説明

マルチプロングプローブを用いた高周波アブレーションシステム

【課題】腫瘍などの高周波アブレーションに関し、プローブのプロングから双極および単極の双方のアブレーションを施しうるマルチプロングプローブ装置を提供する。
【解決手段】複数のプロング電極100、102,104,110を用いた効率的なアブレーションが、プロング100,102,104,110を互いとは絶縁すると共に、プロング100,102,104,110間、プロング100,102,104,110およびグランドパッド間、またはその双方の間で電力を高速で切り換えることによって達成される。このようにして、腫瘍への電力分配をプローブの形状を変える必要なく効率的に制御することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は腫瘍などの高周波アブレーションに関し、特に、プローブのプロングから双極(bipolar)および単極(monopolar)の双方のアブレーションを施しうるマルチプロングプローブ(multi-pronged probe)装置に関する。
【背景技術】
【0002】
例えば肝臓(肝)腫瘍などの腫瘍のアブレーションは、熱または冷気を使用して腫瘍細胞を殺傷する。凍結手術によるアブレーションでは、開腹中にプローブが挿入され、腫瘍が凍結される。高周波アブレーション(RFA)(radiofrequency ablation)では、電極が腫瘍に挿入されて、その電極から患者内へ(通常、患者の皮膚上の大面積プレートであるリターン電極へ)流れる電流が、抵抗加熱によって腫瘍細胞を破壊する。双方の方法とも一般的に腫瘍細胞の治療に支障はないが、凍結手術によるアブレーションと比較してRFAが利点を有する理由は、切開手術を行わず、したがって、患者の外傷を少なくして、経皮的に治療を送出することが可能なためである。RFAは、場合によっては、患者が耐えることができる唯一の治療である。さらに、RFAは、患者がCATスキャンを受けている間に完了することができる。
【0003】
通常、RFAは、単極アブレーションとして既知のプロセスでは、患者の皮膚上の電極プローブと接触プレートとの間で行われる。単極アブレーションにおいて使用する単純なRFA電極は、腫瘍内に配置された非絶縁先端を有する導電性ニードルである。このニードルは、約460kHzの発振電気信号により、患者の皮膚上の大面積接触プレートを基準にして印加される。電流はニードルの先端から放射状に流れ、(露出したニードルの先端の長さに応じた)球状または楕円状の加熱領域を生成し、最終的には、腫瘍細胞を殺傷するのに十分な温度を有するその領域の一部の中に障害を引き起こす。したがって、治療は相対的に限定された領域で行われる。よって、腫瘍が大きい場合、単極アブレーション手順を複数回適用する必要があることが多い。
【0004】
単極アブレーションに有用な別のタイプのRFA電極プローブは、傘プローブである。傘電極が腫瘍に配置された後、3つまたはそれ以上の電極ワイヤまたはプロングが電極軸の先端から放射状に広がる傘スタイルの電極を使用することにより、上述のニードルに比して電極面積を増加させるものである。プロングは電気的に接続されるため、動作の際、プロングは全て同じ電圧で動作する。ニードルプローブに関して上述したように、傘電極は通常、患者の皮膚上の大面積接触プレートを基準にして印加される。ここでもまた、傘プローブのプロングのそれぞれの先端から放射状に流れる電流は、(露出したニードルの先端の長さに応じた)球状または楕円状の加熱領域を生成する。傘プローブのプロングの組み合わせ領域は、ニードルプローブに比して増大した加熱領域をもたらす。しかしながら、ここでもまた励起電力(deposition of power)はプローブの幾何形状に基づいて範囲を限定された領域内にあり、治療の際にプローブの再位置決めおよび複数回の適用を行う必要がある場合が多い。
【0005】
治療の効果をさらに増大させるために、腫瘍の周りに局所的に配置された2つの傘を、双極アブレーションとして既知のアブレーションプロセスにおいて使用することもできる。双極アブレーションでは、電極と接触プレートとの間にではなく、患者の皮膚の下に位置する2つの傘プローブ電極間を電流が流れる。この電流の流れは、2つの傘電極の間にある腫瘍のボリュームに特にエネルギーを「集中」させ、それによって、匹敵する個数の単極の傘電極が個別に動作することによって得られるであろうものよりも高い電極間の加熱および大きな電極間の電流密度によりリージョンが生成される。したがって、双極動作は、電極を一度に配置することでより大きな組織を加熱することから、目標とする腫瘍のより効率的な治療を可能にし、それによって、個々の電極を複数回移動させる手順と比べて、手順の速度および効率が改善され、治療されるボリュームを確定することが容易になる。しかしながら、2つのプローブが必要とされるため、双極アブレーションは概して、大きな腫瘍のみの治療に限定される。
【発明の概要】
【発明が解決しようとする課題】
【0006】
したがって、単極アブレーションおよび双極アブレーションの双方の多数の方法が既知であるが、これらの方法のそれぞれは、アブレーションプロセスにおいて使用されるプローブ(単数または複数)の形状に基づいた特定のパターンで腫瘍に電力分散を与える。よって、これらのプロセスは、プローブの出力が特定の腫瘍に特に合わせることができないという点でかなり制限される。ゆえに、従来技術の方法では、腫瘍内での電力の励起を制御する能力に限界があるか、またはプローブの形状を変えずに所与の治療状態に最も望ましいいくつかのタイプのアブレーションを提供する能力に限界がある。これらの限界により、RFAは腫瘍細胞のすべてを殺傷できないことが多いく、その結果、腫瘍の再発率は、50%もの高さであることが報告されている。
【課題を解決するための手段】
【0007】
具体的に、一実施態様としては、本発明は、複数のプロング(prong)を有する電極プローブ(electrode probe)と、高周波電源(radiofrequency power source)と、少なくとも1つのグランドパッド(ground pad)とを備えた高周波アブレーションシステムを提供する。複数のプロングのそれぞれは複数のプロングのうち他のプロングとは絶縁され、スイッチシステム(switch system)がプロングおよび高周波電源とつながり(communicate)、プローブの少なくとも1つのプロングを電源に選択的に接続させて(connect)、接続されたプロングとグランドパッドとの間にアブレーション電流(ablative current)を供給するようにする。
【0008】
本発明の別の実施態様としては、高周波アブレーションシステムが複数のグランドパッドを備え、スイッチシステムが、グランドパッドおよびグランド接続部とさらにつながり、グランドパッドの少なくとも1つをグランド接続部に選択的に接続させて、接続されたプロングと接続されたグランドパッドとの間にアブレーション電流を供給するようにする。
【0009】
本発明のさらに別の実施態様としては、高周波アブレーションシステムが、グランド接続部とさらにつながるスイッチシステムを備え、それにより、当該スイッチシステムは、プロングのうち1つ又は複数を電源に、また、プロングの別の1つ又は複数をグランド接続部に選択的に接続して、双極アブレーションを行うことができる。スイッチシステムはプロングとつながり、高周波電源は1つのプロングおよび1つのグランドパッドを電源に順次接続して、そのとき選択されたプロングから単極アブレーション電流を供給し、一方で他のプロングからの電流の流れを阻止することもできる。
【0010】
本発明のさらに別の実施態様としては、プローブは、少なくとも2つのプロング、または複数の並列プロングのアレイからなるクラスタープローブ(cluster probe)を有する、傘型とすることができるかまたは他の型状(傘とは特定の傘型の電極を指し、より新しいモデルは種々の型状を有する)の電極とすることができる。
【0011】
本発明のさらに別の実施態様としては、電子スイッチは、接続されたプロングとグランドプレーン(ground plane)と間のインピーダンスと、接続されたプロングの温度と、所定の時間設定値と、接続されたプロングとグランドプレーンとの間で消耗する電力とからなる群から選択される制御パラメータに従って、電源へのプロングの接続の相対的な継続時間(relative duration)を制御する。電子スイッチは例えば、上述したパラメータのいずれかに従って切り換えを制御する、比例/積分コントローラを含むことができる。
【0012】
本発明の別の実施態様としては、高周波アブレーションシステムは、複数の絶縁されたプロングと、高周波電源と、複数のグランドパッドとを備えるプローブを有して提供される。スイッチシステムは、プロング、グランドパッド、および高周波電源とつながり、少なくとも1つのプロングならびに別のプロングおよびグランドパッドの少なくとも一方を選択的に接続して、プローブのプロングから双極アブレーションまたは単極アブレーションを選択的に行う。
【0013】
本発明のさらに別の実施態様としては、高周波アブレーションシステムが提供される。当該高周波アブレーションシステムは、複数の絶縁されたプロングと、高周波電源と、プロングおよび高周波電源とつながり、プローブの一対のプロングを電源に選択的に接続して、当該接続されたプロング間に双極アブレーション電流を供給するスイッチシステムとを備える。
【0014】
本発明のさらに別の実施態様としては、高周波アブレーション方法が提供される。当該方法は、複数の絶縁されたプロングを有する電極を患者に接触させて配置するステップと、電極のプロング対を高周波電源に選択的に接続するステップであって、それによって、当該接続されたプロング対の間にアブレーション電流を供給する一方、接続されていない対の間の電流を阻止する、電極のプロング対を高周波電源に選択的に接続するステップとを含む。当該方法は、患者と接触する少なくとも1つのグランドパッドを配置すると共に絶縁したプロングの1つとグランドパッドとの間の電源を選択的に接続することでプロングから双極アブレーションおよび単極アブレーションを行うステップをさらに含むことができる。
【0015】
本発明の別の実施態様としては、電源への電極のプロングの接続の相対的な継続時間は、接続されたプロングとグランド接続部との間のインピーダンスと、接続された電極対の少なくとも一方の温度と、接続された電極対間で消耗する電力とからなる群から選択される制御パラメータに従う。プロングの少なくとも1つのプロングへの電源の接続は、比例/積分コントローラによって制御されることができる。
【0016】
本発明の上記および他の目的ならびに利点は、以下の説明から明らかになる。この説明では、添付図面を参照する。添付図面は、本明細書の一部を形成し、添付図面には、本発明の好ましい実施態様が例示として示されている。しかしながら、このような実施態様ならびにその特定の目的および利点は、本発明の範囲を画定するものではなく、したがって、本発明の範囲を解釈するには、特許請求の範囲を参照しなければならない。
【発明の効果】
【0017】
本発明者らは、広範でむらのないリージョン(lesion)サイズを促進する、マルチプロングプローブ内の双極アブレーションの利点を提供する技法を開発した。このプローブはさらに、双極の利点と1回または複数回の単極アブレーションの利点を組み合わせて、マルチプロングプローブの各プロング付近での加熱の個別の制御を行うことができる。この技法は、マルチプロングプローブ内での絶縁された(electrically isolated)プロングを使用し、この絶縁されたプロングは、双極モードまたは単極モードで選択的に動作することができ、さらに、個々のプロング間を高速に切り換える回路と組み合わせることができる。各プロングを個別に制御することによって、プローブの周りの励起電力を、プローブの形状を変える必要なく制御することができる。
【図面の簡単な説明】
【0018】
【図1】本発明の関連する実施態様により、腫瘍の対向する端部に配備されて、電極間の通過電流により腫瘍を取り囲むリージョン(lesion)を形成する、第1の電極ワイヤおよび第2の電極ワイヤを提供する2つの傘電極アセンブリの斜視図である。
【図2】電圧制御発振器に接続された図1の電極の概略図であって、発振器電圧のフィードバック制御を行う電極ワイヤ上の温度センサを示す概略図である。
【図3】図1の第1の電極ワイヤおよび第2の電極ワイヤが、第1の電極および第2の電極のワイヤを同軸管に配列した単一シャフトから広がる、結合した電極アセンブリの先端の部分的断面図であって、管の外部表面全体の絶縁および電極ワイヤの先端の絶縁を示す部分的断面図である。
【図4】第1の電極および第2の電極の位置を示し、かつ、本発明により動作する2つの電極から得られるリージョン・ボリュームを、単極で動作する2つの電極から得られるリージョン・ボリュームと比較する、腫瘍の簡略化した正面断面図である。
【図5】第1の電極および第2の電極のそれぞれから検知する温度を使用してより複雑な制御戦略を行う、図1または図3の電極の電気的接続を示す図2と同様の図であって、2つの電極のそれぞれに独立した電流制御を提供するために、2つの電極間の電圧に維持される第3の皮膚接触プレートの使用を示す図である。
【図6】腫瘍を有する肝臓組織および正常な肝臓組織のオームセンチメートルによる抵抗率対ヘルツによる周波数をプロットしたグラフであって、約100kHz未満の周波数で、両組織の固有抵抗が分かれている様子を示すグラフである。
【図7】第1の電極および第2の電極のそれぞれのワイヤが電気的に絶縁され、その結果、いずれか一方の独立した電圧または電流もしくは位相を各ワイヤに加えて、そのワイヤと他方の電極との間に電流の流れを正確に調整できる、さらに別の実施態様を示す図2および図5と同様の図である。
【図8】図7のコントローラの複数電極制御を利用する際に図7のコントローラが実行できるようなプログラムのフローチャートである。
【図9】複数の電極のマルチ単極動作を提供する本発明の第2の実施態様の概略ブロック図であって、電極間で循環するスイッチを通じて高周波源を複数の単極電極に接続するコントローラを示す概略ブロック図である。
【図10】別の電極制御の場合における2つの電極の補完的動作および動作のデューティサイクルの制御を示す図9のスイッチの動作のタイミング図である。
【図11】図9のスイッチを3つの電極の動作に拡張したものを示す、図9のスイッチの別の実施態様の部分図である。
【図12】図11の実施態様によるスイッチを使用した電極が受け取る電力のタイミング図である。
【図13】それぞれのプロングから単極アブレーションを施すための絶縁プローブ(electrically isolated probe)およびスイッチシステム(switching system)を有するマルチプロングプローブの切り欠き図である。
【図14】プローブのプロング間の双極アブレーションを施すためのスイッチシステムに接続された図13のマルチプロングプローブの切り欠き側面図である。
【図15】中央のリージョンを形成する電流を示す図14のマルチプロングプローブの上面図である。
【図16】プローブで双極アブレーションまたは単極アブレーションを選択的に施すためのスイッチシステムに接続された図13のマルチプロングプローブの切り欠き側面図である。
【図17】複数の可能な双極アブレーション配置(arrangement)と単極アブレーション配置との間を切り換えるための複数のグランドパッドをさらに設ける図15のプローブおよびスイッチシステムの図である。
【発明を実施するための形態】
【0019】
I.双極電極の操作(BIPOLAR ELECTRODE OPERATION)
ここで、図1を参照して、肝臓10は、腫瘍12を含む可能性があり、この腫瘍12について、リージョン(lesion)14が、2つの傘型電極アセンブリ16aおよび16bを使用して本発明により形成される。2つの傘型電極アセンブリ16aおよび16bは、後述するようにわずかな変更を有する。各電極アセンブリ16aおよび16bは、細い管状金属シャフト18aおよび18bを有する。金属シャフト18aおよび18bは、経皮的に肝臓10に挿入されるサイズにされている。シャフト18aおよび18bはそれぞれ、シャフト先端20aおよび20bで終端する。このシャフト先端20aおよび20bからは、ワイヤ32から形成される3叉電極22aおよび22bが突出する。シャフト18aおよび18bが、肝臓10内に適切に配置されると、ワイヤ32は、本体の外側に残っているプランジャ24によって広げられる。ワイヤ32は、広げられると、シャフト先端20aおよび20bの周りにほぼ等しい角度で分かれて半径方向に広がることにより突出する。ワイヤ32が限界まで露出した形は、ワイヤ32が、シャフト18aおよび18bから広げられた時に、自然に、放射状に外側に開くような弓形に事前に形成されている。シャフト18aおよび18bは、軸方向が平行に示されているが、これは必要ではなく、他の向きを使用することもできる。
【0020】
このタイプの傘電極アセンブリ16aおよび16bは、当該技術において既知であるが、本発明の一実施態様では変更することができる。この変更は、シャフト18aおよび18bの外部のすべての表面に電気絶縁部を設け、かつ、ワイヤ32の露出部分の先端を絶縁することにより行われる。これは、従来技術と異なり、シャフト先端20aおよび20bを絶縁しない状態のままにし、かつワイヤ32を絶縁しない傘電極アセンブリである。これらの変更の目的および効果を以下にさらに説明する。
【0021】
本発明によると、第1の電極22aは、腫瘍12の一方の端部に配置され、他方の電極22bは、腫瘍12の中心を横切った第1の電極22aの反対側に配置される。本明細書で使用される用語「端部」は、腫瘍12の周辺近くの場所を総称し、腫瘍12の内部の位置に限定することを意図するものでもなく、腫瘍12の外部の位置に限定することを意図するものでもない。実際の腫瘍の境界は不規則な場合があり、よくわからない場合がある。本発明にとって重要なことは、腫瘍12の一部が、電極22aと22bとの間に含まれることである。
【0022】
次に図1および図2を参照して、電極22aは、当該技術において既知のタイプの電圧制御電力発振器28に取り付けることができる。この発振器28は、設定可能な周波数の交流電力を供給し、この交流電力の電圧振幅(または電流出力もしくは電力出力)は、外部信号によって制御される。電力発振器28のリターンは、電極22bに接続される。電極22bは、アースの基準にも指定される。電力発振器28は、通電されると、電極22aと22bとの間に電圧を発生し、それらの間に電流の流れを引き起こす。
【0023】
次に図4を参照して、従来技術によると、皮膚接触プレート(図示せず)を基準とする各電極22aおよび22bの従来技術の操作は、それぞれリージョン14aおよび14bを生ずるものと予想される。しかしながら、図2に示すように電極を接続して、それら電極間に電流が流れることにより、大幅に大きなリージョン14cが生成される。また、リージョン14cは、電極22aと22bとを分離する軸に沿って対称性が改善される。一般に、電極22aおよび22bは、通常の傘電極の場合、2.5cmから3cmだけ離されるか、あるいは、電極の拡張区域(extension radius)の4倍未満の距離だけ離される。
【0024】
図2を再び参照して、熱電対、抵抗検出器、または半導体タイプの検出器といった温度センサ30が、3つに分かれた電極22aおよび22bの露出したワイヤ32のそれぞれの先端部に配置することができる。このため、ワイヤ32は、小さな導体および上述したような温度センサ30を保持する小さな管とすることができる。市販の傘型電極アセンブリ16aおよび16bは、現在、このようなセンサと、プランジャ24のコネクタ(図示せず)に各センサを接続するワイヤとを備える。
【0025】
第1の実施態様では、電極22aの温度センサ30は、最大値決定回路34に接続される。最大値決定回路34は、電極22の3つの温度センサ30のうち、最大値を有する信号を出力するために選択する。最大値決定回路34は、最大の信号のみを通過させるように結合された高精度な整流器を提供できるようなディスクリート回路部であってもよいし、あるいは、まず温度センサ30からの信号をデジタル値に変更し、マイクロコントローラなどで実行されるプログラムにより最大値を決定することによりソフトウェアで実施されてもよい。
【0026】
温度センサ30からの温度の最大値は、比較器36によって渡される(比較器36も、ディスクリート回路部で実施されてもよいし、ソフトウェアで実施されてもよい)。比較器36は、最大温度を、あらかじめ定められた所望の温度信号38と比較する。この所望の温度信号38は、例えばポテンショメータなどから得ることができる。この所望の温度信号は通常、組織の沸騰、気化、または炭化が起こる点の少し下に設定される。
【0027】
比較器36からの出力は、既知の制御技法により増幅およびフィルタリングを受けて、振幅入力39を電力発振器28に提供することができる。このように、22aと22bとの間の電流は、温度センサ30のいずれか1つの温度が、あらかじめ定められた所望の温度信号38に近づく点に制限されることが理解されよう。
【0028】
上述したような電力発振器28は、電圧振幅制御を提供するが、電流振幅制御を代わりに使用できることも理解されよう。したがって、以下では、本明細書で使用されるような電圧制御という用語と電流制御という用語は、電極22bと22aとの間の組織のインピーダンスによって関係付けられるので、相互に交換可能であるとみなされるべきである。
【0029】
別の実施態様では、電極22aと22bとの間を流れる電流は、電力発振器28から電流センサ29を通過して流れる時に計測されるので、この電流をフィードバックループの一部として使用することにより、上述した温度制御によって、または温度制御なしで、電力発振器28から電流を制限することができる。
【0030】
さらに別の実施態様では、図示しないが、より完全な温度監視を行うために、電極22bの温度センサ30の信号も、最大値決定回路34に供給することができる。他の制御方法論も採用することができる。この制御方法論には、温度の読み出し値の加重平均用に提供される方法論、または当業者に既知の技法により温度の読み取り値の傾向に基づいて温度の読み取り値を予測する方法論が含まれる。
【0031】
次に図3を参照して、図1による2つの個別の電極アセンブリ16aおよび16bを配置することの難しさは、単一電極40を使用することにより減らすことができる。この単一電極40は、中心の管状シャフト18cと、第2の同軸管状シャフト42とを有する。中心の管状シャフト18cは、その管腔内に、第1の電極22aのワイヤ32を保持する。第2の同軸管状シャフト42は、管状シャフト18cの周囲に配置され、その壁とシャフト18cとの間に、第2の電極22bのワイヤ44を保持する。ワイヤ44は、焼き戻しを行って、上述したワイヤ32の形状と同様の形状に形成することができる。シャフト18cおよび42は通常、金属製である。したがって、あらゆる電流の流れが、シャフト18cおよび42ではなく、露出したワイヤ32の間に存在することを確保するために、シャフト18cおよび42は、絶縁コーティング45および46によってそれぞれ被覆される。
【0032】
上述したように、この絶縁コーティング46は、図1の電極アセンブリ16aおよび16bのシャフト18aおよび18bの先端にも適用される。それによって、電流が、シャフト18aと18bとの間の短絡回路に集中するのではなく、実際には、電極22aおよび22bのワイヤのうち、ワイヤ32から流れることを同様に確保する。
【0033】
単一電極40に対して、他の同様のシャフト構成を得ることもできる。このシャフト構成には、並列なシャフト18aおよび18bを溶接などによって取り付けた構成が含まれる。
【0034】
第1の電極22aと第2の電極22bとの間でそれぞれ異なる分離を有する単一電極40のキットを、さまざまな腫瘍のサイズおよびさまざまな腫瘍のタイプに適合させて提供することができる。
【0035】
上記で簡単に述べたように、図1の実施態様および図3の実施態様のいずれにおいても、ワイヤ32は、シャフト18cおよび42から取り出されたそれらの先端部に絶縁コーティング46を含むことができる。それによって、ワイヤ32の端部に関連した高い電流密度が減る。
【0036】
好ましい実施態様では、第1の電極22aのワイヤおよび第2の電極22bのワイヤは、(図2に示すものとは異なり)千鳥状の角度に配置され、その結果、電極アセンブリの軸方向からの光景が、等間隔で重なり合わないワイヤ32を示す。このような構成は、2つの電極アセンブリ16aおよび16bにより維持するのは困難ではあるが、図2の実施態様にも望ましい。
【0037】
電力発振器28の周波数は、従来技術で使用される450kHzの値よりもはるかに下の値に優先的に設定することができる。図6を参照して、100kHz未満で、最も顕著には10kHzより下の周波数において、正常な組織のインピーダンスは、腫瘍組織のインピーダンスよりも非常に大きく増加している。本発明者等は、特定の理論に縛られたくはないが、このインピーダンスの相違は、腫瘍細胞組織の間質性物質と正常細胞組織の間質性物質との相違の結果であると考えられている。いずれにしても、現在、腫瘍組織の低いインピーダンスを利用して、電力発振器28の周波数を10kHz近くの値に設定することにより、その組織にエネルギーを優先的に与えることができると考えられている。ただし、この周波数設定は、本発明のすべての実施態様で必要とされるとは限らない。
【0038】
重要なことは、このような周波数は、心臓のような神経組織を興奮させることがあるが、このような興奮は、この双極設計によって制限されるということである。
【0039】
次に図5を参照して、一方の電極の近くに、血管などが存在することにより、電極22aおよび22bの局所的な環境が異なる可能性があり、したがってそのエリアのリージョン14の加熱が大幅になくなる。したがって、他方の電極22aおよび22bの周囲の電流密度を変化させることなく、一方の電極22aおよび22bの周囲の電流密度を増加させることが望ましい場合がある。これは、従来技術で使用されるタイプの皮膚接触プレート50を使用することによって実現できる。ただし、この皮膚接触プレート50は、本発明では異なる方法で使用される。本明細書で使用されるような接触プレート50という用語は、任意の大きな面積の導体を総称することができ、患者の皮膚の広いエリアの上に接触することが意図されているが、必ずしもこれに限定されない。
【0040】
図5の実施態様では、接触プレート50は、電極22aおよび22bの温度に応じて、可変抵抗器52を通じて、スイッチ53により電力発振器28の出力またはアースのいずれかを基準とすることができる。一般に、温度センサ30が、電極22aよりも電極22bで高い温度を示す場合に、スイッチ53は、可変抵抗器52の自由端を電力発振器28の出力に接続する。逆に、温度センサ30が、電極22aよりも電極22bで低い温度を示す場合に、スイッチ53は、可変抵抗器52の自由端をアースに接続する。電極22aおよび22bの温度の比較は、図2について上述したのと同様に、最大値決定回路34aおよび34bを介して行うことができる。スイッチ53は、当該技術で既知のタイプの比較器駆動型(comparator-driven)半導体スイッチとすることができる。
【0041】
電極22aおよび22bの温度センサ30にそれぞれ接続される最大値決定回路34aおよび34bの出力は、可変抵抗器52の設定の制御にも使用することができる。スイッチ53が、抵抗器52を電力発振器28の出力に接続している場合、最大値決定回路34aおよび34bは、電極22bが相対的に熱くなるにつれて、抵抗器52の抵抗を下げるのに役立つ。逆に、スイッチ53が、抵抗器52をアースに接続している場合、最大値決定回路34aおよび34bは、電極22aが相対的に熱くなるにつれて、抵抗器52の抵抗を下げるのに役立つ。したがって、スイッチ53および可変抵抗器52の動作は、一般に、電極22aおよび22bの温度を均等にしようとすることである。
【0042】
電極22aが、血管のようなヒートシンクの近くにあり、電極22bがそうでない場合には、電極22aの温度センサ30は小さな値を記録し、したがって、最大値決定回路34aの出力は、最大値決定回路34bの出力よりも小さくなる。
【0043】
抵抗器52は、当該技術において既知の技法による半導体デバイスとして実施することができ、その場合、最大値決定回路34aおよび34bの出力の相対値が、半導体デバイスのバイアス、したがって抵抗、または、切り換え素子または電流制御電圧源のデューティサイクルの変調を制御し、上述した均等化を可能にする。
【0044】
次に図7を参照して、これらの原理は、次のようなシステムにも適用することができる。すなわち、このシステムでは、電極22aおよび22bの各ワイヤ32が、電極アセンブリ16aおよび16b内で電気的に絶縁され、電力発振器28またはそのリターンのいずれかに接続された可変抵抗器54を通じてスイッチによる個別の給電(feed)53によって駆動される。この状況において、電気的に絶縁することは、電源または制御電子機器に接続される前は、組織を通る以外に、電極22aと22bとの間の導電路が存在しないことを意味する。上述したように、スイッチからの個別の給電53間の位相差を使用して、電極ワイヤ32間の電流の流れの経路をさらに制御することもできる。この位相差は、例えば、位相シフトを生成する複素抵抗器(complex resistance)によるか、コンピュータプログラムに従って動作する専用波形発生器よって生成することができ、任意の切り換えパターンが作成される。抵抗器54の値は、以下で述べるようにコントローラ56上で動作するプログラムによって変更される。このために、可変抵抗器54は、当該技術において既知の技法によるMOSFETのような半導体デバイスを使用して実施することができる。
【0045】
同様にして、コントローラ56によっても制御される同様の可変抵抗器54は、接触プレート50を駆動することができる。
【0046】
コントローラ56は、制御の目的で、各ワイヤ32の温度センサ30(上述)からの入力を信号線58として受け取ることができる。ワイヤ32に対する電圧のこの個別制御により、腫瘍12全体を通した電流の流れの追加制御を、いずれか一方のワイヤの近くにあるヒートシンクの血管などに対応させることができる。
【0047】
図8を参照して、可能な1つの制御アルゴリズムは、プロセスブロック60によって示すように、温度センサ30を読み取る。各温度センサ30について、そのワイヤ32の温度が、組織の炭化点よりも低い「シーリング値(ceiling value)」よりも高い場合には、そのワイヤの電圧は下げられる。この「ハンマリングダウン(hammering down)」プロセスは、すべてのワイヤのすべての温度がシーリング値よりも低くなるまで繰り返される。
【0048】
次にプロセスブロック62で、各電極22aおよび22bについて、ワイヤの平均温度が求められ、これらの平均温度を徐々に均等にするように、接触プレート50の電圧が調節される。接触プレート50の電圧は、より高い平均を有する電極22の電圧に近づけられる。
【0049】
次にプロセスブロック64では、ワイヤが確実に、そのシーリング値より高く上昇しないようにするために、プロセスブロック60のハンマリングダウンプロセスが繰り返される。
【0050】
次にプロセスブロック66で、当該プロセスブロック66の各実行で順に1つずつワイヤが検査される。そして、その温度が、シーリング値よりも低い「フロア値(floor value)」よりも低いが、腫瘍に所望の出力を供給するのに十分高い場合には、そのワイヤ32の電圧は、他方の電極22のワイヤの電圧から徐々に離される。逆に、ワイヤ32がフロア値よりも高い場合には、動作は行われない。
【0051】
個別電圧制御によって、各ワイヤ32は、徐々にその温度を調節されて、フロアとシーリングとの範囲内に入る。このプロセスは、温度の制御パラメータだけでなく、例えばインピーダンスを含む他の所望の制御パラメータにも適用できることが理解されよう。
【0052】
図7に示すように、このプロセスは、第3の電極セット22cを含む任意の個数の電極22に拡張することができる。なお、第3の電極セット22cの接続は、分かりやすくするために図示していない。
【0053】
この本発明を傘プローブについて説明してきたが、その原理のほとんどは、標準的なニードルプローブを使用することにも利用できることが理解されよう。さらに、本発明は、2つの電極セットに限定されるものではなく、電流の大部分が電極のセット間に流れる複数の電極セットと共に使用できることが理解されよう。傘電極のワイヤ数も同様に、3本に限定されるものではなく、本発明と共に使用するのに適した市販のプローブは、10本のワイヤのものを含む。さらに、上述した例では、電極の最大温度が制御に使用されたが、本発明は、最小温度もしくは平均温度を使用する制御戦略、または、インピーダンスを計測するか、もしくは、所定の切り換え時刻を使用する制御戦略にも同様に適用できることが理解されよう。
【0054】
II.マルチ単極電極の操作(MULTIPLEXED MONOPOLAR ELECTRODE OPERATION)
次に図9を参照して、マルチ単極システム70が、電力出力72を有する電力発振器28を提供する。電力出力72の高周波信号は、単極双投スイッチ74の極に接続される。スイッチ74は、好ましくは20キロヘルツを越えるレートで切り替わる、当該技術において既知の技法による半導体スイッチとして実施されることが好ましいが、これに限定されるものではない。
【0055】
スイッチ74の第1の接続点(throw)76は、第1の電極22aに接続される。第1の電極22aは、傘の枝が電気的に結合された上述したような傘型電極である。少なくとも1つの枝は、温度センサ30aを備えることができる。
【0056】
スイッチ74の第2の接続点78は、第2の電極22bに接続される。第2の電極22bも、温度センサ30bを有する。
【0057】
電極22aおよび22bは、上述したように、腫瘍のボリュームの側面に配置されるか、または、所望に応じて個別の腫瘍内に配置される。単一の腫瘍を治療する場合、電極22aおよび22bは、互いに隣接して配置され、通常、電極22aおよび22bの枝の拡張区域の直径の3倍未満の距離にされる。双極の実施態様とは逆に、マルチ単極電極動作では、プローブが挿入される位置に制限はない。説明した技法を任意の個数の電極に拡張できることも理解される。
【0058】
一実施態様では、温度センサ30aおよび30bからの信号が、コントローラ56によって受信される。コントローラ56は、温度の差を求めて、温度差信号を生成する。この温度差信号は、比例/積分(PI(proportional/integral))タイプのコントローラ56によって受信される。PIコントローラは、当該技術において既知であり、入力された差信号を第1の制御定数K1倍したものに、入力された差信号の積分値を第2の制御定数K2倍したものを加算する関数である信号を生成する。この場合のPIコントローラ56は、電気的な矩形波として実施される制御信号80を生成する。PIコントローラの性質については、以下にさらに説明する。
【0059】
PIコントローラは、温度差信号に代わるものとして、他のさまざまな制御入力を受け取ることができる。この制御入力には、インピーダンス、温度、電力、(電極間を定期的に切り換える)絶対時間、または1つまたはそれ以上の電極および他の同様の制御入力のインピーダンス差、温度差、もしくは電力差が含まれる。
【0060】
PIコントローラに代えて、考えられる他の任意の制御メカニズムを実施して、2つまたはそれ以上のプローブに電力を分配することができる。
【0061】
図10も参照して、一般に、制御信号80の矩形波は、スイッチ74の極の動作を制御して、電極22aの切り換えパターン82aおよび電極22bの切り換えパターン82bを生成する。これらの切り換えパターン82aおよび82bは、スイッチ74の極の位置を表し、したがって、各電極22aおよび22bに見られる出力72の高周波の波形の変調包絡線を表す。スイッチ74の極が接続点76に接続されている時間の間、波形82bはハイの状態にあり、これは、高周波エネルギーが電極22aに供給されることを示す。逆に、スイッチ74の極が接続点78に接続されている場合、波形82bはハイであり、これは、高周波エネルギーが電極22bに供給されることを示す。
【0062】
好ましい実施態様に示すように、信号82aおよび82bは、正確に補完し合うものであり、どの所与の瞬間においても、電極22aおよび22bの一方のみが電力を受け取り、さらに、電力発振器28からの電力が完全に利用されていることを示す。すなわち、電極22aが通電されると、電流は、(図9の矢印84aによって示すように)電極22aと接触プレート50との間にのみ流れる。逆に、電極22bが通電されると、電流は、(図9の84bによって示すように)電極22bと接触プレート50との間にのみ流れる。所与の時刻において、電極22aおよび22bの一方のみが起動されると、電極22aの周囲のリージョンのボリューム90aを歪ませる傾向にあるシールドも、電極22bの周囲のリージョンのボリューム90bを歪ませる傾向にあるシールドも発生しない。シールドは、電極22aおよび22bが同時に通電された場合に発生する。しかしながら、電極22aおよび22bの「オン」状態が多少重なり合うことは、この重なり合いが、重なり合わない期間と比較して小さい場合には、許容され得ることに留意されたい。
【0063】
電極22aが起動されている期間94aを、電極22bが起動されている期間94に対する比として表すと、この比として表された期間94aは、「デューティサイクル」を定義する。PIコントローラ56の出力を形成する制御信号80は、このデューティサイクルを制御し、その結果、電力は、電極22aおよび22bのうち、より低い温度を有する一方に優先的に向けられる。このように、コントローラ56は、2つの電極22aおよび22bの相対的な温度を平衡状態にするように動作する。あるいは、デューティサイクルは、接続された電極対間のインピーダンスまたは接続された電極対間で消耗する電力に基づいて制御することができる。デューティサイクルを温度差に応じて調節して、上述したK1およびK2の設定により制御するレートは、電極22aおよび22bの実際の温度が電力の切り換えと共に瞬時に逸れることがあることから、電極22aおよび22bの平均温度を反映するように調節される。
【0064】
スイッチ74の切り換え周波数は、組織の冷却時間(例えば2Hz以上)に比べて速くなるように選択される。切り換え速度を高くし、10kHzを越えて20kHz近くにすることが、神経および組織、特に心臓組織を興奮させる可能性のある低周波成分を回避するために好ましいことがある。切り換えは、高周波電源が供給する信号のゼロ交差で優先的に実行され、それによって、過渡電流が回避される。
【0065】
PIコントローラは、リミッタも提供することができる。このリミッタは、閾温度(摂氏約95度)に達すると、期間94aおよび94bの比を維持しつつ、期間94aおよび94bを同時に減少させることにより、電極22aおよび22bに送られる平均電力を削減するものである。この場合、パターン82aおよび82bは、もはや補完的ではないが、依然としてハイの状態は重なり合うことはない。
【0066】
高周波電源の電力出力はさらに、電極22aおよび22bの温度またはインピーダンスによって制御することができる。この実施態様では、パターン82aおよび82bは補完的となる。スイッチは、電極22aおよび22bの温度を平衡状態にするように制御される。高周波電源の電力出力は、電極22aおよび22bの平均温度を設定温度にするように調節される。設定温度は通常、炭化および沸騰が発生する温度よりも低くされる。
【0067】
図9に示す別の実施態様では、点線96によって示すように、温度センサ30aおよび30bの経路を2次スイッチ98へ設定することができる。この2次スイッチ98は、単極双投スイッチであり、その極は、標準的な電力発振器28の温度入力に接続される。この場合、電力発振器28は、その出力電圧または出力電流を、所与の温度プローブ30aまたは30bから受け取った温度に応じて下げるために直接制御を受けることができる。この制御および温度プローブからの温度の受け取りは、スイッチ74の動作に従って交互になるようにされる。したがって、電力発振器28は、電極22aに電力を送っている時間の間、温度センサ30aから温度も受け取って、電極22aを適切に制御する。次に、スイッチ74が状態を変更して、電力発振器が電極22bに接続されると、電力発振器は、温度30bから温度信号を受け取ることができる。
【0068】
次に図11を参照して、スイッチ74は、実際には、任意の個数の電極22a、22b、および22cに収容することができる。図11では、これらの電極を、複数の腫瘍12および12'内のニードル電極として示す。このように、本発明は、任意の個数の電極を腫瘍の周囲の所定の位置に一度に配置する利点を提供することができ、その上、電極を移動させる必要なく、組み合わされた熱的効果によってそのボリュームを実質的に同時に治療することができる。
【0069】
図示するように、スイッチ74は、電極22a、22b、および22cのそれぞれに1つずつ接続点が接続された単極三投スイッチであり、図12に示すようなパターン82c、82d、および82eに従って変調された高周波エネルギーを供給する。切り換えパターン82c、82d、および82eは、3つの波形82a、82b、および82cのデューティサイクルが独立に制御されて、それに比例した電力が、最も温度の低い電極22に運ばれる点を除いて、上述した切り換えパターン82aおよび82bと類似している。また、切り換えパターン82c、82d、および82eは、もはや補完的ではないが、時間軸上、重なり合うことはまったくない。理想的には、1つまたはそれ以上の電極22が閾値未満の温度を有する場合、どの時刻においても、切り換えパターン82c、82d、および82eの1つはオンにされている。一定の制御アルゴリズムでは、電力がプローブのいずれにも向けられないサイクルが存在することがある。その場合、この複数の接続点のスイッチの1つの極は、どのプローブにも接続されていないか、または、電力を損失するある要素に接続されている。
【0070】
III.マルチプロングの操作(MULTIPLEXED PRONG OPERATION)
次に図13を参照すると、電極101の代替的な実施形態が示されている。図7を参照して説明したように、ここでは、プローブまたは電極101は複数のプロング100、102、および104を有し、これらプロングはそれぞれ、例えば絶縁体106により他方のプロングとは絶縁し、これらのそれぞれは単一シャフト107内に収容され、このシャフトもまたプロング100、102、および104とは絶縁することができる。プロング100、102、および104は傘構成を呈するように外側に湾曲させてもよく、並列構成で配置されてもよく、または他の構成であってもよい。個々のプロング100、102、および104は、極の1つがRF電源28に接続される単極多投スイッチ108に接続される。接続点の数は電極101のプロングの数に等しく、ゆえに、図13に示すように三投スイッチである。また、接触プレートまたはグランドパッド50も提供される。動作の際、プローブ101の各プロング100、102、および104は、能動プロングとグランドパッド50との間で単極RFアブレーションを行うように個別に起動することができる。また、単極多投スイッチ108に接続されたコントローラ56を、プロング100、102、および104間の切り換え、並びに起動時間および他の変数を制御するように設けることができる。上述したように、プロング100、102、および104のそれぞれに温度センサ30を配置することができ、上述したように、センサ30から受け取った温度読み取り値に基づいて、または、上述したように、インピーダンス、電力、絶対時間、または1つもしくは2つ以上のプロングのインピーダンス差、温度差、もしくは電力差、または同様の制御入力などの他のパラメータに従って、プロング100、102、および104間の切り換えを行う(PDIコントローラとすることができる)コントローラ56に温度フィードバックが供給されることができる。1つのグランドパッド50が図示されているが、複数のグランドパッドが提供され得ること、およびグランドパッドは、下記のように、スイッチにより動作の入/切を切り換えることができることが理解されるであろう。さらに、シャフト107も電源28に選択的に接続することができる。プロング100、102、および104のそれぞれは電気的に独立し、個別に起動するため、プロング間に電気的相互作用はなく、例えば、アブレーションの中央領域の治療を高めることができる。
【0071】
次に図14を参照すると、上述したように電極101の別の実施形態が示されている。ここでは、プローブは偶数個のプロング100、102、104、および110を有し、これらはそれぞれ、上述したように、絶縁体106により、隣接するプロングと分離すなわち絶縁している。プロング100、102、104、および110はそれぞれ、双極多投スイッチに接続され、この接続点の数は、プローブ101のプロングの数の半分と定められており、ゆえに、図では双極双投スイッチである。双極のうちの一方の極である双極投スイッチ128はグランド接続部114に接続され、一方、第2の極130はRF電源28(グランド接続部114も関係する)に接続される。
【0072】
次に図15を参照すると、動作の際、プロング100および104および102および110の対向する対がそれぞれ、各プロング対の間で双極アブレーションを行うためにコントローラ56によって起動する。プロングの対向する対を切り換えることによって、高温で切り換えられた双極のリージョンがプロングの中央に形成され得る。
【0073】
図13を参照して上述したように、プロング100、120、104、および110はそれぞれ、コントローラ56にフィードバックを供給する温度センサ30を有することができ、このフィードバックに基づき、電力および温度レベルを所定レベルに維持するように種々のプロング対間をいつ切り換えるかを判定することができる。図示はしないが、三投スイッチを用いて開放接続を行い、所望に応じてプロングを停止して電力および温度を選択レベルに維持することもできる。
【0074】
4プロングのプローブ用に図示されているが、ほぼ円形の10プロングアレイを有するプローブが好ましく、直径方向に対向したプロング対が順次起動する切り換えパターンとなっている。上述したように、このような切り換えにより、切り換えられた双極の高温リージョンがプロングの中央に生じる。さらに、偶数個のプロングが図示されているが、奇数個のプロングを有する円形アレイも提供することができ、ほぼ対向したオフセットプロング間の切り換えが行われる。
【0075】
次に図16を参照すると、RFプローブ101の別の実施形態が示されている。ここでも同様に、プロング100、102、および104のそれぞれは、絶縁体106によりプロングの他方とは絶縁している。プロング100、102、および104のそれぞれは、単極三投スイッチ114、116、および118それぞれに接続される。単極三投スイッチ114を特に参照すると、極132はプロング100に接続され、接続点134、136、および138はRF電源28、グランド接続部114、および電気的開放位置それぞれに接続される。スイッチ114、116、および118のそれぞれは、温度センサ30からのフィードバックまたは上述したような他のタイプのフィードバックに基づいて、プロングのうちどれをRF電源28に接続するのか、どれをグランド接続部114に接続するのか、また、どれを開放したままとするのかを判定するコントローラ56にさらに接続される。したがって、プロング100、102、および104の対間で双極アブレーションが行われ得る。また、グランドパッド50が提供されて、単極、単一接続スイッチ120を介してグランド接続部114に選択的に接続され、単極アブレーションを可能にすることができる。プロング100、102、または104のいずれかから単極アブレーションを行うために、コントローラ56がプロング100、102、または104をRF電源28につなぐようにスイッチ114、116、および118のいずれかを起動することができ、スイッチ120は、グランドパッド50を回路グランド接続部114に接続するように起動する。代替的に、プロング100、102、および104のそれぞれは、RF電源28につながれると同時に、従来のアブレーション(プローブのプロングの全てが同時に起動する)を行うことができる。よって、所定の治療状態に好適な電力分配を行うため
に従来の単極アブレーションおよび双極アブレーションを組み合わせることができる。さらに、種々の異なる適用パターン間を高速に切り換えることによって、プローブの形状を変えずに励起電力を制御することができる。
【0076】
次に図17を参照すると、RFプローブ101の別の実施形態が示されている。ここでは、一連のグランドパッド50a、50b、および50cは単極、単投スイッチ120、122、および124によりグランド接続部114に選択に接続される。このシステムの動作は図15を参照して上述した通りである。しかしながら、ここでは、コントローラ56は、各種方向に各種電力レベルで電流の流れを促進させるように各種グランドパッド50a、50b、および50c間でさらに選択することができる。ここでも同様に、電流路の起動および停止は、熱センサ30からのフィードバックまたは上述したような他のタイプのフィードバックに基づいてコントローラ56によって確定され得る。さらにまた、熱センサ30はグランドパッド50a、50b、および50cに接続されるか、または上述した構成のいずれかで示されるグランドパッドに接続されることができ、センサからの温度読み取り値を用いて切り換えパラメータを確定することができる。同様に、選択されたプロングと選択されたグランドパッドとの間のインピーダンスもまた、切り換えパラメータとして用いることができる。電極と複数のグランドパッドとの間の種々の他のアブレーションプロセスは、「独立制御可能なグランド・パッド・コンダクタでの高周波アブレーション(Radiofrequency Ablation with Independently Controllable Ground Pad Conductors)」と題する、2004年5月11日に出願された同時係属中の仮特許出願第60/569,896号に開示されており、その個別に制御可能なグランドパッドおよびかかる装置を制御する方法の説明は参照により本明細書に援用される。そこに記載されている、電極とグランドパッドとの間を切り換える方法はまた、本明細書において説明した個々のプロング及びグランドパッド間に適用することができる。
【0077】
電極の特定の実施形態を本明細書において図示し説明してきたが、電極は種々の複数の絶縁されたプロングで作製しうること、および種々のタイプの切り換え構成(switching)をプロング間に配設しうることは明らかであろう。さらにまた、いずれかの電極におけるプロングが共に接続され、一方で他のものは絶縁された構成もまた提供しうるものである。さらに、温度センサのフィードバックが示され記載されているが、上述したフィードバック機構のいずれも、絶縁したプローブを有する電極と共に用いることができることが明らかであろう。さらに、単一の電極101を図示し説明しているが、1回の治療に複数の電極を用いることができ、電極のそれぞれを独立してまたは複数のコントローラによって制御しうることは明らかであろう。プローブ自体は、傘プローブ、あるいは、代替的に、単一シャフト内に一緒に収容される複数の電気的に独立したニードルまたはプロングを含むものとしうる。
【0078】
本発明は、本明細書に含まれる実施態様および例示に限定されるものでなく、添付の特許請求の範囲に入るような、実施態様の部分を含むそれら実施態様を変更した形態、および、異なる実施態様の要素を組み合わせたものを含むことが特に意図される。例えば、スイッチは、適切にイネーブル(enable)およびディセーブル(disable)にされる複数の高周波源を使用して実施することができる。複数の電極が同時に通電されて、交互に使用されるハイブリッドシステムも考えられる。経皮電極を説明したが、本発明は、焼灼プローブ(cauterizing probe)、および手術的または腹腔鏡的に配置される電極にも適用することができる。

【特許請求の範囲】
【請求項1】
互いに絶縁されている複数のプロングを有する電気プローブと、高周波電源と、前記複数のプロングと前記高周波電源とに接続されるとともに、前記複数のプロングとグランドとに接続されているスイッチシステムと、で構成される高周波アブレーションシステムにおいて、
前記複数のプロングの少なくとも2つの対の一方が、それぞれ、前記スイッチングシステムによって選択的に前記高周波電源に接続されるとともに、前記複数のプロングの少なくとも2つの対の他方が、それぞれ、前記スイッチングシステムによって選択的に前記グランドに接続され、かつ、
前記スイッチングシステムによって選択された前記プロングの対の間にアブレーション電流が供給されることを特徴とする高周波アブレーションシステム。
【請求項2】
高温治療領域を前記プロングの対の間の中央に提供させるために、前記プロングの対が分離され対向されて前記中央の治療領域の周りに間隔を空けて配列され、かつ、前記スイッチシステムによって、前記プロングの対が前記高周波電源およびグランドに順次に接続され印加されることを特徴とする請求項1に記載の高周波アブレーションシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−101087(P2012−101087A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2011−276946(P2011−276946)
【出願日】平成23年12月19日(2011.12.19)
【分割の表示】特願2007−524992(P2007−524992)の分割
【原出願日】平成17年7月29日(2005.7.29)
【出願人】(390023641)ウイスコンシン アラムナイ リサーチ ファウンデーシヨン (61)
【氏名又は名称原語表記】WISCONSIN ALUMNI RESEARCH FOUNDATION
【Fターム(参考)】