説明

レーザ駆動光源

【課題】発光媒体が封入されたプラズマ容器と、レーザ光を該プラズマ容器内に集光させる集光手段とを備え、該集光されたレーザ光によって前記プラズマ容器内にプラズマを生成するレーザ駆動光源において、プラズマ容器に集光入射されるレーザ光の集光立体角を大きくとることができるような構造を提供することである。
【解決手段】前記集光手段が、レーザ光の入射側に頂点を有する円錐鏡と、該円錐鏡によって反射された光をプラズマ容器に集光させる反射鏡と、からなることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、レーザ駆動光源に関するものであり、特に、半導体、液晶基板およびカラーフィルタの露光工程に使用される露光装置、デジタルシネマ用の画像投影装置、並びに光分析装置の光源として使用されるレーザ駆動光源に係わるものである。
【背景技術】
【0002】
近年、半導体、液晶基板およびカラーフィルタ等の被処理物の製造工程においては、入力電力の大きな紫外線光源が使用されている。紫外線光源として多用されているのは、水銀蒸気或いは希ガスを封入した管球内で電極間にアーク放電を発生させるタイプの高圧放電ランプである。
上記製造工程においては、処理時間の一層の短縮化が要求されており、そのため、この用途に使用される高圧放電ランプには、より一層の放射輝度の向上が必要とされている。高圧放電ランプの放射輝度を向上させるためには、入力電力を増やすことが必要である。
しかし、この種の高圧放電ランプは、入力電力を増やすと、ガラス管球内の電極がアーク放電に曝されて極めて高温になって徐々に蒸発したり、また、アーク放電によって生じる高速粒子でスパッタされたりして、電極が消耗することが避けられなかった。これら蒸発ないしスパッタで生じた電極を構成する金属、一般的にはタングステンはガラス管球の内壁面に付着し、ガラス管球の紫外線の透過率を低下させ、半導体等の被処理物の表面における放射照度を低下させてしまい、処理能力の低下を招き、ランプ寿命が短くなるという問題がある。
【0003】
このような高圧放電ランプの問題を解決するために、点光源管球において電極間で点灯した後にそのプラズマにレーザ光を照射することによって、連続的な高輝度光を発生させるレーザ駆動光源が提案されている。特表2009−532829号公報(特許文献1)がそれである。
【0004】
特許文献1には、図8に示すように、希ガス、水銀等のイオン性媒体が封入されたチャンバ(管球)11と、該チャンバ11内の封入媒体をイオン化するための点火源である一対の電極12、13と、連続またはパルス状のレーザエネルギーを照射するレーザ源14とを備えるレーザ駆動光源10が開示されている。
該レーザ源14は、光ファイバ16を介してレーザ光15を出力するダイオードレーザである。該光ファイバ16は、レーザ光を実質的に互いに平行にするためのコリメータ17にレーザ光を供給する。次いで、コリメータ17はビームエキスパンダ18にレーザ光を向ける。ビームエキスパンダ18は、レーザ光のビーム径サイズを拡大させ、大きなビーム径のレーザ光を生成する。また、ビームエキスパンダ18は、光学レンズ19にレーザ光を向ける。光学レンズ19は、チャンバ11のうちのプラズマ20が存在する領域に向けられる小径レーザ光を生成するためにレーザ光15を集光する。
【0005】
このレーザ駆動光源10は、アノード12およびカソード13からなる点火源によってチャンバ13内で放電を発生させて封入媒体をイオン化し、次いで、イオン化された媒体にレーザエネルギーを供給して高輝度光21を発生するプラズマ20を維持または生成するものである。
【0006】
しかして、前記したように、この種の光源ではできるだけ小さな点光源となることが求められるが、上記従来技術においては、レーザ光の集光によって点状の小さな領域にプラズマを発生させるためには、集光立体角を大きくしてレーザ光をプラズマ容器に入射し、レーザ光のスポット径を小さくして(点光源に近づく)、大きなエネルギー密度を得る必要がある。
しかしながら、上記レーザ駆動光源においては、光学レンズで集光しているために、その立体角を大きくするには限界があった。
【0007】
即ち、光学レンズで立体角を大きくすることは、高NA(開口数)にすることと同義であり、つまり、この高NAを実現するためには、大きな口径で短い焦点距離の光学レンズが必要になるということである。
ところが、(1)この焦点距離は、レンズの口径半径(f≒0.5R/(n-1)、ここでRは曲率半径、nは屈折率)より短くすることは困難であり、また、(2)焦点距離を短くすると光学レンズとプラズマ容器とが接近してしまい、光学レンズがプラズマ容器の熱を受けて加熱されてしまうという不具合が生ずるので、光学レンズで立体角を大きくすることは困難であるという不具合があった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特表2009−532829号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
この発明は、上記従来技術の問題点に鑑みて、発光媒体が封入されたプラズマ容器と、レーザ光を該プラズマ容器内に集光させる集光手段とを備え、該集光されたレーザ光によって前記プラズマ容器内にプラズマを生成するレーザ駆動光源において、プラズマ容器に入射されるレーザ光の集光立体角を大きくして、該容器内に集光されるレーザ光のスポット径を小さくし、高エネルギー密度として、容器内の小さな領域にプラズマを生成することができるようにした構造を提供せんとするものである。
【課題を解決するための手段】
【0010】
上記課題を解決するために、この発明に係わるレーザ駆動光源は、レーザ光のプラズマ容器内への集光手段が、レーザ光の入射側に頂点を有する円錐鏡と、該円錐鏡によって反射された光をプラズマ容器に集光させる反射鏡と、からなることを特徴とする。
また、前記反射鏡は、放物面鏡であって、その主軸が前記円錐鏡の回転軸とは一致せず、且つ、その回転軸が前記円錐鏡の回転軸と一致していることを特徴とする。
また、前記円錐鏡の頂角は、直角であり、前記反射鏡の主軸と該円錐鏡の回転軸に対する法線とが一致することを特徴とする。
また、前記円錐鏡の回転軸は、前記レーザ光の光軸と一致していることを特徴とする。
更には、前記プラズマ容器からの放射光を反射する凹面鏡を備えたことを特徴とする。
【発明の効果】
【0011】
本発明によれば、レーザ源からのレーザ光は円錐鏡によって反射され、この反射光が反射鏡によって更に反射されて、プラズマ容器の内部に入射され、発光媒体を加熱する。このときのレーザ光の集光立体角は、円錐鏡を用いたことにより、従来の光学レンズを用いた場合よりも大きくすることができるので、集光位置でのレーザ光のスポット径を小さくすることになり、大きなエネルギー密度を得ることができ、小さな領域にプラズマを好適に発生させることができる。
【図面の簡単な説明】
【0012】
【図1】本発明の第1実施例の説明図。
【図2】本発明の第2実施例の要部説明図。
【図3】本発明の第3実施例の要部説明図。
【図4】本発明の効果を説明するための計算条件を表す説明図。
【図5】本発明と従来例の効果の比較グラフ
【図6】本発明の効果を実証するための実験装置。
【図7】本発明の更に別の実施例の説明図。
【図8】従来技術の概略図。
【発明を実施するための形態】
【0013】
図1に本発明の第1実施例が示されていて、レーザ源1からコリメータ2およびビームエキスパンダ3を経て照射されるレーザ光4に対向するように、円錐鏡5が配置されており、この円錐鏡5の頂点5aはレーザ光入射側に向いて配置されている。その頂角は、この実施例では90°である。即ち、この実施例では、レーザ光4の光軸と円錐鏡5の回転軸とは一致している。
そして、前記円錐鏡5を囲むように、放物面を有する反射鏡6が設けられている。この反射鏡6を構成する放物線61の主軸62がレーザ光4の光軸4aに直交し、その焦点位置にプラズマ容器7が配置されている。
そして、前記反射鏡6は、この放物線61を、前記レーザ光4の光軸4a、即ち、円錐鏡5の回転軸51を回転軸63として回転させて形成された回転面を持つ放物面鏡(以下、変則放物面鏡ということもある)である。
このような変則放物面鏡6により、前記円錐鏡5によって、同図の垂直方向(即ち、レーザ入射方向に対して直交方向)に反射されたレーザ光41は前記変則放物面鏡6によって反射されて、その反射光42はその焦点位置にあるプラズマ容器7に集光されて入射する。
こうしてプラズマ容器7に集光して入射するレーザ光42によって、該容器7内の発光媒体が加熱され、プラズマが生成される。
【0014】
前記プラズマ容器7を取り囲むように凹面鏡8が設けられ、前記プラズマ容器7はその焦点に位置している。該凹面鏡8は楕円鏡や放物面鏡であってよく、プラズマ容器7からのプラズマ光は該凹面鏡8に反射されて、その前方に出射される。
なお、この凹面鏡8は、楕円又は放物線の長軸又は主軸を回転中心とする通常の楕円鏡又は放物面鏡であり、この場合の前記長軸又は主軸は、レーザ光4の光軸4aと一致する。
【0015】
この実施例でのレーザ光42の集光立体角は、従来の光学レンズを用いて集光させた場合よりも大きくすることができるので、集光位置でのレーザ光42のスポット径を小さくすることなり、大きなエネルギー密度を得ることができて、プラズマ容器7内の小さな領域にプラズマを好適に発生させることができる。この点については、後述の実験で説明する。
【0016】
上記第1実施例では、円錐鏡5の頂角2tが90°の場合を説明したが、90°に限られず任意の角度のものを採用でき、図2に、該頂角2tが鋭角、即ち90°未満(2t<90°)の場合の第2実施例が示されている。
この場合、反射鏡6を構成する放物線61の主軸62は、円錐鏡5の回転軸51に対する法線52に対して角度θだけ傾斜させている。そして、この放物線61を前記円錐鏡5の回転軸51を回転軸として回転させて反射鏡(変則放物面鏡)6を形成するものである。
このとき、放物線61の主軸62と法線52のなす角度θは、円錐鏡5の頂角2tとの間に次式(1)の関係がある。
<式(1)>

そして、プラズマ容器7は、該反射鏡(変形放物面鏡)6、即ち、前記放物線61の焦点に一致した位置に設けられる。
なお、当然のことながら、前記反射鏡6は、円錐鏡5でレーザ光4を反射したときに、その反射光41が投射される領域に設けられる。
【0017】
次に、円錐鏡5の頂角2tが鈍角、即ち90°超過した(2t>90°)場合についての第3の実施例が図3に示されている。
前記第2実施例の場合と同様に、反射鏡6を構成する放物線61の主軸62は、円錐鏡5の回転軸51に対する法線52に対して角度θだけ傾斜させている。ただ、この場合、前記第1実施例の場合とはその傾斜方向が逆方向になる。
即ち、この実施例での主軸62の傾き角度θと円錐鏡5の頂角(2t)は、次式(2)で表される。
<式(2)>

【0018】
本発明のレーザ駆動光源で得られる集光立体角と、従来のレンズを用いたレーザ駆動光源での集光立体角とを比較してみる。
上述した第1〜3の実施例からの集光立体角が、従来のレンズによる集光立体角よりも大きくなることを示すため、次のような手順で集光立体角を幾何学的に計算により求めた。
<本発明の計算条件>
この検証では、本発明のように円錐鏡5と反射鏡(変則放物面鏡)6を用いた場合、図4に示すように、反射鏡6を構成する放物線61の焦点Fと該放物線61の頂点Yとの距離をP(mm)、反射鏡6の焦点Fから、円錐鏡5おけるレーザ光4の反射する領域までの最短距離x(mm)、レーザ光4のビーム径をD(mm)としたとき、レーザ光を集光する集光立体角Ωは、定義に基づいて次式(3)から求めることができる。計算は少し煩雑ではあるが、入射角と反射角は等しい事、幾何学の対頂角、錯角、同位角の関係を用いて計算すると、
<式(3)>


<従来例の計算条件>
この検証では、従来のレンズを用いた場合の集光立体角Ω(sr)は、レーザ光のビーム径をD(mm)、レンズの焦点距離をF(mm)としたとき、次式(4)から求めることができる。
<式(4)>

【0019】
<検証1の結果>
検証1では、実施例1のレーザ駆動光源での立体角と、従来に係るレーザ駆動光源での集光立体角とを比較した。
まず、従来例での立体角Ω(sr)は、式(4)に、D=22mm、F=43mmを代入して求めた。
次に、実施例1の立体角Ω(sr)は、式(3)に、θ=0°、D=22mm、P=70mmを代入し、そして、x(mm)に約80mmまでを代入して、その変化を求めた。
そして、検証1においては、従来の立体角Ω(sr)に対して、実施例1のΩ(sr)がどのように変化しているかを見るため比をとって図示したのが、図5(a)である。
図5(a)においては、横軸が実施例1でのx(mm)を示しており、縦軸が比Ω/Ωを示している。
図5(a)に示すように、x(mm)がいずれの場合においても、実施例1の立体角Ω(sr)は、従来の立体角Ω(sr)よりも大きくすることができる。
さらに、x(mm)が焦点に近づくにつれて(プラズマ容器と円錐鏡とを近づけるにつれて)、実施例1の立体角Ω(sr)は、大きくなることが分かる。
【0020】
検証2では、実施例2及び3のレーザ駆動光源での集光立体角と、従来例のレーザ駆動光源での集光立体角とを比較した。
まず、従来の立体角Ω(sr)は、式(4)に、D=22mm、F=43mmを代入して求めた。
次に、実施例2および3の立体角Ω2(3)(sr)は、式(3)に、D=22mm、P=70mmを代入し、そして、x(mm)に約80mmまでを代入して、その変化を求めた。θ=15°の場合を示す。
そして、検証2においても、従来の立体角Ω(sr)に対して、実施例2および3のΩ(sr)がどのように変化しているかを見るため比をとって図示したのが、図5(b)である。
図5(b)に示すように、x(mm)が70mm以下の場合に、実施例2及び3の立体角Ω2(3)(sr)は、従来の立体角Ω(sr)よりも大きくすることができる。さらに、x(mm)を近づけるにつれて(プラズマ容器と円錐鏡とを近づけるにつれて)、実施例2及び3の立体角Ω2(3)(sr)は、大きくすることができる。
【0021】
最後に、第1の実施例の立体角が、従来の立体角より大きくなることにより、プラズマ容器に入射されるレーザ光のエネルギー密度が大きくなることを確認する実験を行なった。
実験では、図6のようなレーザ駆動光源を用いた。
そして、実験条件については、図6を用いて次の(1)〜(4)に示す。
(1)レーザ
レーザ源からの出力はφ0.45mmのファイバに取り込まれ、そのファイバからの出力を拡大器に通しφ22mmの略ガウシアンビームのレーザ光を円錐鏡5に照射する。
レーザ波長は970nmで、レーザ出力は1kWでレーザ光を出射させた。ここでレーザ光は、略ガウシアンビームであり、光の強度が1/e(=0.14)となる時の直径を、レーザ光のビーム直径2rとし、ファイバでのレーザ光の導光経路はそのビーム直径2rより大きく取ってある。
その理由としては、レーザの径方向において、rより外側では、レーザビームパワーの14%を占める。例えば、1KWのレーザパワーでは、140Wがrより外側にある。半径rの導光経路とすれば、rより外側の光が、光路に沿う機器にレーザ光が当り、損傷を受ける。したがって、導光経路はレーザビーム半径rより大きく取る必要がある。
【0022】
(2)円錐鏡
円錐鏡5は、頂角90度、高さ22.5mmの大きさで、表面には金コートが施こされている。円錐鏡の底面の直径は45mmで、レーザビーム径より大きい。
(3)反射鏡(変則放物面鏡)
アルミニウム製の反射鏡6の反射面は、y=x/280の2次曲線(放物線)の円錐鏡5の回転軸51を回転中心とした回転体(変則回転放物体)の一部であり、出射側の開口部の直径は135mm、入射側の直径は82mm、深さは65mmである。
(4)プラズマ容器
前記放物線により構成される反射鏡6の焦点は出射側開口部から25mmの位置にあり、その焦点位置に、プラズマ容器7内の電極間の中央が来るようにプラズマ容器を配置する。
プラズマ容器7は、石英ガラス製のバルブから成り、その中に希ガスなど発光媒体が封入されている。このプラズマ容器7内には、プラズマ発生始動用の一対の対向する電極71、72を備えている。この電極71、72間に電流を流す事で、放電プラズマが形成される。これにレーザ光を入射すると、この放電プラズマを火種として、レーザ駆動プラズマが形成される。
(5)
前記計算条件で示した図4の距離x(mm)を、図6の装置において、20〜45mmの間で変化させて、そのときの立体角とスポット直径を測定した。
なお、レーザ光は、そのビーム径において、中心から外周に向かうに従って、徐々にビーム強度が低下する。そして、ここでいうスポット直径は、ビーム強度の最大値から半分になるまでの部分の幅のことをいう。
このスポット直径が定まると、該スポット直径からレーザ光の強度を計算から求めることができる。
第1の実施例の装置における測定したスポット直径は、次の表1のようになる。なお、比較として、F=43mmのレンズを用いたときの従来の装置における立体角とスポット直径を示している。また、表1では、第1の実施例の装置におけるビーム強度は、従来にかかる装置におけるビーム強度に対する相対値として示している。
【0023】
<表1>

以上のように、本発明に係る装置は、従来に係る装置に比べて、立体角が大きくなり、その結果、スポット直径を小さくすることができ、点光源に近づけさせることができる。従って、本発明に係る装置は、スポット直径を従来に比べて小さくすることができるので、プラズマ容器に入射させるレーザ光のエネルギー密度を従来に比べて大きくでき、プラズマ容器内の小さな領域にプラズマを好適に発生させることができる。
【0024】
なお、上述の実施例では、レーザ光4の光軸4aと円錐鏡5の回転軸51とが一致する例で説明したが、必ずしも光軸4aと回転軸51とは一致しなくてもかまわない。これについては、図7を用いて説明する。
図7ではレーザ光の光軸と円錐鏡の回転軸が一致する場合と、光軸と回転軸とが一致しない場合とを対比させて記載しており、一点鎖線がレーザ光の光軸と円錐鏡の回転軸とが一致する場合であって、実線が光軸と回転軸とが一致しない場合を示している。
両者いずれの場合も、レーザ光4は円錐鏡5に反射されて、反射鏡6に投射されるが、同図からも分かるように、その投射される領域はほとんど変わらない。反射鏡6の焦点に位置するプラズマ容器7に入射されるレーザ光の立体角は、前記反射鏡6に投射される領域の面積から求めることができるので、その投射される領域が殆んど変わらないということは、立体角も殆んど変わらないことを示す。従って、本発明においては、円錐鏡5の回転軸51がレーザ光4の光軸4aと一致しなくても、従来に比べて大きな立体角を得ることができることが分かる。
【0025】
上記のように、この発明のレーザ駆動光源では、レーザ光をプラズマ容器内に集光させる集光手段を、レーザ光の入射側に頂点を有する円錐鏡と、該円錐鏡を囲む反射鏡とから構成し、レーザ源からのレーザ光を円錐鏡によって反射し、その反射光を反射鏡によって更に反射集光してプラズマ容器に入射するようにしたので、レーザ光の集光立体角を、従来の光学レンズよりも大きくすることができ、レーザ光の集光スポット径をより小さなものとすることができるので、そのエネルギー密度を大きくできるという効果を奏する。その結果、プラズマ容器内の極小な領域に好適にプラズマを生成することができるものである。
なお、プラズマ容器の点火源として電極を有するものを示したが、これに限られず、上記従来技術にも開示されているように、パルスレーザを用いることもできる。
【符号の説明】
【0026】
1 レーザ源
4 レーザ光
4a レーザ光の光軸
41 円錐鏡による反射光
42 反射鏡による集光反射光
5 円錐鏡
5a 円錐鏡の頂点
51 円錐鏡の回転軸
52 円錐鏡の回転軸に対する法線
6 反射鏡(変則放物面鏡)
61 反射鏡を構成する放物線
62 放物線の主軸
7 プラズマ容器
8 凹面鏡




【特許請求の範囲】
【請求項1】
発光媒体が封入されたプラズマ容器と、レーザ光を該プラズマ容器内に集光させる集光手段とを備え、該集光されたレーザ光によって前記プラズマ容器内にプラズマを生成するレーザ駆動光源において、
前記集光手段は、レーザ光の入射側に頂点を有する円錐鏡と、該円錐鏡によって反射された光をプラズマ容器に集光させる反射鏡と、からなることを特徴とするレーザ駆動光源。
【請求項2】
前記反射鏡は、放物面鏡であって、その主軸が前記円錐鏡の回転軸とは一致せず、且つ、その回転軸が前記円錐鏡の回転軸と一致していることを特徴とする請求項1に記載のレーザ駆動光源。
【請求項3】
前記円錐鏡の頂角(2t)と、該円錐鏡の回転軸に対する法線と前記反射鏡の主軸とのなす角(θ)とは、次式の関係からなることを特徴とする請求項2に記載のレーザ駆動光源。
前記頂角2t>90°のとき

前記頂角2t<90°のとき

【請求項4】
前記円錐鏡の頂角は、直角であり、前記反射鏡の主軸と該円錐鏡の回転軸に対する法線とが一致することを特徴とする請求項1に記載のレーザ駆動光源。
【請求項5】
前記円錐鏡の回転軸は、前記レーザ光の光軸と一致していることを特徴とする請求項1に記載のレーザ駆動光源。
【請求項6】
前記プラズマ容器からの放射光を反射する凹面鏡を備えたことを特徴とする請求項1に記載のレーザ駆動光源。




【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−38546(P2012−38546A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−177177(P2010−177177)
【出願日】平成22年8月6日(2010.8.6)
【出願人】(000102212)ウシオ電機株式会社 (1,414)
【出願人】(507005768)エナジェティック・テクノロジー・インコーポレーテッド (8)