説明

マンホール異常検知システムおよびマンホール異常検知方法

【課題】人がマンホールの中へ入ることなくマンホール崩壊の予兆を検知する。
【解決手段】マンホール異常検知システム1において、天板200がマンホール崩壊の予兆としての歪みによる圧力を受けると、その圧力が圧電センサ400に伝わる。圧電センサ400は、天板200から伝わる圧力を検知して無線タグ500に信号を出力する。無線タグ500は、圧電センサ400から信号が出力されると、無線信号を送信する。この無線信号を地上で受信することにより、人がマンホールの中へ入ることなくマンホール崩壊の予兆を検知できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マンホール異常検知システムおよびマンホール異常検知方法に関する。
【背景技術】
【0002】
マンホールの壁(特に、天井や側壁)に対して土壌や車両等による外力が加わることにより、マンホールの各部に応力が生じる。図15は、マンホールに加わる外力に対する応力分布の例を示す図である。例えば、マンホールの天井に上方から外力v1が加わることで、天井のコンクリートの上側には圧縮応力v2が生じ、下側には引張応力v3が発生する。これらの応力が生じることにより、コンクリートの強度が劣化する。マンホールを改修せずにコンクリートの強度の劣化が進むと、最終的にはマンホールの天井が陥没するなど、マンホールが崩壊するに至る。
コンクリートの強度を推定する方法の1つに、シュミットハンマーを用いた推定方法があり、マンホールの診断にも適用されている。シュミットハンマーを用いた推定方法によれば、非破壊でコンクリートの圧縮強度を推定できる。この方法は、鋼棒を介して錘をコンクリート面に衝突させて衝突時の錘の反発量を測定し、測定した反発量に基づいて圧縮強度を推定する方法である。シュミットハンマーを用いてマンホールを診断する場合、保守点検員がマンホール内に入り、マンホールの天井等にシュミットハンマーを衝突させて反発量を測定する。測定した反発量からコンクリートの圧縮強度(引張応力)を推定することにより、マンホールの強度診断を行うことができる(非特許文献1および非特許文献2参照)。
【先行技術文献】
【非特許文献】
【0003】
【非特許文献1】中部電力、「技術開発ニュース(121号) 特集 地中送配電設備診断技術の開発」、2006年7月、http://www.chuden.co.jp/torikumi/study/library/news/pdf/list121/N12105.pdf
【非特許文献2】中部電力、「技術開発ニュース(104号) 研究成果 経年マンホールの強度診断方法の開発」、2003年9月、http://www.chuden.co.jp/torikumi/study/library/news/pdf/list104/N10419.pdf
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、シュミットハンマーを用いたマンホールの診断等を行うために、点検作業員がマンホールの中へ入ることは、容易でない場合が多い。例えば、マンホールは多くの場合に浸水(冠水)しており、作業員が中へ入るためには排水が必要である。この排水の作業には、排水ポンプやその電源を確保するための発電装置などの排水用機材の準備が必要である。また、排水作業自体も半日ないし1日にわたる場合が多い。また、マンホールは、通常、道路に設けられているため、警察への作業の届出や、作業中の道路の交通整理が必要となり、交通整理のための人員を確保する必要が生じる。このような、準備や作業の負担および費用のため、点検から次の点検までの期間間隔は長く取られる傾向にあり、その期間途中でのマンホール崩壊の危険性が増す。マンホール崩壊の危険性を除去するために、マンホールを改修する、あるいは、新たに設置し直すことも考えられるが、土木作業が必要なため、点検検査に比べて十倍から百倍以上のコストがかかる。コストを抑えるためには、より安価な点検方法で定期的に点検を行って、マンホール崩壊の予兆を把握し、マンホールを改修せずに使用できる期間をできるだけ長く取ることが望まれる。
【0005】
本発明は、このような事情を考慮してなされたものであり、その目的は、人がマンホールの中へ入ることなくマンホール崩壊の予兆を検知できるマンホール異常検知システムおよびマンホール異常検知方法を提供することにある。
【課題を解決するための手段】
【0006】
[1]この発明は上述した課題を解決するためになされたもので、本発明の一態様によるマンホール異常検知システムは、マンホールの壁に沿って設置され、前記マンホールの壁からの圧力の変化に基づいて、前記マンホールの壁の歪みを検知する歪み検知部と、前記歪み検知部が前記マンホールの壁の歪みを検知すると、歪みを検知したことを示す信号を送信する送信部と、を具備することを特徴とする。
【0007】
[2]また、本発明の一形態によるマンホール異常検知システムは、上述のマンホール異常検知システムであって、前記マンホールの壁は長方形の形状を有する前記マンホールの天井であり、前記歪み検知部は、前記マンホールの天井の長方形を対角線で2分割して得られる2つの三角形に対応する形状および大きさから、前記マンホールの出入口部分を除いた形状および大きさを有し、前記マンホールの天井に沿って設置される複数の天板と、前記複数の天板の各々を下方より支持する複数の支柱と、前記天板と前記支柱との間に設置され、前記天板が受ける前記マンホールの天井からの圧力を検知する圧電センサと、を具備し、前記天板は、各々、3本の前記支柱により3点で下方より支持され、前記圧電センサは、前記天板毎に、前記天板が支持される3点のうちいずれか1点にて前記天板と前記支柱との間に位置し、前記送信部は、無線信号を送信する無線タグであることを特徴とする。
【0008】
[3]また、本発明の一形態によるマンホール異常検知システムは、上述のマンホール異常検知システムであって、前記マンホールの壁は前記マンホールの天井であり、前記歪み検知部は、前記マンホールの天井の形状および大きさから、前記マンホールの出入口部分を除いた形状および大きさを有し、前記マンホールの天井に沿って設置される天板と、前記天板を下方より支持する複数の支柱と、前記支柱の各々と前記天板との間に設置され、前記天板が受ける前記マンホールの天井からの圧力を検知する圧電センサと、を具備し、前記送信部は、無線信号を送信する無線タグであることを特徴とする。
【0009】
[4]また、本発明の一形態によるマンホール異常検知システムは、上述のマンホール異常検知システムであって、前記天板は、前記支柱に支持されるフレームと、前記フレームに取り付けられ、前記マンホールの天井に接触するように前記フレームからの長さを調整される複数の凹凸調整ボルトと、を具備することを特徴とする。
【0010】
[5]また、本発明の一形態によるマンホール異常検知システムは、上述のマンホール異常検知システムであって、前記天板は、可変な長さを有する前記支柱に支持されるフレームと、前記フレームに取り付けられ、前記フレームからの長さを調整される複数の凹凸調整ボルトと、前記凹凸調整ボルトにより下方より支持され、前記凹凸調整ボルトの前記フレームからの長さに応じて、前記マンホールの天井に接触する高さおよび向きに設置される複数の天板パネルと、を具備することを特徴とする。
【0011】
[6]また、本発明の一形態によるマンホール異常検知システムは、上述のマンホール異常検知システムであって、前記マンホールの壁は、前記マンホールの側壁であり、前記歪み検知部は、前記マンホールの側壁の形状および大きさを有し、前記マンホールの側壁に沿って設置される側版と、前記側板を横方向より支持する複数の支柱と、前記支柱の位置を固定する梁と、前記支柱と前記側板との間に設置され、前記側板が受ける前記マンホールの側壁からの圧力を検知する圧電センサと、を具備し、前記送信部は、無線信号を送信する無線タグであることを特徴とする。
【0012】
[7]また、本発明の一形態によるマンホール異常検知方法は、マンホールの壁に沿って設置された歪み検知部が、前記マンホールの壁からの圧力の変化に基づいて、前記マンホールの壁の歪みを検知する歪み検知ステップと、前記歪み検知ステップにて前記マンホールの壁の歪みを検知すると、送信部が、歪みを検知したことを示す信号を送信する送信ステップと、を具備することを特徴とする。
【0013】
[8]また、本発明の一形態によるマンホール異常検知方法は、上述のマンホール異常検知方法であって、前記マンホールの壁は長方形の形状を有する前記マンホールの天井であり、前記歪み検知部は、前記マンホールの天井の長方形を対角線で2分割して得られる2つの三角形に対応する形状および大きさから、前記マンホールの出入口部分を除いた形状および大きさを有し、前記マンホールの天井に沿って設置される複数の天板と、前記複数の天板の各々を下方より支持する複数の支柱と、前記天板と前記支柱との間に設置され、前記天板が受ける前記マンホールの天井からの圧力を検知する圧電センサと、を具備し、前記天板は、各々、3本の前記支柱により3点で下方より支持され、前記圧電センサは、前記天板毎に、前記天板が支持される3点のうちいずれか1点にて前記天板と前記支柱との間に位置し、前記送信部は、無線信号を送信する無線タグであることを特徴とする。
【0014】
[9]また、本発明の一形態によるマンホール異常検知方法は、上述のマンホール異常検知方法であって、前記マンホールの壁は前記マンホールの天井であり、前記歪み検知部は、前記マンホールの天井の形状および大きさから、前記マンホールの出入口部分を除いた形状および大きさを有し、前記マンホールの天井に沿って設置される天板と、前記天板を下方より支持する複数の支柱と、前記支柱の各々と前記天板との間に設置され、前記天板が受ける前記マンホールの天井からの圧力を検知する圧電センサと、を具備し、前記送信部は、無線信号を送信する無線タグであることを特徴とする。
【0015】
[10]また、本発明の一形態によるマンホール異常検知方法は、上述のマンホール異常検知方法であって、前記天板は、前記支柱に支持されるフレームと、前記フレームに取り付けられ、前記マンホールの天井に接触するように前記フレームからの長さを調整される複数の凹凸調整ボルトと、を具備することを特徴とする。
【0016】
[11]また、本発明の一形態によるマンホール異常検知方法は、上述のマンホール異常検知方法であって、前記天板は、可変な長さを有する前記支柱に支持されるフレームと、前記フレームに取り付けられ、前記フレームからの長さを調整される複数の凹凸調整ボルトと、前記凹凸調整ボルトにより下方より支持され、前記凹凸調整ボルトの前記フレームからの長さに応じて、前記マンホールの天井に接触する高さおよび向きに設置される複数の天板パネルと、を具備することを特徴とする。
【0017】
[12]また、本発明の一形態によるマンホール異常検知方法は、上述のマンホール異常検知方法であって、前記マンホールの壁は、前記マンホールの側壁であり、前記歪み検知部は、前記マンホールの側壁の形状および大きさを有し、前記マンホールの側壁に沿って設置される側版と、前記側板を横方向より支持する複数の支柱と、前記支柱の位置を固定する梁と、前記支柱と前記側板との間に設置され、前記側板が受ける前記マンホールの側壁からの圧力を検知する圧電センサと、を具備し、前記送信部は、無線信号を送信する無線タグであることを特徴とする。
【発明の効果】
【0018】
本発明を用いて、マンホールが崩壊する予兆を検知することにより、人がマンホールの中へ入ることなくマンホール崩壊の予兆を検知できる。
【図面の簡単な説明】
【0019】
【図1】本発明の第1の実施形態におけるマンホール異常検知システムの概略構成を示す構成図である。
【図2】同実施形態において、2組のマンホール異常検知システム1を用いる配置例を示す図である。
【図3】同実施形態において、2組のマンホール異常検知システム1を用いる、もう1つの配置例を示す図である。
【図4】同実施形態において、車両通過時にマンホール100に伝わる揺れと、崩壊予兆による揺れとの例を示す図である。
【図5】本発明の第2の実施形態におけるマンホール異常検知システムの概略構成を示す構成図である。
【図6】同実施形態において、変則的な形状のマンホールを1枚の天板で覆う例を示す図である。
【図7】本発明の第3の実施形態におけるマンホール異常検知システムの概略構成を示す構成図である。
【図8】同実施形態において、天井を覆うように設置された天板205を横方向から見た断面図である。
【図9】同実施形態において、高低調整ボルト320を用いて2つの支柱パーツ310を結合した例を示す図である。
【図10】同実施形態において、天板パネルと凹凸調整ボルト間に圧電センサを挿入した例を示す図である。
【図11】同実施形態において、トラストフレームのみで構成する天板と、天井に凹凸のあるマンホール105に当該天板を用いた例を示す図である。
【図12】同実施形態において、凹凸調整ボルト220が取り付けられたトラストフレームの天板と、天井に凹凸のあるマンホール105に当該天板を用いた例を示す図である。
【図13】本発明の第4の実施形態におけるマンホール異常検知システムの概略構成を示す構成図である。
【図14】本発明の第5の実施形態におけるマンホール異常検知システム8の概略構成を示す構成図である。
【図15】マンホールに加わる外力に対する応力分布の例を示す図である。
【発明を実施するための形態】
【0020】
<第1の実施形態>
以下、図面を参照して、本発明の実施形態について説明する。
図1は、本発明の第1の実施形態におけるマンホール異常検知システムの概略構成を示す構成図である。
同図において、マンホール100は道路の下に存在し、マンホール100から地表(道路)に向けて出入口が設けられ、出入口の地表部分に蓋がされている。マンホール100と他のマンホールとの間には、管路が設けられており、この管路を通信ケーブルが通されている。そして、マンホール100には通信ケーブルを接続・分岐するクロージャが配置されている。
マンホール異常検知システム1は、マンホール100の内部に構築され、天板200と、合計3本の支柱300および301と、圧電センサ400と、無線タグ500とを具備する。このうち、天板200と支柱300と圧電センサ400とを合わせて歪み検知部に対応し、以下に説明するように、マンホールの天井に歪みが生じた際に、天板200がマンホールの天井からの圧力を受けると、圧電センサ400が受ける圧力が増加し、この圧力の増加に基づいて、圧電センサ400が、マンホールの天井の歪みを検知する。
【0021】
マンホール異常検知システム1は、支柱300に取り付けられた圧電センサ400を用いてマンホール100の天井の歪み(外部からの圧力等による変形)を検知することにより、対象とするマンホール100の崩壊の予兆を検知する。
支柱301は、マンホール100の角(隅または突出した部分)に設置され、天板200を支える。支柱300は、支柱301と同様に、マンホール100の角に設置されて天板200を支えるが、支柱300は支柱301よりも圧電センサ400の厚み分だけ短く、支柱300と天板200との間に圧電センサ400が挿入されている。
天板200は、例えば鋼鉄など変形しにくい素材を用いて生成されており、支柱300および301に支えられてマンホール100の天井の一部を覆う。
圧電センサ400は、予め定められた閾値以上の圧力を受けると信号を出力する。
無線タグ500は、圧電センサ400から信号が出力されると、無線信号を送信する。
【0022】
図1に示すように、3本の支柱300および301が天板200を支え、支柱300と天板200の間に圧電センサ400が挿入されている。天板200は、天井を対角線で分割した、天井の半分の形状および大きさに応じた三角形からマンホール100の出入口部分を除いた(切り取った)形状および大きさを有し、三角形の各頂点付近で3本の支柱300および301により支えられている。
この天板200は、マンホール100が崩壊する予兆がないとき、具体的には、マンホール100の天井に歪みが生じていないときは、天井から圧力を受けない。このときは、天板200は、自らの重みによって圧電センサ400に圧力を加える。一方、マンホール100が崩壊する予兆があるとき、具体的には、マンホール100の天井に歪みが生じているときは、天井から圧力を受ける。このときは、天板200は、自らの重みに加えて天井から受ける圧力によって圧電センサ400に圧力を加える。天井に歪みが生じた際に圧力を受けるように、天板200は、天井に接触して設置されるなど、天井の近傍に、天井に沿って設置されている。
予め定められた閾値以上の圧力が加わると、圧電センサ400は無線タグ500に信号を出力する。この閾値は、天板200の重みによって加えられる圧力よりも大きい値に設定されており、マンホール100が崩壊する予兆がないときは、圧電センサ400は信号を出力しない。無線タグ500は、圧電センサ400から信号が出力されると、マンホール100が崩壊する予兆を検知したことを示す情報を含む無線信号を送信する。あるいは簡単に、予兆がない場合は、無線タグ500は無線信号を送信せず、予兆を検出した場合に無線信号を送信するようにしてもよい。いずれにしても、この無線タグ500が送信する信号を受信することにより、マンホール100内に入らずに地上(例えばマンホール100上の路上)で、マンホール100が崩壊する予兆を検知できる。
【0023】
このように、天板200が三角形の形状を有し、3本の支柱300および301が天板200の三角形の各頂点付近を支えることにより、マンホール100の天井に歪みが生じて天板200の一部を下方へ押したときに、3本全ての支柱300および301にその力が加わり、支柱300と天板200との間に挿入された圧電センサ400にも力が加わる。したがって、圧電センサ400が天板200の3つの頂点のいずれに配置されているかにかかわらず、かつ、天板200のどの部分に天井からの圧力が加わった場合でも、1つの圧電センサ400でマンホール100の天井が崩壊する予兆を検知できる。
なお、天板200の各辺の長さが出入口の口径よりも長い場合は、例えば、天板200を折り畳み式、あるいは組み立て式とし、マンホール100の内部で展開し、あるいは組み立てる。
【0024】
図1では、1組のマンホール異常検知システム1を用いる場合について説明したが、2組のマンホール異常検知システム1を用いることにより、天井全体を覆うことができる。これにより、天井のどの部分に歪みが生じた場合にもマンホール100が崩壊する予兆を検知できる。
図2は、2組のマンホール異常検知システム1を用いる配置例を示す図である。
同図において、2枚の天板200をそれぞれ3本ずつの支柱300および301が支えている。ここで、2本の支柱300は、いずれも2枚の天板200を支えており、合計4本の支柱300および301がマンホール100の4隅に位置している。また、図1で説明したように、支柱300と天板200との間には圧電センサ400が挿入されている。
【0025】
2枚の天板200は、各々、マンホール100の天井の半分の形状および大きさに応じた三角形からマンホール100の出入口部分を切り取った形状および大きさを有しており、この2枚の天板を用いて天井全体を覆うことができる。
そして、図1で説明したのと同様、2枚の天板200の各々が三角形の形状を有し、支柱300または301が天板200の各頂点付近を支えることにより、高々天板の数と同数の圧電センサ400および無線タグ500にて、天井のどの部分に歪みが生じた場合でも検知できる。これにより、人がマンホールの中へ入ることなくマンホール崩壊の予兆を検知できるので、人がマンホールに入って検査を行う際の負担を軽減できる。そして、マンホールの補修を適切な時期に行って、既存のマンホールを長期間使用できるので、マンホールを補修あるいは新設する負担を軽減できる。
また、2本の支柱300の各々が2枚の天板200を支えることにより、2本の支柱301を削減できる。なお、1つの支柱300が2枚の天板200を支えているので、いずれの天板200に圧力が加わった場合にも、1つの支柱300天板200との間に挿入された圧電センサに圧力が加わり、マンホール100が崩壊する予兆を検知し得る。そこで、支柱300をいずれか1本のみとし、もう1本の支柱300を支柱301に置き換えてもよい。これにより、圧電センサ400および無線タグ500の個数を削減できる。
【0026】
一方、図2のように、2個の圧電センサ400および2個の無線タグ500を用いる場合は、2つの無線タグ500を、天井の長方形の対角位置など互いに離れた位置に配置することにより、両方の圧電センサ400がマンホール100崩壊の予兆を検知して両方の無線タグ500が無線信号を送信する場合に、広範囲に無線信号を送信でき、マンホール100崩壊の予兆を地上の広範囲で検知できる。さらには、例えば、車両に受信装置が搭載されており、この車両が高速走行中の場合に、偶然混入したノイズにより一方の無線タグ500から送信される無線信号の受信に失敗した場合でも、他方の無線タグ500から送信される無線信号の受信できるなど、受信条件が厳しい場合にもマンホール100崩壊の予兆を検知できる可能性が高まる。
【0027】
なお、支柱300と301との配置は、図2に示したものに限らない。
図3は、2組のマンホール異常検知システム1を用いる、もう1つの配置例を示す図である。
同図では、支柱300と301との配置が図2の場合と異なる。図3では、支柱300および圧電センサ400は、天板200の頂点のうち、他方の天板200に隣接しない頂点付近に配置されている。
図3に示す配置によっても図2の場合と同様、2枚の天板で長方形の天井全面を覆うことができる。そして、どちらかの天板200にマンホール100の崩壊予兆となる圧力が加わると、当該天板200を支える3本の支柱300および301に圧力が伝わる。従って、3本の支柱のうちの1本と天板200との間に圧電センサ400を挿入することで、マンホール100の崩壊予兆としての天板200からの圧力を検知できる。従って、図2の場合と同様、天井のどの部分に歪みが生じた場合でも、マンホール100崩壊の予兆としての圧力を検知できる。
【0028】
次に、大型車両通行等の振動による誤検知を防止する方法について説明する。
マンホールの殆どは、車両の往来する道路の地表に出入口があり、道路下の地中にマンホールが埋設されている。このため、例えば、輸送用トラックなど大型車両が道路を走行すれば、その振動がマンホールにも伝わると考えられる。
また、マンホールの天井あるいは側壁が歪む際、天井あるいは側壁のコンクリートの劣化により、コンクリートにかかる圧力が、コンクリートの耐え得る圧力を超えた後に、揺れを伴って、ある程度大きな歪みが一度に生じることが考えられる。
圧電センサ400は、上述したような、天井の歪み等による定常的な圧力を検知するとともに、揺れによる一時的な圧力も検知し得る。特に、天板やセンサが設置されていない壁が歪む際の振動を検知することにより、マンホール100が崩壊する予兆を、より的確に検知できる。
【0029】
図4は、車両通過時にマンホール100に伝わる揺れと、崩壊予兆による揺れとの例を示す図である。
同図のグラフ(G1)は、マンホール100の上の道路をトラック等の大型車両が走行する際に、マンホール100に伝わる揺れを示すグラフである。一方、グラフ(G2)は、マンホール崩壊の予兆としての揺れを示すグラフである。これらのグラフに示すように、車両通過時の揺れとマンホール崩壊の予兆としての揺れとでは、揺れの大きさが異なる。道路からマンホール100までの間には、出入口の深さ分、例えば1メートル程度の厚さの土壌が挟まれている。車両通行時の揺れは、一部が土壌に吸収され、マンホール100に届く揺れは比較的小さいと考えられる。一方、天井や側壁が歪む際の揺れは、まさにマンホール100において生じる揺れであり、車両通行時の揺れよりも大きいと考えられる。
【0030】
そこで、車両通行時の揺れにより生じる圧力よりも大きい値の閾値を設け、圧電センサ400が、この閾値よりも大きい圧力を検知した場合にのみ、無線タグ500が、マンホール100の崩壊予兆を示す情報を送信するようにする。
このような、閾値を実現する方法として、例えば、圧電センサ400として、この閾値よりも大きい圧力を検知した場合にのみ、無線タグ500に信号を出力する圧電センサを用いる。
なお、他の方法により、閾値以上の大きさの圧力を検知するようにしてもよい。例えば、圧電センサ400が、圧力値を無線タグ500へ出力するようにしてもよい。この場合、無線タグ500は、予め閾値を記憶しており、圧電センサ400から出力される圧力値が、閾値よりも大きいか否かを判定する。閾値よりも大きいと判定した場合は、無線タグ500は、崩壊予兆を示す情報として、閾値以上の圧力を検知したことを示す情報を送信する。
【0031】
あるいは、図4に示すように、天板200と支柱300との間の、圧電センサ400が挿入されている位置に、併せてスプリング600を挿入してもよい。揺れの大きさが上述した閾値より小さい場合、全ての圧力をスプリング600が受け、圧電センサ400には圧力が加わらない。一方、揺れの大きさが上述した閾値を超える場合は、スプリング600のみでは圧力を受け止められず、圧電センサ400へも圧力が加わる。これにより、閾値より大きい揺れがある場合は、無線タグ500が、崩壊予兆を示す情報として、圧力を検知したことを示す情報を送信する。
【0032】
このように、天井あるいは側壁(第4の実施形態で後述する)が歪む際の揺れを検知することにより、マンホール100が崩壊する予兆をより的確に検知できる。さらに、車両走行時の揺れを検知しないことにより、誤検知を防止できる。
なお、図1で説明した、天板200の重みによって圧電センサ400に加えられる圧力よりも大きい値の閾値(マンホール100が崩壊する予兆がないときに、圧電センサ400が信号を出力しないようにするための閾値)を、これらの構成によって実現するようにしてもよい。
【0033】
また、圧電センサ400と無線タグ500とが、天井等の歪みによる恒常的な圧力と、歪み発生時の揺れによる圧力の両方を検知するようにしてもよい。例えば、無線タグ500が、天板200の重みによって圧電センサ400に加えられる圧力よりも大きい値の閾値(以下では、「静的圧力の閾値」という)と、車両通行時の揺れにより生じる圧力よりも大きい値の閾値(以下では、「揺れの閾値」という)との、2つの閾値を予め記憶しておく。そして、圧電センサ400が、圧力値を無線タグ500へ出力し、無線タグ500は、圧電センサ400から出力される圧力値と、それぞれの閾値とを比較する。そして、圧電センサ400から出力される圧力値が、静的圧力の閾値よりも大きいと判定した場合と、揺れの閾値よりも大きいと判定した場合との、それぞれ互いに異なる情報を含む信号を出力する。
この、無線タグ500が出力する信号を地上で受信することにより、天井等の歪みによる恒常的な圧力と、歪み発生時の揺れによる圧力の両方を検知できる。
【0034】
なお、無線タグ500が、圧電センサ400から出力される圧力値の変化量を算出することにより、揺れの大きさを検知するようにしてもよい。これにより、天井等の歪みによる恒常的な圧力と、歪み発生時の揺れとを区別して、より正確にマンホール100崩壊の予兆を検知できる。
あるいは、マンホール異常検知システム1が、さらに加速度センサを具備するようにしてもよい。この加速度センサが揺れを検知することによって、マンホール100崩壊の予兆としての、歪み発生時の揺れを検知できる。
【0035】
<第2の実施形態>
図5は、本発明の第2の実施形態におけるマンホール異常検知システムの概略構成を示す構成図である。
同図において、マンホール異常検知システム2は、マンホール100の内部に構築され、天板201と支柱300と圧電センサ400と無線タグ500とを具備する。このうち、天板201と支柱300と圧電センサ400とを合わせて歪み検知部に対応し、以下に説明するように、マンホールの天井に歪みが生じた際に、天板201がマンホールの天井からの圧力を受けると、圧電センサ400が受ける圧力が増加し、この圧力の増加に基づいて、圧電センサ400が、マンホールの天井の歪みを検知する。
同図において、図1の各部と同一の機能を有する部分には同一の符号(100、300、400、500)を付し、説明を省略する。
本実施形態のマンホールは、天板201の形状、および、全支柱に圧電センサを具備する点において、第1の実施形態のマンホール異常検知システム1と異なる。
【0036】
天板201は、マンホール100の長方形の天井に合わせて、長方形の形状を有する。天板201の大きさも、天井の大きさに応じた大きさである。また、天板201には、マンホール100の出入口を塞がないよう、出入口の形状および大きさに応じた穴が開けられている。この長方形の天板201を、4つの頂点付近にて4本の支柱300が支え、天板201と全ての支柱300との間に各1個の圧電センサ400が挿入されている。天板201も、天板200と同様、天井に歪みが生じた際に圧力を受けるように、天井に接触して設置されるなど、天井に沿って設置されている。
【0037】
天井が崩壊する前兆として天井が歪む(天井の一部分が下方へ下がるように変形する)と、天板201に対して下方へ押し下げる圧力が加わる。さらに、この押し下げる圧力は、天板201を介して圧電センサ400に加わる。すると、圧電センサ400は、圧力を受けたことを示す信号を無線タグ500に出力する。無線タグ500は、圧電センサ400から信号が出力されると、マンホール崩壊の予兆を示す信号を電波にて送信する。例えば、マンホール100の上部の地上でこの電波を受信することにより、マンホール100の内部に入らずにマンホール崩壊の予兆を検知できる。
図5のように、天板を4本以上の支柱で支える場合、天井から天板に圧力が加わった際に、一部の支柱には圧力が加わらないことが考えられる。そこで、上述したように、天板と、それを支える全ての支柱との間に、各1個の圧電センサ400を挿入しておく。
【0038】
マンホール異常検知システム2は、支柱301を用いず、全て同じ支柱300を用いるので、支柱300の共通化が図れ、複数種類の支柱を設計する負担および複数種類の支柱を生成する負担を軽減できる。
また、マンホール異常検知システム2は、1枚の天板201でマンホール100の天井を覆うので、天井の形状に従って天板201を設計すればよく、例えば、天井の形状を複数の三角形に分割して複数の天板を設計するなど、複雑な設計を行う必要が無い。この点で、設計の負担を軽減できる。また、複数の天板を準備する必要もない。また、1枚の天板のみを用いるので、1本の支柱で複数の天板を支えるために、支柱をどのように配置するか検討する必要もない。
【0039】
また、図5に示した長方形の天井に限らず、様々な形状の天井を、1枚の天板で覆うことができる。
図6は、変則的な形状(長方形以外)のマンホールを1枚の天板で覆う例を示す図である。同図(a)は、”L”字型のマンホール102の場合を示す。また、同図(b)は、”T”字型のマンホール103の場合を示す。また、同図(c)は、”十”字型のマンホール104の場合を示す。このような”L”字型や、”T”字型や、”十”字型のマンホールは、例えば、道路の交差点などに存在する。
例えば、同図(a)のように”L”字型の天井の場合、天井の形状に合わせて”L”字型の天板202を用いる。そして、”L”字型の天井には6個の角があるので、これら天井の角の各々に支柱300を配置し、各支柱300と天板202の間に各1個の圧電センサ400を挿入する。
【0040】
同様に、同図(b)および(c)のように、それぞれ”T”字型および”十”字型の天井の場合、天井の形状に合わせて、それぞれ”T”字型の天板203および”十”字型の天板204を用いる。そして、”T”字型および”十”字型の天井には、それぞれ8個および12個の角があるので、これら天井の角の各々に支柱300を配置し、各支柱300と天板202の間に各1個の圧電センサ400を挿入する。
このように、長方形以外の形状のマンホールでも、1枚の天板で天井全面を覆うことができ、図5で説明した長方形の場合と同様にして、マンホールが崩壊する予兆を検知できる。
【0041】
このような、”L”字型など変則的な形状のマンホール102〜104は直方体のマンホール100と比較して、存在する数が僅かである。従って、これらの形状のマンホール102〜104の天井全面を三角形の天板200で覆うように設計しても、汎用性に乏しい。このため、天板の設計等に時間やマンパワーをかけずに、マンホール102〜104の形状に合わせた天板202〜204を準備して角に立てる全支柱300との間に圧電センサ400を挿入することが有効である。
なお、天板202も天板200と同様、天井に歪みが生じた際に圧力を受けるように、天井に接触して設置されている、あるいは、天井との距離が予め定められた距離(例えば5ミリメートル)以下など、天井の近傍に設置されている。
【0042】
<第3の実施形態>
図7は、本発明の第3の実施形態におけるマンホール異常検知システムの概略構成を示す構成図である。
同図において、マンホール異常検知システム3は、マンホール105の内部に構築され、天板205と支柱305と圧電センサ400と無線タグ500とを具備する。このうち、天板205と支柱305と圧電センサ400とを合わせて歪み検知部に対応し、以下に説明するように、マンホールの天井に歪みが生じた際に、天板205がマンホールの天井からの圧力を受けると、圧電センサ400が受ける圧力が増加し、この圧力の増加に基づいて、圧電センサ400が、マンホールの天井の歪みを検知する。
同図において、図1の各部と同一の機能を有する部分には同一の符号(400、500)を付し、説明を省略する。
本実施形態のマンホール異常検知システム3は、天板205および支柱305を用いて、凹凸のある天井に対応する。
【0043】
例えば、30年以上前の旧規格に基づいて生成されたマンホールには、建築からの長年の経過により天井に凹凸が生じているものも多い。これらのマンホールは、旧規格に基づいて生成されていることと、長年の経過とにより、崩壊の可能性が比較的高く、マンホールが崩壊するか否かを判定する必要性が高い。しかし、図1の天板200のように、平らな天板では、天井の凹凸のために天板が天井に接する部分が少なく、天板と天井との間に隙間が生じる。天井に歪みが生じた際に、この隙間のために圧力が天板に伝わらず、マンホール崩壊の予兆が正確に検知できない可能性がある。マンホール崩壊の予兆をより正確に検知するために、凹凸の天井との接触部分のより多い天板が求められる。
【0044】
天板205は、細分化した天板パネル210と、トラストフレーム(Trussed Frame、三角形を組み合わせた形状の枠組み)230と、凹凸調整ボルト220とを具備する。支柱305は、支柱パーツ310と高低調整ボルト320と脚パーツ330とを具備する。
トラストフレーム230は、パイプ等、棒状の部材を組み合わせて構築され、図に示すように、最小単位の三角形が複数組み合わさっている。また、トラストフレーム230全体としても、天井の長方形を対角線で分割した三角形から、マンホール105の出入口部分を除いた形状および大きさに応じた形状および大きさを有する。トラストフレーム230は、最小単位の三角形のフレーム、さらには、この最小単位の三角形のフレームを形成する3本の棒状のフレームパーツにまで分解できる。従って、マンホール105内への搬入時には、分解した状態で、マンホール105の出入口から搬入し、マンホール105の内部で、天井のサイズに組み立てることができる。
【0045】
細分化した天板パネル210は、トラストフレーム230の最小単位の三角形に対応する大きさおよび形状を有する。マンホール異常検知システム3は、トラストフレーム230の最小単位の三角形と同数の、細分化した天板パネル210を具備する。
凹凸調整ボルト220は、トラストフレーム230に取り付けられ、トラストフレーム230からの長さ(出具合)を調整可能である。例えば、凹凸調整ボルト220には螺子山が切られており、トラストフレーム230は、この螺子山に対応する螺子穴を有する。この螺子穴は、トラストフレーム230を構成する部材に開けられていてもよいし、ナット状の部材がトラストフレーム230に接合されていてもよい。トラストフレーム230の螺子穴に凹凸調整ボルト220を指し込んで、右に旋回させると、トラストフレーム230の平面(トラストフレーム230が含まれる平面)に対して凹凸調整ボルト220が突出し、左に旋回させると、トラストフレーム230の平面に対する凹凸調整ボルト220の突出が小さくなる。
図7に示すように、天板205は、組み立てられたトラストフレーム230に、凹凸調整ボルト220を取り付けられ、この凹凸調整ボルト220に支えられて、トラストフレーム230の最小単位の三角形毎に1枚の細分化した天板パネル210が配置される構成となっている。ここで、細分化した天板パネル210の各々は、3本の凹凸調整ボルトにより、下方から3点で支えられる。
【0046】
支柱パーツ310は、例えばパイプ形状を有し、他の支柱パーツ310または脚パーツ330の一部を挿入可能である。脚パーツ330は、支柱パーツ310と同様の形状に加え、脚(図に示す三角形の板)を具備する。この脚により、支柱パーツ310は立てた状態で安定する。高低調整ボルト320は、支柱パーツ310同士、あるいは、支柱パーツ310と脚パーツ330とを結合させるボルトである。詳細については後述する。
図7に示すように、脚パーツ330の一部を支柱パーツ310に挿入して高低調整ボルト320で固定し、この支柱パーツ310をさらに他の支柱パーツ310に挿入して高低調整ボルト320で固定する。この、他の支柱パーツ310への挿入および高低調整ボルト320による固定を繰り返すことにより、支柱305が形成される。そして、支柱パーツ310の本数、および、後述する挿入の程度により、支柱305の高さを調整できる。
また、図7に示すように、3本の支柱305が、三角形の天板205の各頂点付近にて、この天板205を下方から支える。そして、図1の場合と同様、支柱305のうち1本と天板205との間に圧電センサ400が挿入され、圧電センサ400に無線タグ500が接続されている。
【0047】
図8は、天井を覆うように設置された天板205を横方向(トラストフレーム230が含まれる平面上)から見た断面図である。同図に示すように、天板205は、マンホール105の天井に沿って、この天井に接するように設置されている。なお、同図は、説明のために天井の歪みが非常に大きい場合について示している。本発明は、このように歪みが非常に大きい場合にも、より小さい歪みの場合にも適用できる。また、上述したように、細分化した天板パネル210の各々は、3本の凹凸調整ボルト220で支えられるが、図8では断面図のため、細分化した天板パネル1枚につき2本の凹凸調整ボトルが示されている。
【0048】
同図に示すように、凹凸調整ボルト220の出具合を調整することにより、細分化した天板パネル210の高さおよび向きを調整できる。細分化した天板パネル210の高さおよび向きを、天井の凹凸に合わせて調整することにより、細分化した天板パネル210の各々が、天井と少なくとも1箇所以上接触するようにできる。これにより、天板205に覆われた天井の部分のうち、どの部分で歪みが生じた場合にも、歪みによる圧力を細分化した天板パネル210が受け、凹凸調整ボルト220とトラストフレーム230とを介して圧電センサ400に圧力を加えることができ、マンホール105が崩壊する予兆を検知できる。
【0049】
さらに、図2で説明したのと同様に、複数のマンホール異常検知システム3を用いて天井全面を覆うようにすることにより、天井のどの部分で歪みが生じた場合にも、マンホール105が崩壊する予兆を検知できる。なお、図2で説明したのと同様、2枚の天板205が形成する長方形のうち、これら2枚の天板205が互いに向き合う対角に位置する2本の支柱305の各々が2枚の天板205を支えることにより、4本の支柱305で2枚の天板を支えることが出来る。
なお、トラストフレーム230の形状は三角形に限らず、第2の実施形態で説明したのと同様に、マンホールの天井の形状および大きさに応じた形状および大きさ(からマンホールの出入口部分を除いた形状および大きさ)であってもよい。
【0050】
図9は、高低調整ボルト320を用いて2つの支柱パーツ310を結合した例を示す図である。
同図の下側に示すように支柱パーツ310は、その上部に高低調整ボルト320を入れる穴を複数有する。この複数の穴は互いに高さ位置および横位置が異なる。また、支柱パーツ310は、その下部にも高低調整ボルト320を入れる複数の穴を有し、それらの穴も互いに高さ位置および横位置が異なる。穴ごとに横位置が異なるのは、支柱パーツの強度を保つためである。
【0051】
この穴を用いて、支柱305の高さを調整する方法について説明する。支柱パーツ310の上部にある複数の穴から1つを選択し(以下、この支柱パーツを「下支柱パーツ(下側)」という)、また、他の支柱パーツ310の下部にある複数の穴から、先の穴の横位置に対応する横位置の穴を選択する(以下、この支柱パーツを「支柱パーツ(上側)」という)。支柱パーツ310(下側)の上部を支柱パーツ310(下側)の下部の中に挿入し、選択した2つの穴が互いに重なるように合わせる。そして、合わせた穴に高低調整ボルトを挿入して、2つの支柱パーツ310を結合する。
【0052】
例えば、支柱パーツ310(下側)の上部にある複数の穴から最も低い位置にある穴と、支柱パーツ310(上側)の下部にある複数の穴から最も高い位置にある穴とを選んで高低調整ボルト320を挿入する。このように選んだそれぞれの穴に高低調整ボルト320を挿入した場合には、これら支柱パーツ310から成る支柱305全体として短くなり、天板205を低くできる。
逆に、支柱パーツ310(下側)の上部にある複数の穴から最も高い位置にある穴と、支柱パーツ310(上側)の下部にある複数の穴から最も低い位置にある穴とを選ぶ。このように選んだそれぞれの穴に高低調整ボルト320を挿入した場合は、支柱305全体として長くなり、天板205を高くできる。
以上のように、支柱パーツ310にある複数の穴を選び高低調整ボルト320を挿入することで、天板205の高さを変え、マンホール105の天井の高さに合わせることができる。
【0053】
図10は、天板パネルと凹凸調整ボルト間に圧電センサを挿入したマンホール異常検知システム4の例を示す図である。
図7では、支柱305と天板205の間に圧電センサ400を挿入したが、図10では、細分化した1枚の天板205を支える3本の凹凸調整ボルト220の内の1本に圧電センサ400を取り付け、この圧電センサ400を天板パネル210と凹凸調節ボルトとの間に挿入されている。
細分化した天板パネル210が、マンホール105の天井から圧力を受けると、圧電センサ400に圧力が伝わる。圧電センサ400は、図1で説明したのと同様に、細分化した天板パネル210の重みによる圧力よりも大きい値の閾値を記憶しており、この閾値より大きい圧力を検知すると、無線タグ500に信号を出力する。無線タグ500は、いずれかの圧電センサ400から信号が出力されると、無線信号を送信する。
【0054】
図9の場合と同様、支柱305および凹凸調整ボルト220を調整することにより、細分化した天板パネル210の各々がマンホール105の天井に接触するようにできるので、天板205が覆う天井の部分のうち、どの部分に歪が生じた場合でも、マンホール105が崩壊する予兆を検知できる。
また、図10の場合も、第1の実施形態の場合と同様、2組のマンホール異常検知システム4を用いて、天井全面のどの部分に歪が生じた場合でも、マンホール105が崩壊する予兆を検知できる。
【0055】
さらに、細分化した天板パネル210毎に圧電センサ400が設置されているので、どの細分化した天板パネル210が天井から圧力を受けているかを特定できる。例えば、圧電センサ400が、圧力検知時に無線タグ500に送信する信号を、圧電センサ400毎に異なる信号とし、無線タグ500が、圧電センサ400から出力される信号に応じて、圧電センサ400毎に異なる無線信号を送信するようにする。この無線信号を地上で受信することにより、マンホール105の中に入らずに、天井のどの部分に歪みが生じたかを特定できる。
上述した、旧規格で作られているマンホールには、コンクリートのみで構築されて、コンクリート内部に鉄筋が存在しないものが多い。このような鉄筋のないコンクリートのマンホール天井では、部分的に構造が弱い箇所が崩壊する可能性もある。そこで、細分化した天板パネル210毎に崩壊の予兆を捉え、天板パネル毎に異なる無線信号を送信することにより、例えば、この無線信号を受信して、幾つの天板パネル210が崩壊の予兆を捉えたかを数えて、崩壊の予兆(天井の歪み)の規模を把握できる。これにより、一部の補修・改修で済ませることができるか、あるいは、全面的に交換(別のマンホールへと移築)すべきか判断の情報を得られる。
【0056】
なお、図1のマンホール100のように、マンホールの天井が、ほぼ平面の場合は、トラストフレームのみで天板を構成するようにしてもよい。
図11は、トラストフレームのみで構成する天板と、天井に凹凸のあるマンホール105に当該天板を用いたマンホール異常検知システム5の例を示す図である。
同図に示すように、マンホール105には、支柱305で支えられた天板206が設置され、これら支柱305と天板206の間に圧電センサ400が挿入されている。この天板206は、細分化した天板パネル210および凹凸調整ボルト220を具備せず、トラストフレーム230のみで構成されている。
図1のマンホール100のように、天井がほぼ平面であれば、天井とトラストフレーム230とが接触する部分が多く、天板206が覆う天井の部分のうち、どの部分に歪むが生じた場合でも、マンホール105が崩壊する予兆を検知できることが期待できる。
また、第1の実施形態の場合と同様、2組のマンホール異常検知システム5を用いて、天井全面のどの部分に歪が生じた場合でも、マンホール105が崩壊する予兆を検知できる。
図11に示す構成では、細分化した天板パネル210や凹凸調整ボルト220が不要である点で、必要な部材が少なくて済み、そのため、マンホール異常検知システムの組み立てが容易である。
【0057】
一方、マンホール105のように天井に凹凸がある場合は、図11に示すように、トラストフレーム230と天井とが接触する部分が少なく、マンホール105が崩壊する予兆を的確に捉えられない可能性がある。そこで、天井に凹凸がある場合は、トラストフレーム230に凹凸調整ボルト220が取り付けられた天板207を用いる。
図12は、凹凸調整ボルト220が取り付けられたトラストフレームの天板と、天井に凹凸のあるマンホール105に当該天板を用いたマンホール異常検知システム6の例を示す図である。
図7の場合と同様に、マンホール105内に支柱305と天板207とが設置され、支柱305と天板207の間に圧力変化を検知する圧電センサ400が挿入され、圧電センサ400が検知した情報を無線で地上へ送信する無線タグ500が、圧電センサ400に接続されている。
【0058】
図7で説明したように、各凹凸調整ボルト220の、トラストフレーム230からの長さ(出具合)が調整可能である。各凹凸調整ボルト220の、トラストフレーム230からの長さを調整することにより、図12に示すように、全ての凹凸調整ボルトが天井に接触するように設定できる。したがって、図12に示した、凹凸調整ボルト220とトラストフレーム230で構成される天板207がマンホール105の天井とは、凹凸調整ボルト220の点数と一致する多くの箇所で接触する。このマンホール105の天井の変形により生じた応力がこの天井に接している凹凸調整ボルト220から、トラストフレーム230を介して、検知センサ(圧電センサ400)へと伝わり、検知した情報が無線タグ500により電波で地上へ送られる。
このように、天板207と天井とは多くの部分で接触するので、天板207が覆う天井の部分のうち、どの部分に歪みが生じた場合でも、マンホール105が崩壊する予兆を検知できると期待できる。
また、第1の実施形態の場合と同様、2組のマンホール異常検知システム6を用いて、天井全面のどの部分に歪が生じた場合でも、マンホール105が崩壊する予兆を検知できる。
【0059】
<第4の実施形態>
図13は、本発明の第4の実施形態におけるマンホール異常検知システムの概略構成を示す構成図である。
本実施形態のマンホール異常検知システム7は、マンホールの天井の圧力を検知する圧電センサ400に加えて、側壁の圧力を検知する圧電センサ400を具備する。
同図において、マンホール異常検知システム7は、マンホール100の内部に構築され、天板201と支柱300と圧電センサ400と無線タグ500と側板700と梁800とを具備する。このうち、側板700と支柱300と圧電センサ400とを合わせて歪み検知部に対応し、以下に説明するように、マンホールの天井に歪みが生じた際に、天板201がマンホールの天井からの圧力を受けると、圧電センサ400が受ける圧力が増加し、この圧力の増加に基づいて、圧電センサ400が、マンホールの天井の歪みを検知する。
同図において、図2の各部と同一の機能を有する部分には同一の符号(100、201、300、400、500)を付し、説明を省略する。
側板700は、例えば鋼鉄など変形しにくい素材を用いて生成されている。そして、側板700は、マンホール100の側壁の形状および大きさに応じた形状および大きさを有し、マンホール100の側壁に沿って配置されている。
梁800は、2本の支柱300の間に設けられ、これら2本の支柱300の間の距離を一定に保つ。
【0060】
側板700は、マンホール100の4面の側壁全てに配置されている。
図2で説明したように圧電センサ400を支柱300と天板200の間に挿入するように設置するのに加え、支柱300間には梁800を設け、マンホール100の側壁と支柱300との間にも圧電センサ400を挿入する。同図に示すように、天板200を天井だけでなく側壁にも側板を設置して圧電センサ400と無線タグ500も取り付けることで、マンホール100での側壁の歪みも検知できる。
マンホール100の側壁に歪みが生じて側板700に圧力が加わると、側板700は、圧電センサ400を押す。圧電センサ400は、側板700から押されたため、支柱300を押すが、2本の支柱300間に梁800が設けられているため、支柱300は、圧電センサ400に押されても位置がずれない。これにより、圧電センサ400は、側板700から押されることによる圧力を検知し、無線タグ500に信号を出力する。圧電センサ400から信号を出力された無線タグ500は、無線信号を送信する。この無線信号を地上で受信することにより、マンホール100の中に入らずにマンホール100が崩壊する予兆を検知できる。
なお、以上では、図2で説明した天板201を用いる場合について示したが、これに限らない。本実施形態は、前述したいずれの実施形態とも組み合わせて実施可能であり、これにより、前述したいずれの天板も適用できる。
【0061】
<第5の実施形態>
図14は、本発明の第5の実施形態におけるマンホール異常検知システム8の概略構成を示す構成図である。
同図において、マンホール異常検知システム8は、マンホール100の内部に構築され、天板201と支柱300と圧電センサ400と無線タグ500と梁800と加圧ボルト900と固定具910とボルト台920とを具備する。
同図において、図13の各部と同一の機能を有する部分には同一の符号(100、201、300、400、500、800)を付し、説明を省略する。
【0062】
マンホールの天井または側壁の中央付近に外力が働いて、天井または側壁の中央付近に歪みが生じる場合は、この外力に天井または側壁が押されることにより、マンホール100の内側へと天井または側壁が突き出るように歪みが生じる。
これに対し、マンホール100の側壁と側壁、あるいは、側壁と天井の交わる位置、つまりマンホール100の隅では、図15に示すように、互いに押し合う応力v4が生じ、マンホール100の外側へ空間が膨らむように歪む。
そこで、図2で説明したように圧電センサ400を支柱300と天板200の間に挿入するように設置するのに加え、マンホール100の隅にさらに圧電センサ400を設ける。この圧電センサ400は、固定具910と加圧ボルト900とボルト台920とで支柱300とマンホール100の隅との間に固定されている。
固定具910は、圧電センサ400マンホールの隅との間の隙間および圧電センサ400と加圧ボルト900との間の隙間を埋め、マンホールの隅からの圧力および加圧ボルト900からの圧力を圧電センサ400に伝える。ボルト台920は、加圧ボルト900を差し込む台座であり、支柱300に設置されている。加圧ボルト900は、ボルト台920に差し込まれ、ボルト台920からの長さ(出具合)を調節可能である。
【0063】
図14に示すように、圧電センサ400は、固定具910で挟まれ、マンホールの隅に加圧ボルト900で固定されている。そして、加圧ボルト900の長さ調整により、圧電センサ400には、定常状態において、予め定められた一定の圧力が加えられている。
マンホール100の隅に歪みが生じて、この隅は外側へ膨らむと、圧電センサ400に加えられていた圧力が減少する。その例を、図14のグラフ(上側)に示す。このグラフにように、マンホール隅に設置された圧電センサ400は、定常状態では、マンホール100の隅と加圧ボルト900とに挟まれて圧力が加えられている。そして、崩壊予兆時には、マンホール隅部分の空間が膨らむように変形することにより、圧電センサ400に加えられる圧力が減少する。
一方、支柱300と天板201との間に挿入された圧電センサ400は、図14のグラフ(下側)に示すように、定常状態では、天板201の重みによる圧力のみを受けている。そして、崩壊予兆時には、天井が突き出ることにより、圧電センサ400に加えられる圧力が増加する。
【0064】
このように、マンホール隅に設置された圧電センサ400では、支柱300と天板201との間に挿入された圧電センサ400とは逆に、マンホール崩壊の予兆により、圧電センサ400に加えられる圧力が減少する。そこで、マンホール隅に設置された圧電センサ400では、支柱300と天板201との間に挿入された圧電センサ400の場合とは逆に、検知する圧力が予め定められた閾値よりも小さくなったときにマンホール崩壊の予兆を検知したことを示す信号を出力する。無線タグ500は、圧電センサ400から信号が出力されると、マンホール崩壊の予兆を検知したことを示す無線信号を送信する。地上でこの無線信号を受信することにより、マンホール100の中に入らずに、マンホール100が崩壊する予兆を検知できる。
なお、第4の実施形態と同様、本実施形態は、前述したいずれの実施形態とも組み合わせて実施可能であり、これにより、天板201に限らず、前述したいずれの天板も適用できる。
【0065】
以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
【産業上の利用可能性】
【0066】
本発明は、マンホール異常検知システムおよびマンホール異常検知方法に用いて好適である。
【符号の説明】
【0067】
1、2、3、4、5、6、7、8 マンホール異常検知システム
100、102、103、104、105 マンホール
200、201、202、203、204、205、206、207 天板
210 天板パネル
220 凹凸調整ボルト
230 トラストフレーム
300、301、305 支柱
310 支柱パーツ
320 高低調整ボルト
330 脚パーツ
400 圧電センサ
500 無線タグ
600 スプリング
700 側板
800 梁
900 加圧ボルト
910 固定具
920 ボルト台

【特許請求の範囲】
【請求項1】
マンホールの壁に沿って設置され、前記マンホールの壁からの圧力の変化に基づいて、前記マンホールの壁の歪みを検知する歪み検知部と、
前記歪み検知部が前記マンホールの壁の歪みを検知すると、歪みを検知したことを示す信号を送信する送信部と、
を具備することを特徴とするマンホール異常検知システム。
【請求項2】
前記マンホールの壁は長方形の形状を有する前記マンホールの天井であり、
前記歪み検知部は、
前記マンホールの天井の長方形を対角線で2分割して得られる2つの三角形から、前記マンホールの出入口部分を除いた形状および大きさに応じた形状および大きさを有し、前記マンホールの天井に沿って設置される複数の天板と、
前記複数の天板の各々を下方より支持する複数の支柱と、
前記天板と前記支柱との間に設置され、前記天板が受ける前記マンホールの天井からの圧力を検知する圧電センサと、
を具備し、
前記天板は、各々、3本の前記支柱により3点で下方より支持され、
前記圧電センサは、前記天板毎に、前記天板が支持される3点のうちいずれか1点にて前記天板と前記支柱との間に位置し、
前記送信部は、無線信号を送信する無線タグである
ことを特徴とする請求項1に記載のマンホール異常検知システム。
【請求項3】
前記マンホールの壁は前記マンホールの天井であり、
前記歪み検知部は、
前記マンホールの天井の形状および大きさから、前記マンホールの出入口部分を除いた形状および大きさに応じた形状および大きさを有し、前記マンホールの天井に沿って設置される天板と、
前記天板を下方より支持する複数の支柱と、
前記支柱の各々と前記天板との間に設置され、前記天板が受ける前記マンホールの天井からの圧力を検知する圧電センサと、
を具備し、
前記送信部は、無線信号を送信する無線タグである
ことを特徴とする請求項1に記載のマンホール異常検知システム。
【請求項4】
前記天板は、
前記支柱に支持されるフレームと、
前記フレームに取り付けられ、前記マンホールの天井に接触するように前記フレームからの長さを調整される複数の凹凸調整ボルトと、
を具備する
ことを特徴とする請求項2または3に記載のマンホール異常検知システム。
【請求項5】
前記天板は、
可変な長さを有する前記支柱に支持されるフレームと、
前記フレームに取り付けられ、前記フレームからの長さを調整される複数の凹凸調整ボルトと、
前記凹凸調整ボルトにより下方より支持され、前記凹凸調整ボルトの前記フレームからの長さに応じて、前記マンホールの天井に接触する高さおよび向きに設置される複数の天板パネルと、
を具備する
ことを特徴とする請求項2または3に記載のマンホール異常検知システム。
【請求項6】
前記マンホールの壁は、前記マンホールの側壁であり、
前記歪み検知部は、
前記マンホールの側壁の形状および大きさに応じた形状および大きさを有し、前記マンホールの側壁に沿って設置される側版と、
前記側板を横方向より支持する複数の支柱と、
前記支柱の位置を固定する梁と、
前記支柱と前記側板との間に設置され、前記側板が受ける前記マンホールの側壁からの圧力を検知する圧電センサと、
を具備し、
前記送信部は、無線信号を送信する無線タグである
ことを特徴とする請求項1に記載のマンホール異常検知システム。
【請求項7】
マンホールの壁に沿って設置された歪み検知部が、前記マンホールの壁からの圧力の変化に基づいて、前記マンホールの壁の歪みを検知する歪み検知ステップと、
前記歪み検知ステップにて前記マンホールの壁の歪みを検知すると、送信部が、歪みを検知したことを示す信号を送信する送信ステップと、
を具備することを特徴とするマンホール異常検知方法。
【請求項8】
前記マンホールの壁は長方形の形状を有する前記マンホールの天井であり、
前記歪み検知部は、
前記マンホールの天井の長方形を対角線で2分割して得られる2つの三角形から、前記マンホールの出入口部分を除いた形状および大きさに応じた形状および大きさを有し、前記マンホールの天井に沿って設置される複数の天板と、
前記複数の天板の各々を下方より支持する複数の支柱と、
前記天板と前記支柱との間に設置され、前記天板が受ける前記マンホールの天井からの圧力を検知する圧電センサと、
を具備し、
前記天板は、各々、3本の前記支柱により3点で下方より支持され、
前記圧電センサは、前記天板毎に、前記天板が支持される3点のうちいずれか1点にて前記天板と前記支柱との間に位置し、
前記送信部は、無線信号を送信する無線タグである
ことを特徴とする請求項7に記載のマンホール異常検知方法。
【請求項9】
前記マンホールの壁は前記マンホールの天井であり、
前記歪み検知部は、
前記マンホールの天井の形状および大きさから、前記マンホールの出入口部分を除いた形状および大きさに応じた形状および大きさを有し、前記マンホールの天井に沿って設置される天板と、
前記天板を下方より支持する複数の支柱と、
前記支柱の各々と前記天板との間に設置され、前記天板が受ける前記マンホールの天井からの圧力を検知する圧電センサと、
を具備し、
前記送信部は、無線信号を送信する無線タグである
ことを特徴とする請求項7に記載のマンホール異常検知方法。
【請求項10】
前記天板は、
前記支柱に支持されるフレームと、
前記フレームに取り付けられ、前記マンホールの天井に接触するように前記フレームからの長さを調整される複数の凹凸調整ボルトと、
を具備する
ことを特徴とする請求項8または9に記載のマンホール異常検知方法。
【請求項11】
前記天板は、
可変な長さを有する前記支柱に支持されるフレームと、
前記フレームに取り付けられ、前記フレームからの長さを調整される複数の凹凸調整ボルトと、
前記凹凸調整ボルトにより下方より支持され、前記凹凸調整ボルトの前記フレームからの長さに応じて、前記マンホールの天井に接触する高さおよび向きに設置される複数の天板パネルと、
を具備する
ことを特徴とする請求項8または9に記載のマンホール異常検知方法。
【請求項12】
前記マンホールの壁は、前記マンホールの側壁であり、
前記歪み検知部は、
前記マンホールの側壁の形状および大きさに応じた形状および大きさを有し、前記マンホールの側壁に沿って設置される側版と、
前記側板を横方向より支持する複数の支柱と、
前記支柱の位置を固定する梁と、
前記支柱と前記側板との間に設置され、前記側板が受ける前記マンホールの側壁からの圧力を検知する圧電センサと、
を具備し、
前記送信部は、無線信号を送信する無線タグである
ことを特徴とする請求項7に記載のマンホール異常検知方法。







【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2011−168980(P2011−168980A)
【公開日】平成23年9月1日(2011.9.1)
【国際特許分類】
【出願番号】特願2010−31716(P2010−31716)
【出願日】平成22年2月16日(2010.2.16)
【出願人】(000004226)日本電信電話株式会社 (13,992)
【Fターム(参考)】