブチル、エルカ酸3゜7−シメチルオクチル、エルカ酸イソステアリル、イソステアリン酸ステアリル、イソステアリン酸セチル、12−ヒドロキシステアリン酸2−メチルペンチル、18−ブロモステアリン酸2−エチルヘキシル、2−ケトミリスチン酸イソステアリル、2−フルオロミリスチン酸2−エチルヘキシル、オレイン酸ステアリル、オレイン酸ベヘニル、ステアリン酸ラウリル、aIi酸ステアリル、酪酸ベヘニル、酪酸セチル、リノール酸ステアリル、リノール酸ベヘニル、ステアリン酸n−ヘキシル、アラキン酸n−ブチル等が用いられる。
【0052】
その芳香族カルボン酸、炭素数2〜5の脂肪族カルボン酸としては、マレイン酸、フマール酸、安息香酸、トルイル酸、p−tert−ブチル安息香酸、クロロ安息香酸、ブロモ安息香酸、エトキシ安息香酸、没食子酸、ナフトエ酸、フタル酸、ナフタレンジカルボン酸、酢酸、プロピオン酸、酪酸、吉草酸等がある。カルボン酸金属塩としては、モノカルボン酸からポリカルボン酸の金属塩がある。具体的には、酢酸、プロピオン酸、酪酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、ヘヘニン酸、クロトン酸、オレイン酸、エライジン酸、リノール酸、リルン酸、モノクロル酢酸、モノブロム酢酸、モノフルオロ酢酸、グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、リシノール酸、12−ヒドロキシステアリン酸、乳酸、ピルビン酸、シュウ酸、マロン酸、コハク酸、アジピン酸、セパチン酸、リンゴ酸、酒石酸、キラコラ酸、マレイン酸、フマール酸、ナフテン酸、安息香酸、トルイル酸、フェニル酢酸、p−te、rt−ブチル安息香酸、桂皮酸、クロル安息香酸、ブロム安息香酸、エトキシ安息香酸、マンデル酸、プロトカテキュ−酸、バニリン酸、レゾルシン酸、ジオキシ安息香酸、ジオキシクロル安息香酸、没食子酸、ナフトエ酸、ヒドロキシナフトエ酸、フタル酸、フタル酸モノエチルエステル、ナフタレンジカルボン酸、ナフタレンジカルボン酸モノメチルエステル、トリメリット酸、ピロメリット酸等があり、そのナトリウム、カリウム、リチウム、カルシウム、亜鉛、ジルコニウム、アルミニウム、マグネシウム、ニッケル、コバルト,スズ、銅、鉄、バナジウム、チタン、鉛、モリブデン等の金属塩も用い得る。
酸性リン酸エステル化合物としては、アルキル、分枝アルキル、アルケニル、アルキニル、シクロアルキル、アリ−ルエステル等及びそれらの誘導体が挙げられる。酸性リン酸エステル化合物にはモノエステル、ジエステルがあり、またそれらの混合物でもよい。
また、酸性リン酸エステル化合物の金属塩として、ナトリウム、カリウム、リチウム、カルシウム、亜鉛、ジルコニウム、アルミニウム、マグネシウム、ニッケル、コバルト、スズ、銅、鉄、バナジウム、チタン、鉛、モリブデン等の金属の塩を用い得る。
さらに、トリアゾール化合物として、1.2.3−1−リアゾール、4(5)−ヒドロキシ−1,2,3−)リアゾール、5(61−メチル−1,2,3−ペンゾトリアゾール、5−クロロ−1,2,3−ベンゾトリアゾール、7−ニトロ−1,2,3−ベンゾトリアゾール、4−ベンゾイルアミノ−1,2゜3−ベンゾトリアゾール、4−ヒドロキシ−1゜2.3−ベンゾトリアゾール、ナフト−1,2゜3″″トリアゾール、5.5’−ビス(1,2,1−ベンゾトリアゾール)、1,2.3−ベンゾトリアゾール−4−スルフォオクチルアミド等を用いることができる。
液晶系は、液晶の立体構造変化が変色の元となるため、本発明の目的である「薄膜化」には不向きである。
【0053】
さらに具体的には、
ハロゲノ錯体として、
テトラハロゲノ銅(2)錯体:イソプロピル置換アンモニウム塩テトラクロロ銅
(2)錯体、ジエチル置換アンモニウム塩テトラクロロ銅(2)錯体、メチルフ
ェネチル置換アンモニウム塩テトラクロロ銅(2)錯体、ピペラジニウム置換ア
ンモニウム塩テトラクロロ銅(2)錯体、イソプロピル置換アンモニウム塩トリ
クロロ銅(2)錯体があり、[[(CH3)2CH]NH3]2[CuCl4]、
[(C2H5)2NH2]2[CuCl4]、[[(C6H5C2H2)CH3]NH2]2[CuCl4]、[H2N(C2H4)2NH2]2[CuCl4]Cl2、[H2N(C2H4)2NH2]2[CuBr4]Br2、[[(CH3)2CH]NH3][CuCl3]:[サーモクロミック温度]40〜90℃等。:[色変化]緑色→黄色等。テトラハロゲノニッケル(2)錯体:[(C2H5
)3NH]2[NiCl4]、[(CH3)3NH]2[NiCl4]、[(C6H5CH2)CH3NH2][NiCl4]、[(C2H5)2NH2]2[NiCl4]:70〜110℃等:褐色→青色([(CH3)2NH2]2[NiCl4]等は、150〜230℃であり使用できない。)。テトラヨード水銀(2)錯体:Ag2[HgI4]、Cu2[HgI4]:40〜70℃等:黄色
→オレンジ(Pb2[HgI4]等は、130℃以上であり、使用できない。)等がある。
【0054】
また、エチレンジアミン誘導体錯体として、C−置換エチレンジアミン類ニッケル(2)錯体:ビス(C−置換エチレンジアミン)ニッケル(2)錯体があり
、[{Ni(H2O)2}{1,2-C4H8(NH2)2}2]Cl2、[{Ni(H2O)2}{3,3−(CH3)2−1,2−C4H8(NH2)2}2]Br2、[{Ni(H2O)2}{1,2-C4H8(NH2)2}2](NO3)2:40〜90℃等:紫→黄色等があり、
N,N´−ジエチルエチレンジアミン錯体として、[Cu(H2O)2](ClO4)2:35℃:赤→青紫等がある。ここで、[Cu(H2O)2](NO3)2等はサーモクロミック温度が150℃以上であり、非常に高温の加熱を要し、高いエネルギーを必要とする上、積層する他の基材の熱変形等の劣化を招くため、本発明の目的には使用できない。
また、含窒素配位子錯体として、ジニトロジアンミン銅(2)錯体:[Cu(N
O2)2(NH3)2]、[CuCL(NO2)(NH3)2]、[CuBr(NO2)(NH3)2]:31℃:紫→緑(急激)等、
ジクロロJニッケル(2)錯体として、トランス−2−(2´−キノリル)−メ
チレン−3−キノクリディノン等、
重金属塩類(サーモカラー)として、ヘキサメチレンテトラミン錯体:[Co(H2O)6]Cl2・4H2O・2(C6H12N4)、[Co(H2O)6]Br2・3H2O・2(C6H12N4):50℃:ピンク→青、[Co(H2O)6]I2・2H2O・2(C6H12N4):50℃:緑→青、[Co(NCS)2(H2O)4]2(C6H12N4):85℃:オレンジ→青紫、エチレンジアミン類ニッケル(2)錯体:[Ni(H2O)2(N−CH3−C2H
2(NH2)2]Cl2:45度:紫青→青緑ORオレンジ、[Ni(H2O)2(N−CH3−C2H2(NH2)2]Br2:45度:紫青→青緑ORオレンジ等、
を用いることができる。
【0055】
特に、サーモクロミック温度が、常温に比較的近く、その色変化が急激なものが好適である。
また、無機化合物系としては、
金属酸化物等の誘電体薄膜や、金属化合物微粒子を透明材料(ガラス、透明樹脂等)に分散したもの、さらには、反射型の調光特性(調光ミラー特性)を有する材料として、イットリウムやランタン等の希土類金属の水素化物、ガドリニウム等の希土類金属とマグネシウムの合金の水素化物、及びマグネシウム・ニッケル合金の水素化物等の薄膜や微粒子を用いることができ、特に、資源やコストの観点から、マグネシウム・ニッケル合金を用いたものは好適である。
反射型の調光特性を有する材料は、透明状態と鏡面状態を切り替えることが可能であって、その鏡面状態の時に、所定の光を反射し、その反射光がホログラムを再生するものである。
また、ルチル型の二酸化バナジウム(VO2)の粒子と、ルチル型の二酸化チタン(TiO2)の粒子とを含むサーモクロミック微粒子であって、その二酸化バナジウム粒子が、二酸化チタン(TiO2)粒子上に、二酸化チタン(TiO2)の粒子よりも大きく、ロッド状に成長しているサーモクロミック微粒子も、用い得る。
以下の説明において、無機化合物系は本来「種々の原子からなる化合物」と表現すべきであるが、有機化合物系と同様に説明するため、「材料」を表す言葉として、共通に捉えて説明するため、敢えて、「分子」という表現を使用する。
【0056】
形成方法としては、一般的印刷方法、コーティング方法等も用いることは可能であるが、より精密な薄膜を形成する方法として、回転塗布法、キャスト法、スクリーン印刷法、ブレードコーティング法、ロール塗布法、水面展開法、LB(ラングミュア・ブロジェット)法等が挙げられ、ドライ・プロセスとしては真空蒸着法、スパッタリング法、化学蒸着法等が挙げられる。
特に、有機化合物系を均一に、且つ、分子レベルで薄膜形成するには、化学蒸着法が好適である。
より具体的には、サーモクロミック分子を透明な樹脂に均一に分散した樹脂分散型のインキや、水又は溶剤にサーモクロミック分子を分散した溶媒分散型のインキを作製し、それらを用いて、印刷方式や、コーティング方式さらには、インクジェット方式等の種々の形成方法を用いて、ホログラム形成層2に、そのホログラムレリーフに接するように、また、追従するよう均一に、若しくは凹部に部分的に、サーモクロミック薄膜層4を形成することができる。(図2または図3参照。)
また、ホログラム形成層2のホログラムレリーフ面上に、直接、サーモクロミック分子を化学蒸着法によりサーモクロミック薄膜層4を形成することも、そのホログラムレリーフ追従性や、その均一性から好適であるとともに、電子ビーム加熱真空蒸着法における高温の電子ビームや、スパッタリング法におけるアルゴン原子の衝突がなく、分子の構造を維持しやすいため好適である。
【0057】
また、ホログラム形成層2上にサーモクロミック薄膜層4を形成した後、フォトレジストを用いたフォトリソグラフィー法により、回折格子パターンに位置合わせして露光、現像、不要部除去によりフォトレジストのパターンを回折格子パターンの凹部に同調させ、エッチングによりサーモクロミック薄膜層を除去して、凹部のみにサーモクロミック薄膜層を残すことができる。(図3参照。)
逆に、ホログラム形成層2上にフォトレジスト層を形成し、回折格子パターンに位置合わせして露光、現像、不要部除去により、凸部にフォトレジストを残し、凹部を露出させて、この上にサーモクロミック薄膜層を形成後、凸部上のフォトレジストを除去すると同時に、その真上にあるサーモクロミック薄膜層を部分的に除去することにより、凹部のみにサーモクロミック薄膜層4を残すことができる。(図3参照。)
樹脂分散型のインキは、上記したサーモクロミック分子を、透明樹脂、例えば、熱可塑性樹脂としてはアクリル酸エステル樹脂、アクリルアミド樹脂、ニトロセルロース樹脂、もしくはポリスチレン樹脂等が、また、熱硬化性樹脂としては、不飽和ポリエステル樹脂、アクリルウレタン樹脂、エポキシ変性アクリル樹脂、エポキシ変性不飽和ポリエステル樹脂、アルキッド樹脂、もしくはフェノール樹脂等に混入し、2次凝集を少なくするように、ガラスビーズやスチールビーズを用いたボールミル、ニーダー、ロールミル等による混練りを十分行い、溶剤等で粘度調整をして、グラビア方式、オフセット方式、シルクスクリーン方式、カーテンコート方式、ノズルコート方式、さらには、インクジェット方式を適宜用いて均一な厚さに形成することができる。
但し、サーモクロミック薄膜層4の厚さを、0.003μm以上1.0μm以下、さらには、0.01μm以上0.5μm以下とするためには、樹脂分散型インキの固形分を1〜10%とし、溶剤若しくは水を溶媒とした塗布膜が、例えば、5μmであったときに、溶媒を蒸発させた後の厚さ(サーモクロミック薄膜層の厚さ)がその1/10乃至は1/100となるようにし、0.5μm〜0.05μmとする。
【0058】
溶媒分散型のインキは、樹脂成分を含まず、サーモクロミック分子と溶媒のみであるため、樹脂分散型よりサーモクロミック薄膜層4の厚さを薄くすることができる。
溶媒としては、使用するサーモクロミック分子の極性に合わせ、水やアルコール系溶剤、若しくは、セルソルブ系、パラフィン系溶剤を用いて、サーモクロミック分子を溶解・保持させ、攪拌しながらカーテンコート、ノズルコート等によりホログラム形成層2上に設けることができる。
さらには、ホログラムレリーフ面を形成している樹脂に対して、溶解性を有する遅い揮発性の溶剤を数μm塗布し(アクリル・塩ビ・酢ビ樹脂や、ポリエステル樹脂等に対するケトン系溶剤、例えばシクロヘキサノン等。この溶剤を非溶解性の溶剤で希釈して使用し、残留する成分を0.1μm以下にすることも可能である。)、そのホログラムレリーフ面の最表面のみを溶解して、その最表面に粘着性を付与し、その上に、サーモクロミック分子を霧状として吹きかけて、その粘着性の面に接するサーモクロミック分子のみがホログラムレリーフ面上に残るようにするサーモクロミック薄膜層形成方法も好適である。
この方法によると、サーモクロミック薄膜層4がLB膜のように分子レベルの膜となり、ホログラムレリーフ面上に(フォログラムレリーフの大きさに比較して)均一に形成され、ホログラム形成層2側からの発光面が、ホログラムレリーフ面と「同一」となる。
【0059】
いずれにしても、ホログラムレリーフの凹凸が非常に小さい為、サーモクロミック薄膜層4を均一厚さで、且つ、その中のサーモクロミック分子が均一な密度となるように、もしくは、ホログラムレリーフ面上に均一に(部分形成の場合には形成してある部分同士が均一に)形成するためには、サーモクロミック分子が凝集して2次粒子状とならないようにする必要があり、溶剤(溶媒)へ溶解する方法や、ナノ粒子の表面に吸着させて、ナノ粒子顔料として薄膜形成することが好適である。
さらに、このような非常に薄いサーモクロミック薄膜層4を物理的に保護するために、上記した透明な樹脂を適宜な形成方法を用いて、1.0μm〜3.0μmの厚さで設けてもよい。
また、ホログラム形成層2、サーモクロミック薄膜層4、及び上記保護のための層の互いの屈折率差を、0.1以内、さらには、0.03以内とすることで、加熱前における不要なホログラム再生像の出現を防ぎ、より偽造防止性を高めることが可能となる。
(接着剤層)
このサーモクロミック薄膜層4の上に、または、透明樹脂層2のホログラムレリーフ上に、接着剤層5を設ける。
後者の場合には、透明樹脂層2のレリーフホログラムと接着剤層5との界面が、ホログラムレリーフの凹凸形状となるため、不要なホログラム再生像を出現を抑える目的で、接着剤層5の屈折率を、透明樹脂層2の屈折率に対して、同一、もしくは、その屈折率差を0.1以下とする。
接着剤層5に用い得る透明な樹脂(すなわち、接着剤。)としては、ポリメチルメタクリレート(屈折率n=1.49)、ポリメチルアクリレート(n=1.47)、ポリベンジルメタクリレート(n=1.57)、ポリブチルアクリレート(n=1.44)、ポリビニリデン(n=1.42)、ポリイソブチルアクリレート(n=1.48)、硝酸セルロース(n=1.54)、メチルセルロース(n=1.50)、セルロース・アセテートプロピオネート(n=1.47)、ポリスチレン(n=1.60)、ポリエチレンテレフタレート(n=1.64)、ポリ酢酸ビニル(n=1.47)、ポリ塩化ビニル・酢酸ビニル(n=1.54)、フッ素樹脂(n=1.32)、メラミン樹脂(n=1.56)、ポリカーボネート(n=1.59)、エポキシ樹脂(n=1.60〜1.65)、フェノール樹脂(n=1.60)、チオウレタン樹脂(n=1.55〜1.75)、酢酸ビニル樹脂(n=1.47)、アクリル樹脂(n=1.45)、酢酸ビニル−アクリル共重合体(n=1.48)、酢酸ビニル−塩化ビニル共重合体(n=1.54)、エチレン−酢酸ビニル共重合体、ポリウレタン樹脂(n=1.60)、チオウレタン樹脂(n=1.55〜1.75)等や、天然ゴム(n=1.52)、クロロプレンゴム(n=1.35〜1.56)などのゴム系樹脂等もしくは、この混合体等を適宜用いることができる。
【0060】
また、溶剤系及び水系のいずれの接着剤も用いることができ、特に、透明樹脂層2や、サーモクロミック薄膜層4を構成する材料に対して、溶解したり、膨潤させたりすること(わずかな溶解、膨潤でもホログラム再生像への影響は大きい。)の少ない、水系のものがより好適である。
自然にやさしい材料構成とするために、特に、天然ゴムを主成分とするラテックス、それを変性したもの、特に天然ゴムにスチレン特にメタクリルさんメチルとをグラフト重合させて得た天然ゴムラテックス等の天然素材から作製されたものを用いても良く、また、アクリル系樹脂、ポリエステル系樹脂(n=1.60)、ポリアミド系樹脂(n=1.53)、または、これらのゴム変性物などの比較的内部凝集力の大きいものも適宜選択して使用でき、単体、もしくは2種以上の混合系で、更に必要に応じて可塑剤、その他の添加剤を加えて使用することができる。
これらの接着剤は、適宜、溶剤や、水に溶解させ、各種コーティング方式や、シルクスクリーン印刷方式、ホットメルト方式等を用いて、サーモクロミック薄膜層4の上に、または、透明樹脂層2のホログラムレリーフ上に、接着剤層5として、乾燥後の形成厚さ、5μm〜50μmで設け、ホログラムラベルA、または、A´を得る。
【0061】
この様にして作成したホログラムラベルA、または、A´に、使用したサーモクロミック材料に適した温度に加熱して、所定の色調に発色させ、もしくは、色調変化させ、その色調におけるホログラム再生像を視認して、その真正性を判定することができる。
このとき、所定のフィルター等を用いて、その視認性を高めたり、機械的判定を行ってもよい。
また、所定の色調のホログラム再生像の存在を、ホログラムラベルを所持している者、すなわち、ホログラムラベルを貼付した被貼着体である真正性識別対象物を所持している者に悟られないよう、真正性確認後、速やかに(数秒〜数十秒以内。)その色調が消えるか、又は、元の色調に戻るよう工夫することも好適である。
このホログラムラベルA、または、A´を、室内照明等の照明光[可視光線(照明光)6]下において観察した場合には、「水色」のホログラム再生像7が観察される。(「変色」タイプの場合。)、そして、使用したサーモクロミック薄膜層4に適した赤外線照射もしくは、熱板接触による加熱をすることで、そのサーモクロミック薄膜層4が変色し、室内照明等の照明光[可視光線(照明光)8]下において観察した場合には、「ピンク色」のホログラム再生像9が観察され、その真正性を判定することができる。(図4参照。)
さらに、このホログラムラベルA、または、A´をステンレス上に貼着し、剥離強度を測定する方法に準拠して、のホログラムラベルA、または、A´を剥離し、再び、ステンレス上に貼着して、上記と同様に観察すると、室内照明等の照明光6下においては、剥離前とあまり変わらない「水色」のホログラム再生像7が観察され、ホログラムラベルA、または、A´の中のサーモクロミック薄膜層4における「剥離の痕跡」も観察されないため、この状態では、不正行為の痕跡があることは容易には視認できないが、これに、所定の赤外線照射もしくは、熱板接触による加熱をすることで、非常に不鮮明なホログラム再生像(図示せず。)が再生され、且つ、「色のムラ」も視認でき、確認者には容易に、「ホログラムラベルA、または、A´を剥離する行為が行われた」ことを確認できるものである。
【実施例】
【0062】
(実施例1)
透明基材1として、12μmのPETフィルムの表面に、ホログラム画像位置検知パターン及びタテ・ヨコ20mm×20mmサイズの「封」と「緘」の黒色文字をオフセット印刷方式にて1μm厚さに印刷し、その上を覆うように、メラミン樹脂組成物をグラビアコーティング方式にて塗布し、レリーフホログラム(「発色」の文字画像:図4参照)の複製用型の型面を、接触させたまま加熱硬化させることにより、レリーフホログラムの形成を行ない、厚さ3μmのホログラムレリーフを有する透明樹脂層2(ホログラム形成層2)を得た。
そのホログラムレリーフ面を、タテ・ヨコ5mm×5mmサイズの「開」と「封」の文字(画線の幅は、0.5mm。タテ・ヨコ方向の文字間隔1mm。)を縦横繰り返す白抜き文字パターン状に、エキシマ社製エキシマUV03改質装置を用いて、波長172nmのエキシマ光を走査しながら照射して活性化処理した。この活性化処理をしていない領域が、不活性化処理した領域3となる。(図2参照。)
このホログラム形成層2上に、下記組成の樹脂分散型のサーモクロミック分子含有インキをグラビアコーティング方式により、コーティングし乾燥して、サーモクロミック薄膜層3を10μm厚さで、ホログラムレリーフに接するように形成し、乾燥して、1.0μm厚さとした。
このときのサーモクロミック薄膜層4と、ホログラム形成層2との間の剥離強度は、「不活性化処理した領域3」においては、0.09kg/25mm幅であり、その他の領域においては、0.5kg/25mm幅であった。
・<サーモクロミック薄膜層4用インキ組成物>
ビス(N,N−ジエチルエチレンジアミン)銅(II)硝酸塩(水和物) 1質量部
セルロース樹脂 9質量部
メチルエチルケトン 20質量部
トルエン 70質量部
【0063】
そのサーモクロミック薄膜層4上に、下記組成の接着剤層5用接着剤組成物をカーテンコート方式により、コーティングし乾燥して、接着剤層5を、20μmの厚さで形成し、実施例1のホログラムラベルAを作製した。(図2参照。)
・<接着剤層5用接着剤組成物>
酢酸ビニル−アクリル共重合体 30質量部
イソホロンジイソシアネート 1質量部
トルエン 20質量部
酢酸エチル 30質量部
メチルイソブチルケトン 19質量部
このホログラムラベルAを、封筒の封緘用に使用し、その封緘部分に貼着して(2kg荷重のローラーにて圧着。)、室内照明光(照明光6)の下で観察したところ、図4に示すように、水色のホログラム再生像(「発色」)7を観察することができ、さらに、このホログラムラベルAを、127mm径125W赤外線乾燥用ランプ照明下に30秒間放置し、室内照明光(照明光8)の下で観察したところ、ピンク色のホログラム再生像(「発色」)9が、異なる回折方向に浮かび上がった(透明基材1、ホログラム形成層2は、無色透明な層であり、サーモクロミック薄膜層4が選択的に照射熱を吸収した。)。(図4参照。)
さらに、このホログラムラベルAを室内に放置したところ、再び、元の回折方向に水色色のホログラム再生像を観察することができた。(図示せず。)
そして、このホログラムラベルAをその粘着剤層5と封筒との界面において一旦剥がし、その後、再び、封筒の同一位置に貼着して、同様に、室内照明光6の下で観察したところ、
少しホログラム再生像が変形しているもののその差は比較的小さいものであって、不正行為を行った者が容易には気づくことは無いものと思われた。
しかし、このホログラムラベルAを、127mm径125W赤外線乾燥用ランプ照明下に30秒間放置し、室内照明光(照明光8)の下で観察したところ、ピンク色のホログラム再生像9が、異なる回折方向に浮かび上がったものの、そのホログラム再生像9は非常に不鮮明なものであって、且つ、「色のムラ(「色」のムラであり、ピンク色の明度ムラや、ピンク色に少し水色が混色したような色相色ムラ)」がはっきりと浮かんでおり(図示せず。)、高い偽造防止性を有すると思われた。
【0064】
(実施例2)
サーモクロミック分子として、ペリレンテトラカルボン酸ビスベンジルイミドを以下の手順にて合成した。
ペリレンテトラカルボン酸二無水物5gを水100gに分散、ベンジルアミン10gを加えて攪拌後、ろ過し、1%熱水酸化カリウム溶液による洗浄を行った後、水洗及びテトラヒドロフラン洗浄し、乾燥後、真空昇華精製により、茶褐色の結晶粉末を得た。
この結晶粉末を使用し、化学蒸着法により、ホログラムレリーフに接するように薄膜形成し、0.02μm厚さとしたこと以外は、実施例1と同様にして、実施例2の本発明のホログラムラベルAを作製した。(図2参照。)
このホログラムラベルAを実施例1と同様に観察したところ、このホログラムラベルAからは、加熱前においては、オレンジ色の非常に鮮明なホログラム再生像7を観察することができ、加熱後には、青緑色の非常に鮮明なホログラム再生像9を視認できたこと以外は、実施例1と同様に、良好な結果を得た。(図4参照。)
(実施例3)
サーモクロミック分子含有インキを下記組成とし、サーモクロミック薄膜層4を20μm厚さで、ホログラムレリーフに接するように形成し、乾燥して、0.1μm厚さとし、橙黄色のホログラム再生像7を観察したこと以外は、実施例1と同様にして、実施例3の本発明のホログラムラベルAを得た。(図2参照。)
・<サーモクロミック薄膜層4用インキ組成物>
四硫化四窒素(粉体) 0.5質量部
エタノール 30質量部
ベンゼン 70質量部
このホログラムラベルAを実施例1と同様に観察したところ、このホログラムラベルAからは、加熱前においては、橙黄色のより鮮明なホログラム再生像7を観察することができ、加熱後には、橙赤色のより鮮明なホログラム再生像9を視認できたこと以外は、実施例1と同様に、良好な結果を得た。(図4参照。)
【0065】
(実施例4)
サーモクロミック分子含有インキを下記組成の溶媒分散型とし、カーテンコート方式を用い、乾燥速度を遅くした(乾燥エネルギー量として通常の1/5とした。)こと以外は、実施例1と同様にして、実施例4の本発明のホログラムラベルA´を作製した。(図3参照。)
・<インキ組成物>
ビス(N,N−ジエチルエチレンジアミン)銅(II)硝酸塩(水和物)0.1質量部
メチルエチルケトン 30質量部
トルエン 70質量部
ホログラムレリーフの凸部よりも、その凹部に、サーモクロミック分子含有インキが偏ることで、乾燥後のサーモクロミック薄膜層4も、凹部に偏って形成されていた。
このホログラムラベルAを実施例1と同様に観察したところ、著しく鮮明なホログラム再生像7及び9を観察することができ、且つ、「色のムラ」がより明確なものであったこと以外は、実施例1と同様に、良好な結果を得た。(図4参照。)
(実施例5)
透明基材1上に、サーモクロミック薄膜層4の「変色」した「色」と「同一の色」の印刷用インキを用いて、タテ・ヨコ20mm×20mmサイズの「封」と「緘」の文字をオフセット印刷方式にて印刷したこと、及び、ホログラム形成層2のホログラムレリーフ上を、エキシマ社製エキシマUV03改質装置を用いて、波長172nmのエキシマ光を走査しながら照射してその全面を活性化処理した後、この上に、不活性化処理用溶剤組成物を用いたインクジェット方式を用いて、プリントし、ホログラムレリーフ面の不活性化処理されている一部の領域として、不活性化処理した領域3の「微細なパターン形状」を、直径200μm程度、網点率約50%の網点形状として全面に渡って形成し、「微細なパターン形状の集まり」としたこと以外は、実施例1と同様にして、実施例5のホログラムラベルAを得た。(図2参照。)
このときのサーモクロミック薄膜層4と、ホログラム形成層2との間の剥離強度は、「不活性化処理した領域3」においては、0.07kg/25mm幅であり、その他の領域においては、0.5kg/25mm幅であった。
〈不活性化処理用溶剤組成物〉
イソプロピルアルコール(沸点83度) 20部
トルエン(沸点100度) 20部
ブチルアルコール(沸点117度) 30部
メチルイソブチルケトン(沸点115度) 30部
実施例1と同様にして観察したところ、実施例1より、ホログラムラベルAを一旦剥がした後に加熱した後の「色のムラ」を、「封」と「緘」の文字の「色」と比較することによって、非常に明確に確認することができたこと以外は、実施例1と同様の良好な結果を得た。(図示せず。)
【0066】
(比較例)
サーモクロミック薄膜層を形成せず、サーモクロミック薄膜層の代わりに、TiOxの透明反射性薄膜層を形成して透明ホログラムラベルを形成し、比較例とした。
実施例1と同様に観察したところ、室内照明光(照明光6)の下で、「発色」の文字画像のホログラム再生像が観察されるのみであって、127mm径125W赤外線乾燥用ランプ照明下に30秒間放置し、室内照明光(照明光8)の下で観察しても、同一のホログラム再生像が現れるのみであり、また、このホログラムラベルを一旦剥がして再び貼着した後も、その状況は変わらなかった。
このことより、このホログラムラベルによって、「ホログラム」が存在していること以上の高度な真贋判定をすることは困難と思われた。
【符号の説明】
【0067】
A、A´ ホログラムラベル
1 透明基材
2 ホログラムレリーフを有する透明樹脂層(ホログラム形成層)
3 不活性化処理した領域(ホログラムレリーフを有する透明樹脂層 の最表面のみを不活性化処理している一部領域。模式的に波線で 図示している。)
4 サーモクロミック薄膜層(連続的な形成若しくは部分形成)
5 接着剤層
6 観察状態の例示:一般的な事務所の照明光
7 同上 :黄色の再生
8 同上 :赤外線照射による加熱
9 同上 :赤色の再生像

【特許請求の範囲】
【請求項1】
透明基材の一方の面に、ホログラム画像に対応した回折格子群を含むホログラムレリーフを有する透明樹脂層、前記ホログラムレリーフを形成する凹凸に追従して、且つ、均一な厚さで設けられたサーモクロミック薄膜層、及び、接着剤層が設けられているホログラムラベルであって、
前記透明樹脂層の前記ホログラムレリーフ面の一部が不活性化処理されていることを特徴とするホログラムラベル。
【請求項2】
前記サーモクロミック薄膜層が、前記ホログラムレリーフを形成する凹凸の凹部にのみ形成されていることを特徴とする請求項1に記載のホログラムシート。

【請求項3】
前記サーモクロミック薄膜層の厚さが、0.01μm以上0.5μm以下であることを特徴とする請求項1または2に記載のホログラムシート。
【請求項4】
前記ホログラムレリーフ面の前記不活性化処理されている前記一部の領域が、50μm〜300μmの大きさの微細なパターン形状の集まりであることを特徴とする請求項1〜3いずれか一項に記載のホログラムラベル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−208364(P2012−208364A)
【公開日】平成24年10月25日(2012.10.25)
【国際特許分類】
【出願番号】特願2011−74684(P2011−74684)
【出願日】平成23年3月30日(2011.3.30)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.メタモカラー
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】