説明

マイクロ流体デバイス

【課題】送液される際の液体試料の逆流及び脈流が発生せず、分析部への送液について安定な流量精度が得られるマイクロ流体デバイスを提供すること。
【解決手段】基板2に、測定物質を含んだ液体試料Lを導入する試料供給部3と、液体試料Lを分析する分析部4と、分析部4を通過した液体試料Lを収容する廃液部5と、試料供給部3から廃液部5へ液体試料Lが流下する流体流路6とを備え、試料供給部3に導入された液体試料Lを廃液部5へ吸引するポンプ室7を基板2のうち分析部4の下流に設けてあるマイクロ流体デバイス1。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定物質として環境中に含まれる毒性物質などの測定物質を含んだ液体試料を分析するためのマイクロ流体デバイスに関する。
【背景技術】
【0002】
近年、半導体等の微細加工技術を応用して製造されたマイクロ流体デバイスが、生化学、医療等の分野において使用されている。マイクロ流体デバイスとは、例えば、基板に、測定物質を含んだ液体試料を導入する試料供給部と、前記液体試料を分析する分析部と、前記分析部を通過した液体試料を収容する廃液部と、前記試料供給部から前記廃液部へ前記液体試料が流下する流体流路とを備えた微小分析デバイスのことをいう。
【0003】
マイクロ流体デバイスの試料供給部に、測定物質である、例えば環境中に含まれる毒性物質や、核酸・タンパク質等の生体物質、あるいは菌体などを含有する液体試料を導入して分析部へと流下させ、該分析部において、例えば抗原抗体反応による免疫学的手法や、核酸等のハイブリダイゼーションによる生化学的手法による反応を利用して、液体試料中に含まれる測定物質を検出する。
【0004】
特許文献1には従来型のマイクロ流体デバイスが開示されており、その図3に示されるように、当該マイクロ流体デバイスは、第1の基板3と、該第1の基板3の一方の面側に接着される第2の基板5とから構成される。
第1の基板3に流体流路としての第1のマイクロチャネル11が形成されており、第1の基板3に、試料供給部としての入力ポート7と、上部が大気に開口したポンプ室13と、弁座17と、分析部として機能すると考えられる上部が大気に開口した吐出室19及び第2のマイクロチャネル15と、廃液部としての出力ポート9が形成されている。
ポンプ室13と弁座17と吐出室19とを覆う弁膜構造体20が第1の基板3の上面に積重されており、弁膜構造体20は外周部の型枠と該型枠内側の弁膜21とからなり、前記吐出室19は第1のマイクロチャネル11及び第2のマイクロチャネル15に連通している。
【0005】
特許文献1の図3に示されるように、上記マイクロ流体デバイスにおけるポンプ室は、吐出室よりも上流側に設けられており、液体試料の入力ポート7から出力ポート9への移行は、以下のようにして実施される。
【0006】
図6(A)に示されるように、入力ポート7から液体試料として液体25を注入し、ポンプ室13を液体25で満たす。そして図6(B)に示されるように、ポンプ室13の上部の弁膜押込部21Aを押圧道具22で押下げる。弁膜送流部21Bは弁座17の上面と自己吸着しているだけなので、強い圧力を受けると弁膜送流部21Bは弁座17から浮き上がり隙間27が生じる。弁膜送流部21Bと弁座17との間に生じた隙間27を介してポンプ室13の内部の液体25は、吐出室19から第2のマイクロチャネル15の内部に流れ込み、出力ポート9へ移行する。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2006−212473号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1に記載のマイクロ流体デバイスでは、液体25をポンプ室13から吐出室19に移行させる際に液体25が第1のマイクロチャネル11へ逆流する虞がある。
即ち、第1のマイクロチャネル11側の流路抵抗は、弁膜送流部21Bと弁座17上面の自己吸着力より小さいので、弁膜押込部21Aを押下げると液体25の大部分は吐出室19に流れ込まず第1のマイクロチャネル11の側に逆流するのである。
【0009】
さらに、上記マイクロ流体デバイスは、ポンプ室13の上部の弁膜押込部21Aを押し込むことによって、ポンプ室13の内部の液体25を吐出室19に吐出した後、押し込まれた弁膜押込部21Aがその弾性復元力によって元の状態に戻る際にポンプ室13に吸引作用が生じて、液体25がポンプ室13の内部に吸引される。即ち、上記マイクロ流体デバイスでは、吐出・吸引という動作が連続的に実施されることによって、液体25を吐出室19に移行させるため、吐出作用及び吸引作用の切り替わり時に流量が変動する脈流が発生し得る。このような脈流が発生すれば、液体試料を流下させる速度が均一にならず、分析部における反応時間などの正確性に欠けることとなる。
【0010】
従って、本発明の目的は、送液される際の液体試料の逆流及び脈流が発生せず、分析部への送液について安定な流量精度が得られるマイクロ流体デバイスを提供することにある。
【課題を解決するための手段】
【0011】
上記目的を達成するための本発明に係るマイクロ流体デバイスの第1特徴構成は、
基板に、測定物質を含んだ液体試料を導入する試料供給部と、前記液体試料を分析する分析部と、前記分析部を通過した液体試料を収容する廃液部と、前記試料供給部から前記廃液部へ前記液体試料が流下する流体流路とを備え、前記試料供給部に導入された液体試料を前記廃液部へ吸引するポンプ室を前記基板のうち前記分析部の下流に設けてある点にある。
【0012】
本構成においては、ポンプ室が分析部の下流に設けてあり、そのポンプ作用の吸引力によって液体試料を試料供給部から廃液部に送液するように構成されるため、液体試料は流体流路を逆流することなく確実に分析部へ送液される。
さらに、液体試料はポンプ室の吸引作用によってのみ送液されるため、脈流が発生することもない。
【0013】
本発明に係るマイクロ流体デバイスの第2特徴構成は、前記ポンプ室が、外力の付与により弾性変形してポンプ作用を奏する弾性膜を備えた点にある。
【0014】
本構成によれば、弾性膜の弾性変形によってポンプ室内を負圧にして液体試料を送液することができる。即ち、弾性膜に外力を付与して凹ませた状態として液体試料を試料供給部に導入し、外力を除いて弾性膜を元の平坦状態に復帰させることによって、ポンプ室内の内部空間を拡大して負圧を生じさせ、その結果、試料供給部に導入された液体試料が廃液部に吸引される。
【0015】
従って、本構成によれば、弾性膜を単に押し操作することなどで簡単にポンプ作用による吸引力を生じさせることができる。
【0016】
本発明に係るマイクロ流体デバイスの第3特徴構成は、前記弾性膜が、外部より磁力が付与されてその位置が変位する磁性体を備え、該磁性体の変位によって、前記弾性膜が弾性変形する点にある。
【0017】
本構成によれば、公知の磁力発生装置で磁性体を吸引したり、あるいは反発させたりすることによって弾性膜を弾性変形させることができるようになるので、ポンプ作用を生じさせる際の操作方法に種々のバリエーションが生まれる。その結果、マイクロ流体デバイスにポンプ作用を生じさせるために磁力発生装置をどのように配置させるなどの設計自由度も広がる。
【0018】
本発明に係るマイクロ流体デバイスの第4特徴構成は、前記流体流路が前記ポンプ室の側面に設けた開口部に通じており、前記液体試料の非吸引時において弾性変形した前記弾性膜によって前記開口部が閉塞されている点にある。
【0019】
本構成のように、液体試料の非吸引時において、弾性変形した弾性膜によって開口部を閉塞する構成とすれば、開口部が開口してから弾性膜が元に復帰するまでの間しか吸引力は発生しないので、弾性膜をどのような状態まで弾性変形させたとしても、常に一定の吸引力を発生させるようにすることができる。
その結果、弾性膜に付与する外力の強さによらず、常に一定の流速で一定量の液体試料を分析部に送液することができるようになり、分析部における反応開始時を一律に揃えることができるようになるので、精度の高い分析値を得ることができる。
【0020】
本発明に係るマイクロ流体デバイスの第5特徴構成は、前記ポンプ室が、該ポンプ室に面し、かつ、該ポンプ室を密封しつつ出退することでポンプ作用を奏する可動部材を備えた点にある。
【0021】
本構成によれば、可動部材の退出動作によってポンプ室内を負圧にして液体試料を送液することができる。即ち、可動部材をポンプ室に進出させた状態として液体試料を試料供給部に導入し、可動部材をポンプ室から退出させることによって、ポンプ室内の内部空間を拡大して負圧を生じさせ、その結果、試料供給部に導入された液体試料が廃液部に吸引される。
【0022】
従って、本構成によれば、可動部材を単に退出操作することなどで簡単にポンプ作用による吸引力を生じさせることができる。
【0023】
本発明に係るマイクロ流体デバイスの第6特徴構成は、前記可動部材が、外部より磁力が付与されてその位置が変位する磁性体である点にある。
【0024】
本構成によれば、公知の磁力発生装置を用いて磁性体である可動部材を吸引したり、あるいは反発させたりすることによって可動部材を変位させることができる。そのためポンプ作用を生じさせる際の操作方法に種々のバリエーションが生まれる。その結果、マイクロ流体デバイスにポンプ作用を生じさせるために磁力発生装置をどのように配置させるなどの設計自由度も広がる。
【0025】
本発明に係るマイクロ流体デバイスの第7特徴構成は、前記流体流路が前記ポンプ室の側面に設けた開口部に通じており、前記液体試料の非吸引時においては前記可動部材の側面によって前記開口部が閉塞されている点にある。
【0026】
本構成のように、液体試料の非吸引時において、可動部材の側面によって開口部を閉塞する構成とすれば、開口部が開口してから可動部材が所定の位置に戻るまでの間しか吸引力は発生しない。このため、可動部材をポンプ室のどの位置まで進出させたとしても、常に一定の吸引力を発生させるようにすることができる。
その結果、液体試料の非吸引時における可動部材の位置によらず、常に一定の流速で一定量の液体試料を分析部に送液することができる。また、分析部における反応開始時を一律に揃えることができるようになるので、精度の高い分析値を得ることができる。
【0027】
本発明に係るマイクロ流体デバイスの第8特徴構成は、前記廃液部と、前記ポンプ室とが一体である点にある。
【0028】
本構成のように、廃液部とポンプ室とを一体的に構成することによって、マイクロ流体デバイスのコンパクト化が図れる。
【図面の簡単な説明】
【0029】
【図1】第1実施形態に係るマイクロ流体デバイスの上面図である。
【図2】第1実施形態に係るマイクロ流体デバイスの分解斜視図である。
【図3】第1実施形態に係るマイクロ流体デバイスの縦断面の概略図である。((a)は液体試料の非吸引時の状態を示し、(b)は液体試料の吸引時の状態を示す)
【図4】第1実施形態に係るマイクロ流体デバイスの製造方法の一例を説明する工程図である。
【図5】第2実施形態に係るマイクロ流体デバイスの縦断面の概略図である。((a)は液体試料の非吸引時の状態を示し、(b)は液体試料の吸引時の状態を示す)
【図6】その他の実施形態に係るマイクロ流体デバイスの縦断面の概略図である。((a)は液体試料の非吸引時の状態を示し、(b)は液体試料の吸引時の状態を示す)
【図7】その他の実施形態に係るマイクロ流体デバイスの縦断面の概略図である。((a)は液体試料の非吸引時の状態を示し、(b)は液体試料の吸引時の状態を示す)
【図8】その他の実施形態に係るマイクロ流体デバイスの縦断面の概略図である。((a)は液体試料の非吸引時の状態を示し、(b)は液体試料の吸引時の状態を示す)
【図9】その他の実施形態に係るマイクロ流体デバイスの縦断面の概略図である。((a)は液体試料の非吸引時の状態を示し、(b)は液体試料の吸引時の状態を示す)
【発明を実施するための形態】
【0030】
〔第1実施形態〕
本発明のマイクロ流体デバイス1に係る第1実施形態を図1〜図3に基づいて説明する。
図1〜図3に示すように、第1実施形態に係るマイクロ流体デバイス1は、基板2の中に、測定物質を含んだ液体試料Lを導入する試料供給部3と、液体試料Lを分析する分析部4と、分析部4を通過した液体試料Lを収容する廃液部5と、試料供給部3から廃液部5へ液体試料Lが流下する流体流路6とを備える。さらに、試料供給部3に導入された液体試料Lを廃液部5へ吸引するポンプ室7が基板2のうち分析部4の下流に設けてある。各構成部分の詳細について以下に述べる。
【0031】
(基板)
基板2は、第1基板2a、第2基板2b、及び第3基板2cからなる。基板2の構成素材としては例えば、ポリジメチルシロキサン(PDMS)、ガラス、或いはシリコンを利用することができる。接合方法としては、酸素プラズマ処理、陽極接合、フッ化水素接合等が挙げられ、使用する構成素材に応じて適宜選択する。例えば、PDMS製基板とPDMS製基板との接合、PDMS製基板とガラス製基板との接合、又はPDMS製基板とガラス製基板との接合の場合には酸素プラズマ処理により接合し、ガラス製基板とシリコン製基板との接合、又はシリコン製基板とシリコン製基板との接合の場合には陽極接合により接合し、ガラス製基板とガラス製基板との接合の場合にはフッ化水素接合により接合する。
【0032】
尚、基板2に微細加工を施す方法は、直接加工法および間接加工法の何れを適用してもよい。直接加工法としては、微細加工用ドリル等を用いての機械的切削加工法などが例示される。一方、間接加工法としては、所望の構造に対応する鋳型を用いて微細構造を転写する射出成形法などが例示される。
【0033】
(試料供給部)
試料供給部3は、第1基板2aの厚み方向に貫通した貫通孔であって、測定物質を含んだ液体試料Lをピペット等で注入する開口を備えたチャンバーとして機能する。試料供給部3は、分析する液体試料Lの所望量を貯留できるだけの容積を備えるとよい。
【0034】
(分析部)
分析部4は、液体試料Lに含まれる測定物質を分析するための反応を行なうチャンバーとして機能する。
【0035】
分析部4の構成としては、例えば、結合対アッセイとして抗原抗体反応による免疫学的手法に基づく構成を利用しても良いし、あるいは、公知の核酸等のハイブリダイゼーションによる生化学的手法に基づく構成を利用することもできる。
【0036】
免疫学的手法を利用する場合、当該分析部4は、液体試料Lに含まれる測定物質と結合して特異的複合体を形成する結合性物質を封入する構成とする。当該結合性物質は測定物質と反応する反応性物質であって測定物質の検出・定量ができるものであればよく、分析部4を形成する部材表面に結合性物質を固定する、或いは、ビーズ等の固定化物質に結合性物質を担持させる。
【0037】
図3に示すように、本発明の第1実施形態では、分析部4に円柱状凹部4aを形成して、結合性物質を担持させた複数の固定化物質4bを円柱状凹部4aの中に保持する構成を例示する。円柱状凹部4aと第2基板2bとの間には、液体試料Lは通過できるが固定化物質4bが通過できないわずかな隙間4cが設けられており、液体試料Lが分析部4を流下する際に固定化物質4bが分析部4から流出しないように構成されている。
円柱状凹部4aのサイズとしては、例えば、厚さ2mm、縦50mm、横40mmのサイズを有する基板2において、流体流路6の第1流路部6aの深さを100μmとした場合、円柱状凹部4aの壁厚を1.5mm、内径を1mm、深さを150μmとし、円柱状凹部4aと第2基板2bとの間の隙間4cを50μmとする構成等が挙げられる。
【0038】
(廃液部)
廃液部5は、分析部4を通過した反応済みの液体試料Lを貯留するチャンバーとして機能する。廃液部5は、第1基板2aの厚み方向に貫通した貫通孔であって、分析部4を通過した液体試料Lを貯留できるだけの容積を備えるとよい。尚、第1実施形態においては、廃液部5と、後述するポンプ室7とは基板2の厚み方向に連通するように一体的に構成されており、マイクロ流体デバイス1のコンパクト化が図られている。
【0039】
(流体流路)
流体流路6は、試料供給部3から廃液部5までを接続して、試料供給部3から廃液部5へ液体試料Lが流下する流路である。流体流路6は、試料供給部3の下部から第1基板2aの横方向に延びる第1流路部6a、第1流路部6aから第1基板2aの厚み方向に延びる第2流路部6b、及び第2流路部6bから第3基板2cの横方向に延びてポンプ室7の側面に開口する第3流路部6cから構成されている。
【0040】
(ポンプ室)
ポンプ室7は、第3基板2cの厚み方向に貫通する貫通孔であって、上方ほど大径となるテーパー面と、ゴム等の弾性材料からなる弾性膜8とを備えて構成されている。弾性膜8は、ポンプ室7の上方開口を覆うようにして、該開口の周縁に隙間無く密着した状態で設けられている。ポンプ室7に面する側と反対側の面には磁性材料を含有する平板9(外部より磁力が付与されてその位置が変位する磁性体)を備える。
【0041】
図1に示すように、この第1実施形態では、上記試料供給部3、分析部4、廃液部5、流体流路6、及びポンプ室7を1つずつ有するチャネルCが、マイクロ流体デバイス1の縦方向に8つ並列して備えられている構成を示す。ただし、設定するチャネルCの数はこれに限定されるものではない。
【0042】
(液体試料とその分析方法の詳細)
液体試料Lとは、分析を行なうべき対象となる測定物質を含む、或いは、含む可能性のある液体のサンプルのことを指す。液体試料Lはどのような起源由来のものであってもよい。例えば、環境試料・細胞・培養物・組織・体液・尿・血清および生検試料等から得ることができる。
環境試料としては、工場跡地等から採取した土壌や、河川から採取した水等が例示される。そして、環境中より採取された試料は、マイクロ流体デバイス1に形成された流路中を流下できる程度の粘性を有する液体試料Lとなるよう調整する。
【0043】
液体試料Lに含まれる測定物質は、この測定物質と特異的結合体を形成しうる結合性物質(後述)との結合により捕捉される。特異的複合体は、結合対アッセイを行った結果生じるものであり、後述するように、抗原抗体反応の結果生じる免疫化学的複合体や、相補的な核酸同士のハイブリダイゼーションの結果生じる複合体等が好適に例示される。
【0044】
測定物質は、化学物質・タンパク質等の高分子・DNA断片・微生物又はウィルスおよびその断片・ホルモン等、あらゆる物質が対象となりうる。具体的には、土壌中に含まれる毒性物質(PCB,ダイオキシン)や、油性物質(重油)等の環境汚染の要因となりうる物質、或いは、河川の水に含まれる病原性大腸菌の菌体等が好適に例示される。
【0045】
結合性物質は、測定物質を認識し得る物質、つまり、結合性物質と親和性を有する測定物質を選択的に検出し得る分子認識能を有する物質を意味する。具体的には、抗原・抗体・DNA断片・タンパク質・ペプチド等が好ましく例示されるが、これらに限定されるものではない。例えば、測定物質としてのPCB、ダイオキシンに対する結合性物質は、それぞれ抗PCB抗体、抗ダイオキシン抗体である。
【0046】
免疫化学的手法としては、例えば、固相法によるイムノアッセイの手法を適用することにより液体試料L中の測定物質の存在を検出、或いは、定量的測定ができる。イムノアッセイとして公知の所謂「サンドイッチ法」では、例えば抗原のような標的となる測定物質を、標識化抗体と固定化物質表面に固定化された抗体(結合性物質)との間に挟むことにより、分析部4において特異的複合体を形成させ、測定物質を捕捉することができる。
【0047】
特異的複合体を形成する抗体等を標識化しておくことで、測定物質の存在を検出、或いは、定量的測定ができる。
抗原抗体反応により形成された特異的複合体の検出は、以下のように行う。
例えば、抗体を蛍光(発光)物質により標識化し、その蛍光(発光)強度を直接検出する、もしくは、抗体に酵素を結合し、化学発光基質を用いて酵素反応を行なうことにより光学的変化を検出する。
【0048】
蛍光標識した抗体を使用した場合における反応の結果、生成する特異的複合体中に、測定物質の量に応じて標識物質が存在することになる。そのため、標識物質の量を測定することで、測定物質を定量することができる。標識物質の定量は、標識物質の種類と共に種々の方法をとりうる。例えば、蛍光測定装置により蛍光物質の蛍光強度を測定する。測定された標識強度を、既知量の「測定物質」を測定した場合の標識強度と比較することにより、液体試料L中の測定物質量を決定できる。
【0049】
図3に示すように、第1実施形態の分析手段10として蛍光強度を測定する装置を例示する。特異的複合体が有する標識に励起光照射手段10aから半導体レーザを照射して励起し、放出される蛍光をマイクロレンズで収集して、光学干渉フィルターにより蛍光成分のみを透過させ蛍光測定装置10bにより検出する。検出は、8つの分析部4毎に個別に行なう。分析部4毎の検出を迅速に行なうため、マイクロ流体デバイス1をスライド移動可能に構成してもよい。
【0050】
(マイクロ流体デバイスの製造方法)
図4に基づいて、基板2(第1基板2a、第2基板2b、第3基板2c)の構成素材としてPDMSを用いた場合のマイクロ流体デバイス1の製造方法について説明する。
【0051】
工程(A)において、第1基板2aの形状の反転形を有する第1鋳型11と、第3基板2cの形状の反転形を有する第2鋳型12を公知の光リソグラフィー法により成形する。
先ず、所望のサイズを有するシリコンウエハSを準備する。シリコンウエハSは予め乾燥させたり、表面処理などの所望の前処理を施すこともできる。その後、適当なレジスト材料(例えば、ネガティブフォトレジストSU−8など)を500rpm〜5000rpmの回転速度で数秒間〜数十秒間にわたってスピン塗布し、オーブン中で乾燥させ、所望の厚さのレジスト膜を形成する。
【0052】
次いで、このレジスト膜上にマスクを載置し、該マスクを通して、適当な露光装置で露光する。マスクは、製造しようとしている第1基板2aの形状及び第3基板2cの形状(一部分)に対応するレイアウトパターンを有する。その後、適当な現像液(例えば、1−メトキシ−2−プロピル酢酸)中で現像し、上面に第1基板2a及び第3基板2cの微細構造に対応するレジスト突起Rを有する第1鋳型11及び第2鋳型12を成形する。尚、第2鋳型12については、成形したレジスト突起Rの上に、断面形状が台形の中子Nを設置して完成する。
【0053】
第1鋳型11と第2鋳型12との製作については、上記光リソグラフィー法によらなくともよく、金属切削加工法等によって製作しても良い。
【0054】
次いで工程(B)において、脱気して気泡を除いたPDMSプレポリマー13を第1鋳型11及び第2鋳型12の上面に流し込み、硬化させることで、PDMS製の第1基板2aと第3基板2cを成形する。
【0055】
次いで工程(C)において、成形された第1基板2a及び第3基板2cを第1鋳型11及び第2鋳型12からそれぞれ剥離する。必要に応じて、トリミングなどの整形処理を行うこともできる。
さらに第1基板2aと同じサイズのPDMS製の第2基板2bを準備し、第1基板2a、第2基板2b、第3基板2cについて、酸素プラズマ処理による表面改質処理を実施する。該表面改質処理後、第3基板2cにおいて、ゴム等の弾性材からなる弾性膜8を、流体流路6の第3流路部6cが形成されている面とは反対側の面にポンプ室7の上方開口を覆うように設け、さらに、弾性膜8のポンプ室7に面する側と反対側の面に磁性材料を含有する平板9を設置する。尚、平板9の横幅の大きさは、ポンプ室7の最小横幅の大きさよりも小さく設定されている。
【0056】
工程(D)において、第2基板2bの上に第1基板2aを配置し、第1基板2aの上に第3基板2cを配置して、これらを互いに圧接して接合することによって、試料供給部3、分析部4、流体流路6、ポンプ室7、廃液部5が連通するチャネルCが形成されて、マイクロ流体デバイス1が完成する。
【0057】
(マイクロ流体デバイスの使用方法)
図3に基づいて、マイクロ流体デバイス1の使用方法について説明する。
第1実施形態に係るマイクロ流体デバイス1は、当該マイクロ流体デバイス1を保持するための保持台(図示せず)、電磁石を備える公知の磁力発生装置G、分析手段10を備える図示しないマイクロ流体デバイスシステムにおいて使用される。マイクロ流体デバイス1を保持台の上に設置した状態において、その廃液部5の下方に磁力発生装置Gが設定される。
【0058】
図3(a)に示すように、磁力発生装置Gに電流を流して磁力を発生させて、平板9を磁力発生装置G側に引き寄せようとすると、平板9は弾性膜8と共にポンプ室7の内部に引き込まれるため、弾性膜8が弾性変形してポンプ室7の内部に凹む格好となる。最終的には、流通流路の第3流路部6cに通じるポンプ室7の側面の開口部7aが、弾性変形した弾性膜8によって丁度塞がれる位置まで平板9をポンプ室7の内部に引き入れて、その状態において試料供給部3に液体試料Lを導入する。このとき、試料供給部3に液体試料Lを導入した時点で、流通流路6が密封されるため、試料供給部3と流通流路の第1流路部6aとの境部付近に液体試料Lが留まる状態となる。
【0059】
次いで、図3(b)に示すように、磁力発生装置Gに通電するのを止めて磁力の発生を停止させると、平板9をポンプ室7の内部に引き入れようとする力が作用しなくなり、弾性膜8がその弾性復元力で元の平坦状態に復帰しようとする。これにより、ポンプ室7の内部空間が拡大して負圧が発生し、液体試料Lが分析部4に流下してそのまま廃液部5に吸引される。
【0060】
液体試料Lが分析部4に流下すると、当該分析部4において液体試料L中の測定物質を分析するための反応が開始される。例えば、液体試料L中の測定物質と、分析部4の円柱状凹部4aの中に保持される固定化物質4bの結合性物質とが反応し、その結果として生じるシグナルを検出して測定物質を検出・定量することができる。詳細には、例えば上記「液体試料Lとその分析方法の詳細」の欄で説明したように、抗原のような標的となる測定物質を、標識化抗体と固定化物質に固定化された抗体(結合性物質)との間に挟むことにより、特異的複合体を形成させて測定物質を分析部4に捕捉する所謂「サンドイッチ法」において、蛍光(発光)物質により標識化された標識化抗体の蛍光(発光)強度を、励起光照射手段10a及び蛍光測定装置10bにより検出するなどして、測定物質を検出・定量することができる。
【0061】
以上より第1実施形態の構成によれば、ポンプ室7が分析部4の下流にあり、そのポンプ作用の吸引力によって液体試料Lを試料供給部3から廃液部5に送液するように構成されるため、液体試料Lは流体流路6を逆流することなく確実に分析部4へ送液される。その上、液体試料Lはポンプ室7の吸引作用によってのみ送液されるため、脈流が発生することもない。
【0062】
さらに第1実施形態の構成によれば、弾性膜8の弾性変形によってポンプ室7の内部を負圧にして液体試料Lを送液することができる。即ち、弾性膜8に外力を付与して凹ませた状態として液体試料Lを試料供給部3に導入し、外力を除いて弾性膜8を元の平坦状態に復帰させることによって、ポンプ室7の内部空間を拡大して負圧を生じさせ、その結果、試料供給部3に導入された液体試料Lが廃液部5に吸引される。
従って、本構成によれば、弾性膜8を単に押し操作することなどで簡単にポンプ作用による吸引力を生じさせることができる。
【0063】
さらに第1実施形態の構成によれば、公知の磁力発生装置Gで磁性材料を含む平板9を吸引したり、あるいは反発させたりすることによって弾性膜8を弾性変形させることができるようになるので、ポンプ作用を生じさせる際の操作方法に種々のバリエーションが生まれる。その結果、本構成のマイクロ流体デバイスにポンプ作用を生じさせるために磁力発生装置Gをどのように配置させるなどの設計自由度も広がる。
【0064】
また、この第1実施形態のように、液体試料Lの非吸引時において、弾性変形した弾性膜8によってポンプ室7の側面の開口部7aを閉塞する構成とすれば、開口部7aが開口してから弾性膜8が元に復帰するまでの間しか吸引力は発生しないので、弾性膜8をどのような状態まで弾性変形させたとしても、常に一定の吸引力を発生させるようにすることができる。
その結果、弾性膜8に付与する外力の強さによらず、常に一定の流速、かつ一定量の液体試料Lを分析部4に送液することができるようになる。よって、分析部4における反応開始時を一律に揃えることができて、精度の高い分析値を得ることができる。
【0065】
〔第2実施形態〕
次に、本発明のマイクロ流体デバイス1に係る第2実施形態を図5に基づいて説明する。
尚、上記第1実施形態との重複説明を避けるため、上記第1実施形態と異なる構成とその使用方法についてのみ説明し、同じ構成部分については同一の符号を付して説明を省略する。
【0066】
図5(a),(b)に示すように、第2実施形態におけるポンプ室7は、第3基板2cの厚み方向に貫通する貫通孔であって、ポンプ室7に面し、かつ、ポンプ室7を密封しつつ出退することでポンプ作用を奏する可動部材14を備えて構成されている。可動部材14は、磁性材料を含有する柱状の磁性体(外部より磁力が付与されてその位置が変位する磁性体)である。ポンプ室7の横幅の大きさは、廃液室の横幅の大きさよりも大きく設定されており、ポンプ室7から廃液室にわたって段部15が形成される。尚、流通流路の第3流路部6cに通じる開口部7aは、ポンプ室7側面の最下部に設けられており、開口部7aの下端は段部15と面一である。
【0067】
第2実施形態に係るマイクロ流体デバイス1は、当該マイクロ流体デバイス1を保持するための保持台(図示せず)、電磁石を備える公知の磁力発生装置G、分析手段10を備える図示しないマイクロ流体デバイスシステムにおいて使用されるものであり、マイクロ流体デバイス1を保持台の上に設置した状態において、その可動部材14の上方に磁力発生装置Gが設定される。
【0068】
図5(a)に示すように、可動部材14が段部15の上に設置され、可動部材14の側面によって開口部7aを閉塞した状態で試料供給部3に液体試料Lを導入する。このとき、試料供給部3に液体試料Lを導入した時点で、流通流路6が密封されるため、試料供給部3と流通流路の第1流路部6aとの境部付近に液体試料Lが留まる状態となる。
そして、図5(b)に示すように、磁力発生装置Gに電流を流して磁力を発生させて可動部材14を上の磁力発生装置Gの側に引き寄せて退出させようとすると、ポンプ室7の内部空間が拡大して負圧が発生して、液体試料Lが分析部4に流下してそのまま廃液部5に吸引される。
【0069】
液体試料Lが分析部4に流下すると、上記第1実施形態と同様に、分析部4において液体試料Lに含まれた測定物質を分析するための反応が開始され、測定物質を検出・定量することができる。
【0070】
以上より第2実施形態の構成においては、ポンプ室7が分析部4の下流にあり、そのポンプ作用の吸引力によって液体試料Lを試料供給部3から廃液部5に送液するように構成されるため、液体試料Lは流体流路6を逆流することなく確実に分析部4へ送液される。その上、液体試料Lはポンプ室7の吸引作用によってのみ送液されるため、脈流が発生することもない。
【0071】
さらに第2実施形態の構成によれば、可動部材14の退出動作によってポンプ室7の内部を負圧にして液体試料Lを送液することができる。即ち、可動部材14をポンプ室7に進出させた状態として液体試料Lを試料供給部3に導入し、可動部材14をポンプ室7から退出させることによって、ポンプ室7の内部空間を拡大して負圧を生じさせ、その結果、試料供給部3に導入された液体試料Lが廃液部5に吸引される。従って、本構成によれば、可動部材14を単に退出操作することなどで簡単にポンプ作用による吸引力を生じさせることができる。
【0072】
さらに第2実施形態の構成によれば、公知の磁力発生装置Gを用いて磁性体である可動部材14を吸引したり、あるいは反発させたりすることによって可動部材14を変位させることができるようになるので、ポンプ作用を生じさせる際の操作方法に種々のバリエーションが生まれる。その結果、本構成のマイクロ流体デバイスにポンプ作用を生じさせるために磁力発生装置Gをどのように配置させるなどの設計自由度も広がる。
【0073】
また、この第2実施形態のように、液体試料Lの非吸引時において、可動部材14の側面によって開口部7aを閉塞する構成とすれば、開口部7aが開口してから可動部材14が所定の位置に戻るまでの間しか吸引力は発生しない。よって、可動部材14をポンプ室7のどの位置まで進出させたとしても、常に一定の吸引力を発生させるようにすることができる。
その結果、液体試料Lの非吸引時における可動部材14の位置によらず、常に一定の流速で液体試料Lを分析部4に送液することができるようになる。このため、分析部4における反応開始時を一律に揃えることができて、精度の高い分析値を得ることができる。
【0074】
〔その他の実施形態〕
1.上述の第1実施形態における磁力発生装置Gは、電磁石を備えていなくとも良い。例えば図6に示すように、通常のフェライト磁石Gを使用して、廃液室5の真下にフェライト磁石Gを配置する。弾性膜8を弾性変形させた後、フェライト磁石Gを遠ざけ、磁力付与を止めて弾性膜8をその弾性復元力で復帰させることでポンプ作用を奏するような構成としても良い。
【0075】
2.ポンプ作用を奏する他の構成としては、例えば、図7に示すように、磁性材料を含まない平板9を弾性膜8に設け、その平板9を、適当な柱状体16(DCソレノイドのプランジャーや、ステッピングモータにより可動する棒等)で、押したり離したりすることでポンプ作用を奏するように構成しても良い。あるいは、図8に示すように、磁性材料を含まない平板9を覆うように第3基板2cの上からシール17を貼り付けることで、弾性膜8を弾性変形させた後、シール17を剥がして弾性膜8をその弾性復元力で復帰させることでポンプ作用を奏するような構成としても良い。
【0076】
3.さらに他の構成として、例えば、図9に示すように、可動部材14を、磁性材料を含まない材料で構成し、図示しないマイクロ流体デバイスシステムに備えたステッピングモータ等によって上下に可動させることによりポンプ作用を奏するように構成しても良い。
【0077】
4.基板2の他の構成としては、第2基板2bの代わりに適当な樹脂フィルムを使用して、当該樹脂フィルムを第1基板2aに貼着するような構成としても良い。
【産業上の利用可能性】
【0078】
本発明のマイクロ流体デバイスは、所謂バイオチップの一種であり、基板中に微小な毛細管状の流体流路、或いは、この流路と接続する反応領域としての分析部等の構造が形成され、DNA分析デバイス・微小電気泳動デバイス・微小クロマトグラフィーデバイス・微小センサー等のように、液体試料に含まれる、毒性物質や測定物質を検出する用途に利用できる。
【符号の説明】
【0079】
1 マイクロ流体デバイス
2 基板
3 試料供給部
4 分析部
5 廃液部
6 流体流路
7 ポンプ室
8 弾性膜
9 平板
14 可動部材
L 液体試料

【特許請求の範囲】
【請求項1】
基板に、測定物質を含んだ液体試料を導入する試料供給部と、前記液体試料を分析する分析部と、前記分析部を通過した液体試料を収容する廃液部と、前記試料供給部から前記廃液部へ前記液体試料が流下する流体流路とを備え、前記試料供給部に導入された液体試料を前記廃液部へ吸引するポンプ室を前記基板のうち前記分析部の下流に設けてあるマイクロ流体デバイス。
【請求項2】
前記ポンプ室が、外力の付与により弾性変形してポンプ作用を奏する弾性膜を備えた請求項1に記載のマイクロ流体デバイス。
【請求項3】
前記弾性膜が、外部より磁力が付与されてその位置が変位する磁性体を備え、該磁性体の変位によって、前記弾性膜が弾性変形する請求項2に記載のマイクロ流体デバイス。
【請求項4】
前記流体流路が前記ポンプ室の側面に設けた開口部に通じており、前記液体試料の非吸引時において弾性変形した前記弾性膜によって前記開口部が閉塞されている請求項2又は3に記載のマイクロ流体デバイス。
【請求項5】
前記ポンプ室が、該ポンプ室に面し、かつ、該ポンプ室を密封しつつ出退することでポンプ作用を奏する可動部材を備えた請求項1に記載のマイクロ流体デバイス。
【請求項6】
前記可動部材が、外部より磁力が付与されてその位置が変位する磁性体である請求項5に記載のマイクロ流体デバイス。
【請求項7】
前記流体流路が前記ポンプ室の側面に設けた開口部に通じており、前記液体試料の非吸引時においては前記可動部材の側面によって前記開口部が閉塞されている請求項5又は6に記載のマイクロ流体デバイス。
【請求項8】
前記廃液部と、前記ポンプ室とが一体である請求項2〜7のいずれか1項に記載のマイクロ流体デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate